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Abstract

This paper unifies the theories of Nash implementation and Bayesian implementation.
Environments considered are such that each agent's characteristics include, in addition to a
specification of his private information, a commonly known type parameter, while both
attributes are unknown to the designer. Each social choice correspondence (SCC) assigns a
commonly known type vector to a social choice set. Conditions that fully characterize an
implementable SCC in economic environments where agents are not satiated generalize and
merge respective conditions in the complete information model of Danilov (1992) and the
incomplete information model of Jackson (1991).
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1. Introduction

In this paper, we provide a unified framework in which the theories of both Nash implemen-
tation and Bayesian (Nash) implementation can be accommodated. We also discuss whether
Danilov’s (1992) notion of essential elements can be used to fill the gap between the necessary
and sufficient conditions of implementation in noneconomic environments.
An environment is called economic if agents cannot be simultaneously satiated, and

noneconomic otherwise. The problem of implementing social choice sets in both economic
and noneconomic environments involving agents that have incomplete information about
the state of the society is examined by Jackson (1991). He defines social choice functions
from states to allocations, and social choice sets as collections of social choice functions.
His contributions establish that social choice sets are Bayesian implementable only if they
satisfy closure (C), incentive compatibility (IC), and Bayesian monotonicity (BM) condi-
tions. Moreover, these three conditions are sufficient to implement a social choice set in any
economic environment involving at least three agents.1 Unfortunately, the same sufficiency
result does not hold in noneconomic environments. Jackson shows that a social choice set in
any noneconomic environment is implementable if it satisfies (C), (IC) and monotonicity-no-
veto (MNV), a condition combining Bayesian monotonicity and no-veto conditions. Since
(MNV) is not necessary, there exists a gap between necessary and sufficient conditions for
Bayesian implementation in noneconomic environments. Jackson is quick to realize that
Danilov’s (1989) single condition, namely essential monotonicity (EM), that characterizes
Nash implementable social choice correspondences can be helpful along this line.2

Danilov (1989, 1992) shows that any Nash implementable social choice correspondence
(SCC) - from preferences to alternatives - is essentially monotone. Conversely, if a SCC is
essentially monotone and there are at least three agents in the environment, then the SCC
is implementable via Nash equilibria. Essential monotonicity is stronger than monotonicity,
a necessary condition for Nash implementation. On the other hand, essential monotonicity
is weaker than monotonicity + no-veto power, which are sufficient conditions of Nash im-
plementation when there are at least three agents, a fact proved by Maskin (1977, 1999).
Analogously, to reduce the gap in Bayesian implementation, we wish carefully translate (EM)
to get a condition stronger than (BM) while weaker than (MNV).
The environment that we consider differs from that of Jackson in two aspects. First,

an agent’s characteristics include, in addition to a specification of his private information,
a commonly known type parameter. The two attributes are both unknown to the designer.
Second, instead of social choice sets, we deal with social choice correspondences assigning the
commonly known types of individuals to social choice sets. Like in Jackson’s model, however,
each social choice function within a given social choice set maps the private type profiles to
allocations. The problem of implementation is then to design a strategic outcome function
whose equilibria for any environment coincides with the social choice correspondence.

1See, also, Matsushima (1990) for similar results in economic environments.
2A full characterization of necessary and sufficient conditions of Nash implementation is due to Moore

and Repullo (1990). Danilov’s (1989, 1992) single condition reduces Moore and Repullo’s three conditions
to one.
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The distinction in the environment with regard to the previous literature has an important
implication. In a single framework, we merge Nash implementation model and Bayesian
implementation model. We show that conditions characterizing implementable social choice
correspondences select, up to some required generalizations and modifications, from the
respective conditions for Nash implementation and Bayesian implementation.
Any SCC in our framework is implementable only if it satisfies conditions generalizing

Danilov’s essential monotonicity and Jackson’s closure, incentive compatibility and Bayesian
monotonicity provided that the domain of preferences is sufficiently rich. In economic envi-
ronments involving rich preference domains and at least three agents, the same conditions
are also sufficient to fully implement a SCC. However, in noneconomic environments the
sufficiency conditions must involve a generalized monotonicity-no-veto (GMNV) condition
replacing generalized Bayesian monotonicity.
Two particular cases within our unified framework are of a special interest. In one extreme

case in which the information set of each agent is a singleton, the model boils down to the
Nash implementation model considered by Danilov. In the other extreme case in which the
society is known to have a single type, the model coincides with Bayesian implementation
model of Jackson.
The paper proceeds as follows: Section 2 introduces the environment that heavily bor-

rows from Jackson (1991), and defines social choice correspondences. Section 3 provides
the definitions that generalize and merge the notions in the Bayesian model of Jackson and
the complete information model of Danilov. In Section 4 we describe the implementation
problem, and in Section 5 we unify the theories of Nash implementation and Bayesian im-
plementation.

2. Basic Structures

Environments

There are a finite number, N , of agents. Agent i has two attributes θi and si. The
parameter θi is common knowledge while si is privately known by agent i. Henceforth, we
will use the term type for θi and information set for si.
Let Θi be the set of possible types of agent i. A type profile is a vector θ = (θ1, ..., θN )

and the set of all type profiles is Θ = Θ1 × ... × ΘN . Let Si describe the finite number of
possible information sets of agent i. A state is a vector s = (s1, ..., sN ) and the set of states
is S = S1 × ...× SN . Both the type profile and the state of the society are unknown to the
designer.
Let A denote the set of feasible allocations. We assume A is fixed across states.
A social choice function is a map from states to allocations. The set of all social choice

functions is X = {x|x : S → A}.
Each agent i has a probability measure qi defined on S.3 It is assumed that if qi(s) > 0

for some i and s ∈ S, then qj(s) > 0 for all j �= i. All agents agree on that T denotes the
set of states which occur with positive probability, where T = {s ∈ S|qi(s) > 0, ∀i}.

3For notational simplicity and with no loss of generality in our results, we assume that qi is type-
independent.
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The sets Πi are partitions of T defined by qi. For a given information set si ∈ Si,
πi(si) = {t ∈ S|ti = si and qi(t) > 0} denotes the set of states which agent i believes may
be the true state. It is assumed that πi(si) �= ∅ for all i and si ∈ Si. Let Π denote the finest
partition which is coarser than each Πi. For a given state s ∈ S, let π(s) be the element of
Π which contains s.
A preference is a linear order on X . The set of all preferences is denoted as R. Each

agent has preferences over social choice functions which have a conditional expected utility
representation. Given x, y ∈ X , si ∈ Si, and θ ∈ Θ, agent i’s weak preference relation
Ri(si, θi) ∈ R is such that

xRi(si, θi)y ⇔
∑

s∈πi(si)

qi(s)U i[x(s), s, θi] ≥
∑

s∈πi(si)

qi(s)U i[y(s), s, θi],

where U i : A×S ×Θi → IR+ is a state and type dependent utility function. Preferences are
complete and transitive. The strict preference and indifference relations associated with Ri

are P i and Ii, respectively.
An environment is a collection [N,S,Θ, A, {qi}, {U i}], whose structure is assumed to be

common knowledge among agents.

Social Choice Correspondences

A social choice correspondence (SCC) is a nonempty subset F ⊂ Θ×X (or F : Θ⇒ X).
A SCC F assigns to every type profile θ ∈ Θ, a social choice set F (θ) ⊂ X , i.e., a collection
of social choice functions.

3. Definitions

Here, we generalize several notions in the Bayesian model of Jackson and the complete
information model of Danilov.

Let L(x,Ri(si, θi)) be the set of social choice functions to which agent i of type θi weakly
prefers x at state si. This set is defined by L(x,Ri(si, θi)) = {y ∈ X|xRi(si, θi)y}.

Definition 1: The social choice functions x and y are equivalent if x(s) = y(s) for all
s ∈ T . The social choice correspondences F and F̂ are equivalent if for each θ and x ∈ F (θ)
there exists x̂ ∈ F̂ (θ) which is equivalent to x, and for each θ and x̂ ∈ F̂ (θ) there exists
x ∈ F (θ) which is equivalent to x̂.

Definition 2: Let x/Cz be a splicing of two social choice functions x and z along a
set C ∈ S. The social choice function x/Cz is defined by [x/Cz](s) = x(s) ∀s ∈ C, and
[x/Cz](s) = z(s) otherwise.

Definition 3: An environment is said to be economic if for any z ∈ X, θ ∈ Θ and
s ∈ S, there exist i and j (i �= j), x ∈ X and y ∈ X such that x and y are constant,
x/Cz /∈ L(z, Ri(si, θi)) and y/Cz /∈ L(z, Rj(sj, θj)) for all C ⊂ S such that s ∈ C. An
environment is called noneconomic if it is not economic.
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Definition 4: Let B and D be any disjoint sets of states such that B ∪D = T and for
any π ∈ Π either π ⊂ B or π ⊂ D. Consider a SCC F , and θ ∈ Θ. The social choice set
F (θ) satisfies closure (C) if for any x, y ∈ F (θ), there exists z ∈ F (θ) such that z(s) = x(s)
∀s ∈ B and z(s) = y(s) ∀s ∈ D. The SCC F satisfies generalized closure (GC) if for all θ,
F (θ) satisfies (C).

Given a vector or vector of functions v = (v1, ..., vN), the list (v−i, ṽi) represents the
vector (v1, ..., vi−1, ṽi, vi+1, ..., vN).

Definition 5: Given i, x ∈ X , and ti ∈ Si, define xti by xti(s) = x(s−i, ti), s ∈ S.
Consider a SCC F , and θ ∈ Θ. The social choice set F (θ) satisfies incentive compatibility
(IC) if for all i, x ∈ F (θ), and ti ∈ Si,

xti ∈ L(x,R
i(si, θi)) ∀si ∈ Si.

The SCC F satisfies generalized incentive compatibility (GIC) if for all θ, F (θ) satisfies (IC).

Definition 6: A deception for i is a mapping αi : Si → Si. Let α = (α1, ..., αN ) and
α(s) = [α1(s1), ..., αN (sN )]. The notation x◦α represents the social choice function which
results in x[α(s)] for each s ∈ S.

Definition 7: Consider a SCC F , θ ∈ Θ, x ∈ F (θ) and a deception α. The social
choice set F (θ) satisfies Bayesian monotonicity (BM) if whenever there is no social choice
function in F (θ) which is equivalent to x◦α, there exists i, si ∈ Si and y ∈ X such that

y◦α /∈ L(x◦α,Ri(si, θi)) while yαi(si) ∈ L(x,R
i(ti, θi)) ∀ti ∈ Si.

The SCC F satisfies generalized Bayesian monotonicity (GBM) if for all θ, F (θ) satisfies
(BM).

Definition 8: A social choice function z ∈ X satisfies the no-veto hypothesis (NVH)
for α, θ and D ⊂ T , if for each s ∈ D there exists i such that for each j �= i and z̃ ∈ X there
is a set C ⊂ D such that s ∈ C and z̃◦α/Cz ∈ L(z, Rj(sj, θj)).

Definition 9: Consider a SCC F , a deception α, and for each θ̂ ∈ Θ, x ∈ F (θ̂), and i, a
set Bi

x,θ̂
⊂ Si. Let Bx,θ̂ = B

1
x,θ̂
× ...×BN

x,θ̂
. Suppose that there exists z ∈ X such that for each

θ̂ ∈ Θ, x ∈ F (θ̂) and s ∈ B
x,θ̂
, z(s) = x◦α(s). Furthermore, suppose that z satisfies (NVH)

for α, θ and T − (∪θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂). F satisfies generalized-monotonicity-no-veto (GMNV)

if whenever there is no social choice function in F (θ) which is equivalent to z, there exist i,
θ̂ ∈ Θ, x ∈ F (θ̂), s ∈ ∪θ̄∈Θ̄xBx,θ̄ where Θ̄x = {θ : x ∈ F (θ)}, and y, z̃, and z̄ ∈ X , such that
z̄(t) = y◦α(t) when t ∈ ∪θ̄∈Θ̄xBx,θ̄; z̄(t) = z(t) when t

−i ∈ ∪θ̄∈Θ̄x̄B
−i

x̄,θ̄
for some x̄ such that

x̄ �= x; and z̄(t) = z̃◦α(t) otherwise; and

z̄ /∈ L(z, Ri(si, θi)), while yαi(si) ∈ L(x,R
i(ti, θi)) ∀ti ∈ Si.

If Θ is a singleton, every SCC is a social choice set; hence (GC), (GIC), (GBM) and
(GMNV), respectively, reduce to the conditions (C), (IC), (BM) and (MNV) defined by
Jackson (1991) for social choice sets.4

4For the intuition underlying the involving construction of (GMNV), see the last paragraph of the proof
of Lemma 4 that provides sufficiency conditions to show that given any θ ∈ Θ and any equilibrium σ in the
game G(M,µ, θ), there exists a social choice function z ∈ F (θ) which is equivalent to µ(σ).
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Definition 10: Let i be an agent and Y ⊂ X. A social choice function y ∈ Y is
essential for i in set Y if y ∈ F (θ) for some θ ∈ Θ and L(y, Ri(si, θi)) ⊂ Y for all si ∈ Si.

Given the social choice correspondence F , the set of all essential elements for i in Y ⊂ X is
denoted by Ess(F ; i, Y ) or simply Ess(i, Y ). Obviously Ess(F ; i, Y ) ⊂ Y , and if Z ⊂ Y ⊂ X
then Ess(i, Z) ⊂ Ess(i, Y ). Moreover, Ess(F ; i, X) = ∪θ∈Θ F (θ).

Definition 11: The SCC F satisfies generalized-essential monotonicity (GEM) if for
θ, θ̂ ∈ Θ, and x ∈ F (θ) the relations

Ess(F ; i, L(x,Ri(ti, θi))) ⊂ L(x,Ri(ti, θ̂i)) ∀ti ∈ Si and ∀i

imply x ∈ F (θ̂).

Generalized-essential-monotonicity means that the social choice function x survives not
only at an improvement of position of x at all states but also when its position gets nonessen-
tially worse at some states of the society. In the case in which S is a singleton, (GEM) boils
down to Danilov’s essential monotonicity condition (EM).

Definition 12: Consider any linear order R̃ ∈ R. The environment satisfies rich domain
hypothesis (RDH) if for each i there exists θi ∈ Θi such that Ri(si, θi) = R̃ for all si ∈ Si.

4. Implementation

A mechanism is an action space M =M1 × ...×MN and a map µ :M → A.
A strategy for agent i is a map σi : Si → M i. Denote by Σi the set of all strategies for

agent i, and define Σ = Σ1 × ...× ΣN .
For any σ ∈ Σ, µ(σ) represents the social choice function which results when σ is played.
Let θ be a type profile. A vector of strategies σ ∈ Σ is a Bayesian (Nash) equilibrium

in the game G(M,µ, θ) if µ(σ−i, σ̃i) ∈ L(µ(σ), Ri(si, θi)) for all i, si and σ̃i ∈ Σi. In other
words, µ(σ−i,Σi) ⊂ L(µ(σ), Ri(si, θi)) for all i and si.
Let BE(µ, θ) be the set of all Bayesian equilibria in the game G(M,µ, θ). Then the set

of all equilibrium outcomes in this game is defined by E(µ, θ) = µ(BE(µ, θ)).
A mechanism (M,µ) implements a social choice correspondence F if:

(i) for any θ ∈ Θ and x ∈ F (θ) there exists an equilibrium σ ∈ BE(µ, θ) with µ[σ(s)] =
x(s) for all s ∈ T , and

(ii) for any θ ∈ Θ and any equilibrium σ ∈ BE(µ, θ) there exists x ∈ F (θ) with µ[σ(s)] =
x(s) for all s ∈ T .

In other words, the mechanism (M,µ) implements F if E(µ) is equivalent to F . A social
choice set F is implementable if there exists a mechanism (M,µ) which implements F .

5. Unifying Theories of Nash Implementation and Bayesian Implementation

This section begins with the description of essential elements for the equilibrium outcomes
correspondence, E(µ). Next, we establish that E(µ) satisfies the condition (GEM) if the
domain of preferences is sufficiently rich. These results actually extend similar results by
Danilov (1992) obtained for the complete information case to our Bayesian framework.
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Lemma 1: Assume the environment satisfies (RDH). Consider a mechanism (M,µ), a
set Y ⊂ X, a social choice function y ∈ Y and agent i. Then, y ∈ Ess(E(µ); i, Y ) if and
only if y = µ(σ−i, σi) where µ(σ−i,Σi) ⊂ Y .

Lemma 2: If the environment satisfies (RDH), then, for any mechanism (M,µ), the
correspondence E(µ) satisfies (GEM).

Theorem 1: Assume the environment is economic, satisfies (RDH) and N ≥ 3. A SCC
F is implementable if and only if there exists a SCC F̂ which is equivalent to F and satisfies
(GC), (GIC), (GEM), and (GBM).

The assumptions that the environment is economic and N ≥ 3 are only needed for the
sufficiency part of the Theorem. If we drop the assumption that the environment is economic,
we have the following sufficiency theorem.

Theorem 2: Assume the environment satisfies (RDH) and N ≥ 3. A SCC F is im-
plementable if there exists a SCC F̂ which is equivalent to F and satisfies (GC), (GIC),
(GEM), and (GMNV).

Note here that when the type space Θ is finite, the environment [N,S,Θ, A, {qi}, {U i}]
can be shown to have the same information structure and preferences as the environment
[N, Ŝ, A, {q̂i}, {Û i}] (a standart setting in Bayesian models) with Ŝ, {q̂i} and {Û i} appropri-
ately defined. Thus, Theorems 1 and 2 could be proven as corollaries to the corresponding
theorems in Jackson (1991) in situations where Θ is finite. This means that (GEM) is
redundant when Θ is finite.
In analyzing our first two results, two particular cases are of a special interest. First,

consider an environment with a single state of the society. Then, the collection of SCC’s
which are equivalent to a SCC F consists simply of F itself, and every SCC satisfies (GC),
(GIC), (EGBM) and (GMNV) regardless (RDH) holds. So, in both economic and noneco-
nomic environments (GEM) becomes the unique sufficiency condition if S is a singleton.
Moreover, (GEM) reduces to (EM) in such a case. Thus, we obtain the following result by
Danilov (1992) as a straightforward corollary to our previous two theorems.

Corollary 1: Assume the environment satisfies (RDH), #S = 1 and N ≥ 3. A social
choice correspondence F is implementable if and only if F satisfies (EM).

Consider now the other extreme case in which the type space contains a single element.
In this case, (GEM) has no bite, whereas (GC), (GIC), (GBM) and (GMNV) reduce to (C),
(IC), (BM) and (MNV), respectively. In addition, any SCC is a social choice set now. Thus,
we obtain Theorem 1 and Theorem 2 in Jackson (1991) as separate corollaries to our first
and second Theorems, respectively.

Corollary 2: Assume the environment is economic, #Θ = 1 and N ≥ 3. A SCC F
is implementable if and only if there exists a SCC F̂ which is equivalent to F and satisfies
(C), (IC) and (BM).

Corollary 3: Assume #Θ = 1 and N ≥ 3. A SCC F is implementable if there exists
a SCC F̂ which is equivalent to F and satisfies (C), (IC), and (MNV).
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Remark 1: Assume the environment is noneconomic and satisfies (RDH). The condi-
tions (GC), (GIC), (GEM) and (GBM) are not sufficient for implementation.
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Appendix

Proof of Lemma 1: To show the “only if” part, let y ∈ Ess(E(µ); i, Y ). Then
y ∈ E(µ, θ) for some θ such that y = µ(σ̂−i, σ̂i) where µ(σ̂−i,Σi) ⊂ L(y, Ri(si, θi)) ⊂ Y
for all si ∈ Si. Conversely, let y = µ(σ−i, σi) and µ(σ−i,Σi) ⊂ Y . Since the environment
satisfies (RDH), let θ be such that L(y, Ri(si, θi)) = Y for all si and y = maxj Rj(sj, θj) for
all j �= i and sj. It is obvious that (σ−i, σi) is Bayesian equilibrium in the game G(M,µ, θ),
and therefore y ∈ Ess(E(µ); i, Y ). Q.E.D.

Proof of Lemma 2: Let σ be a Bayesian equilibrium in the game G(M,µ, θ), and
x = µ(σ). Then, µ(σ−i,Σi) ⊂ L(x,Ri(ti, θi)) for all i and ti. By Lemma 1, µ(σ−i,Σi) ⊂
Ess(E(µ); i, L(x,Ri(ti, θi))) for all i and ti. Let θ̂ be a type profile satisfying

Ess(F ; i, L(x,Ri(ti, θi))) ⊂ L(x,Ri(ti, θ̂i))

for all i and ti. It follows that µ(Σi, σ−i) ⊂ L(x,Ri(ti, θ̂i)), for all i and ti. Therefore, σ is a
Bayesian equilibrium in the game G(M,µ, θ̂), and x ∈ E(µ, θ̂). Q.E.D.

Proof of Remark 1: We extend Example 1 in Jackson (1991) in order to prove
the claim in Remark 1. Consider the environment in which N = 4, A = {a, b}, Θi =
{θi1, θ

i
2, θ

i
3, θ

i
4}, S

i = {si, ti}, and T = {s1 = (s
1, s2, s3, s4); s2 = (s

1, s2, t3, t4); s3 = (t
1, t2, t3,

t4)}, the partitions pictured below represent the information structure implied by T :

States
Agents 1 and 2 [s1 s2] [s3]
Agents 3 and 4 [s1] [s2 s3]
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The functional form of the utility functions of agents 1 and 2 is the same as is that of
agents 3 and 4. The utilities representing the preferences are given below. Preferences satisfy
rich domain hypothesis since the set ×4i=1{θ

i
1, θ

i
2, θ

i
3}, alone, constitutes a rich domain.

Agents 1 and 2 Agents 3 and 4
a b a b

U i(., s1, θ
i

1
) 2 1 1 2

U i(., s2, θi1) 2 1 1 2
U i(., s3, θi1) 2 1 1 2
U i(., s1, θ

i

2
) 1 1 1 1

U i(., s2, θi2) 1 1 1 1
U i(., s3, θi2) 1 1 1 1
U i(., s1, θ

i

3) 1 2 2 1
U i(., s2, θ

i

3
) 1 2 2 1

U i(., s3, θi3) 1 2 2 1
U i(., s1, θi4) 2 1 1 2
U i(., s2, θ

i

4
) 1 1 1 1

U i(., s3, θ
i

4
) 2 1 1 2

Consider the social choice set F (θ) = {x, x̄} for all θ ∈ Θ, where x(s) = a for all s ∈ S
and x̄(s) = b for all s ∈ S.

F satisfies (GEM) since F is constant on Θ. F satisfies (GC) since the common knowledge
concatenation satisfies Π = {T}. Condition (GIC) is satisfied since x and x̄ are constant.
Since x◦α = x and x̄◦α = x̄ for every deception α, it follows that for every θ ∈ Θ, x◦α ∈
F (θ) and x̄◦α ∈ F (θ) for every deception α, and so (GBM) is satisfied.
Although F satisfies (GC), (GIC), (GEM) and (GBM), it is not implementable. To see

this, suppose that a mechanism (M,µ) implements F . Let θ4 = (θ
1
4, θ

2
4, θ

3
4, θ

4
4). Then there

exist equilibrium sets of strategies σx, σx̄ ∈ BE(µ, θ4) resulting in x and x̄ on T , respectively.
Consider the set of strategies σ̃ defined by σ̃i(si) = σx(si) and σ̃i(ti) = σx̄(ti). Since each
agent i is completely indifferent at (s2, θ

i
4), σ̃ is an equilibrium. Notice that µ[σ̃(s1)] = a and

µ[σ̃(s3)] = b. However, there is no social choice function in F (θ4) which coincides with µ[σ̃]
on T , which is a contradiction. Therefore, F is not implementable. Q.E.D.

The proofs of Theorem 1 and Theorem 2 closely follow the respective proofs in Jackson
(1991) established for social choice sets.

Proof of Theorem 2: The following mechanism, which slightly extends the mecha-
nism proposed by Jackson for social choice sets, implements the SCC F if the conditions of
Theorem 2 are met. Let S̄ = maxi#S

i and n = N + NS̄. Let V = {0, 1, ..., S̄2}n. Thus
v ∈ V is an (N + NS̄)-dimensional vector such that each entry is an integer between 0
and S̄2. Let M i = {mi ∈ Θ × Si × ∪θF (θ) × {∅ ∪ V } × X × {∅ ∪ X} |mi

3 ∈ F (m
i
1)} and

M =M1 × ...×MN . Partition M into sets:

d0 = {m ∈M |∃x ∈ F (θ) s.t. mj = (θ, ·, x, ∅, ·, ∅) ∀j},

di1 = {m ∈M |m /∈ d0, ∃x ∈ F (θ) s.t. m
j = (θ, ·, x, ∅, ·, ∅) ∀j �= i

and mi = (·, ·, x, ·, ·,∅) or (·, ·, x̄, ·, ·, ·)},

di2 = {m ∈M |∃x ∈ F (θ) s.t. mj = (θ, ·, x, ∅, ·, ∅) ∀j �= i
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and mi = (·, ·, x, ·, ·, y)},

d3 = {m ∈M |m /∈ d1 ∪ d2}.

Let d2 = ∪id
i
2 and d1 = ∪id

i
1.

Define the payoff function µ :M → X by

µ(m) = x(m2), m ∈ d0 ∪ d1,
µ(m) = y(m2), m ∈ di2 and ymi

2

∈ L(x,Ri(ti, θi)) for all ti ∈ Si,

µ(m) = x(m2), m ∈ di2 and ymi

2

/∈ L(x,Ri(ti, θi)) for some ti ∈ Si,

µ(m) = mi∗

5 (m2), m ∈ d3,

where i∗ is determined as follows: Let I∗ = {i|mi
4 �= ∅} and for i ∈ I

∗ denote mi
4 by v

i. Let
J(i) be the number of j ∈ I∗ such that vil = v

j
i for an integer l whereN+(j−1)S̄ < l ≤ N+jS̄.

If there exists i ∈ I∗ such that J(i) > J(k) for all k ∈ I∗, then i∗ = i, otherwise i∗ = 1.

Remark 4: For any i and σ there exists vi ∈ V such that such that σ̃i, where σ̃i4(s
i) = vi

for all si and σ̃ = σ otherwise, is such that i∗ = i whenever [σ−i, σ̃i](s) ∈ d3.

The following lemmas establish Theorem 2.

Lemma 3: If F satisfies (GIC), then for each θ and x ∈ F (θ) there is a set of strategies
σ which form an equilibrium to the game G(M,µ, θ) such that µ(σ) = x.

Proof: Given an arbitrary θ ∈ Θ, x ∈ F (θ), we consider σ defined by σi(si) =
(θ, si, x,∅, ·, ∅). Notice that µ[σ(s)] = x(s) for all s ∈ S. We verify that σ is an equilib-
rium by showing that there are no improving deviations. Consider a deviation m̃i by i at
si ∈ Si.
If m̃i = (θ̃, s̃i, x, ·, ·, ∅) or m̃i = (θ̃, s̃i, x̄, ·, ·, ·) then [σ−i(s−i), m̃i] ∈ d0 ∪ d1 (where it is

possible that θ̃ = θ and s̃i = si). The resulting allocation is xs̃i (on π
i(si)). From (GIC) we

know that this is not improving.
If m̃i = (θ̃, s̃i, x, ·, ·, y), then [σ−i(s−i), m̃i] ∈ d2 (where it is possible that θ̃ = θ and

s̃i = si). If ys̃i ∈ L(x,R
i(ti, θi)) for all ti ∈ Si, then the allocation is ys̃i (on π

i(si)), which is
not improving. Otherwise the allocation is xs̃i (on π

i(si)), which is not improving by (GIC).

Lemma 4: If F satisfies (GC), (GEM) and (GMNV), then for each set of strategies σ
which form an equilibrium to the game G(M,µ, θ) there exists z ∈ F (θ) which is equivalent
to µ(σ).

Proof: Let σ be an equilibrium to G(M,µ, θ) and let α describe the announcement of
s (m2 as a function of s) under σ. For each i, θ̂ ∈ Θ and x ∈ F (θ̂), let B

i

x,θ̂
= {si : σi(si) =

(θ̂, αi(si), x, ∅, ., ∅)}.
Since σ is an equilibrium, µ(σ) satisfies (NVH) for α, θ and T − (∪

θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂).

This is seen as follows. Suppose that µ(σ) does not satisfy (NVH) for α, θ and T −
(∪θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂). Then there exist s ∈ T − (∪θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂), j, and z

j such that

zj◦α /Cµ(σ) /∈ L(µ(σ), Rj(sj, θj)) for all C ⊂ T − (∪θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂) such that s ∈ C.

Since the failure of (NV H) guarantees the existence of two such agents, and since s /∈
(∪

θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂), j can be chosen such that σ(s) /∈ d
j
1 ∪ d

j
2. Let m̃

j be the same as σj(sj)
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except that m̃j
4 = v

j as defined in Remark 4, and mj
5 = zj. Let C be the set of t ∈ πj(sj)

such that [σ−j(t−j), m̃j] ∈ d3. The outcome on C is thus zj◦α. Furthermore, s ∈ C, since
[σ−j(s−j), m̃j] ∈ d3, and C ⊂ T − (∪θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂). From the design of m̃j it follows that

if t ∈ πj(sj) and t /∈ C, then [σ−j(t−j), m̃j] leads to the same outcome as σ. Hence, the
outcome of the deviation is zj◦α on C ∩ πj(sj) and µ(σ) otherwise. This is improving for j,
which contradicts the fact that σ is an equilibrium.
It has been established that µ(σ) satisfies (NVH) for α, θ, and T − (∪

θ̂∈Θ ∪x∈F (θ̂) Bx,θ̂).

Next, (MNV ) is applied to find a social choice function in F (θ) which is equivalent to µ(σ).
Suppose that there does not exist a social choice function in F (θ) which is equivalent

to µ(σ). By (GMNV ) there exist i, θ̂ ∈ Θ, x ∈ F (θ̂), y, z̃, z̄ and si ∈ ∪θ̄∈Θ̄xB
i
x,θ̄
, where

Θ̄x = {θ : x ∈ F (θ)}, such that z̄(s) = y◦α when s ∈ ∪θ̄∈Θ̄xBx,θ̄; z̄(s) = µ[σ(s)] when
s−i ∈ ∪θ̄∈Θ̄x̄B

−i

x̄,θ̄
for some x̄ such that x̄ �= x; and z̄(s) = z̃◦α otherwise; and such that

z̄ /∈ L(µ(σ), Ri(si, θi)), while yαi(si) ∈ L(x,Ri(ti, θi)) ∀ti ∈ Si. Therefore i is better off

submitting [θ̂, αi(si), x, vi, z̃, y] (where vi is defined in Remark 4) whenever si is observed,
since the resulting outcome is z̄ on πi(si). This is shown as follows: The deviation puts
the action in di2 for all s ∈ ∪θ̄∈Θ̄xBx,θ̄, and the outcome is y◦α. The action is in d

i
1 for all

s ∈ πi(si) such that s−i ∈ ∪θ̄∈Θ̄x̄B
−i

x̄,θ̄
for some x̄ such that x̄ �= x, and the outcome remains

µ[σ(s)]. For any other s ∈ πi(si) the deviation puts the action in d3 with i
∗ = i and the

outcome z̃◦α(s). Thus the outcome is z̄ on πi(si) which is strictly preferred by i to µ(σ) on
πi(si). This contradicts that σ is an equilibrium, and so the supposition was wrong. Q.E.D.

Proof of Theorem 1: The sufficiency part follows from Theorem 2. In an environment
which satisfies (E), (NVH) can never be satisfied. Therefore given (GC), (GMNV) and
(GBM) are equivalent. The necessity part of the theorem is now checked.
Let µ implement F and define F̂ such that F̂ (θ) = {x|x = µ(σ) for some equilibrium σ

in the game G(M,µ, θ)}. From the definition of implementation F̂ is equivalent to F . It
is obvious that F̂ satisfies (GC). Consider any θ ∈ Θ. F̂ (θ) satisfies (IC) and (BM), by
the proof of Theorem 1 in Jackson (1991). So, F̂ satisfies (GIC) and (GBM). Since the
environment satisfies (RDH), E(µ) satisfies (GEM) by Lemma 2. Thus, F̂ satisfies (GEM)
since F̂ = E(µ). Q.E.D.
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