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Abstract

Most of the existing structural-change models presume that the impact of a change is
instantaneous and occurs at the same time for all individuals. In this paper, we develop a new
structural-change model to measure the lag length between the time when an economic crisis
breaks out and the time when the impact is transmitted to various economic sectors. Our
model allows different transmission lags for individuals with heterogenous characteristics.
Simulation results for the performance of the estimators are reported.
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1 Introduction

Existing structural-change models usually presume no lag or identical lag in

the diffusion1 of shocks to individuals with heterogeneous economic charac-

teristics. Although this type of abrupt change approach provides a parsi-

monious simplification of individual behavior, it is rather unrealistic. For

instance, when there is a stock market crash, people with different positions

in the stock market are likely to be affected differently. Similarly, in an

oil crisis, the surge in the oil price will immediately affect the sectors that

rely heavily on oil, such as the transportation and the plastic manufacturing

sectors, while its impact on other sectors will appear later.

The objective of this paper is to develop a model for this kind of multiple-

order diffusion process and estimate the parameters which govern the diffu-

sion duration. The model combines the structural-change model (Kurozumi,

2005; Chong, 2001, 2003) and the aggregation model (Theil, 1954; Granger,

1980; Forni and Lippi, 1997; Chong, 2006)2. We assume that the break date

for each individual is drawn from a distribution with unknown parameters.

By aggregating the individual abrupt-change functions, we get the aggregate

structural-change model.

The remaining of this paper is organized as follows: In Section 2, we

develop the aggregate structural-change model and derive a procedure to

estimate the pre- and post-shift parameters, as well as the parameters of the

underlying distribution that governs the lag length. Section 3 presents the

simulation results of the proposed estimation method. Section 4 concludes

the paper.

1For more details on diffusion, one is referred to Jovanovic and MacDonald (1994),
Lippi and Reichlin (1994) and Andolfatto and MacDonald (1998).

2A comprehensive literature review on the problem of aggregations over individuals is
provided in Stoker (1993). More recent works in the area of aggregation include Olsen
(2000) and Aoki (2002).
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2 The Model

Suppose that an economic crisis occurs at time t = 0 in an economy with n

individuals. The crisis is likely to trigger a domino effect, as different people

may be affected by the crisis differently. We construct the following simple

structural-break model to capture the heterogeneity in the diffusion of shocks

for individual i at time t:

yit = (a1 + b1xit) 1 {t < ki}+ (a2 + b2xit) 1 {t > ki}+ εt + ηit (1)

(i = 1, 2, ..., n; t = 0, 1, 2, ..., T.)

where

ki ∈ {0, 1, 2..., T} is the lag in the diffusion of shocks triggered by a crisis
occurred at time 0. The duration varies across individuals.

1{·} is an indicator function which equals one if the condition inside the
bracket is true, and equals zero otherwise.

The error components εt and η1t, η2t, ..., ηnt are pair-wise independent,

with zero means and with variances var(εt) = σ2ε and var(ηit) = σ2η for all i.

It is also assumed that εt are serially independent.

Given the structural-break functions of all the individuals in the economy,

we can derive the aggregate structural-change model by performing a linear

aggregation. Our analysis is based on the per capita series, which has the

same time series properties as the aggregate series. Let
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yt = (a1 + b1xt) Pr (ki > t) + (a2 + b2xt) Pr (ki ≤ t) + εt. (3)

A salient feature of this model is that it is derived from the aggregation of

individual structural change functions that allow for heterogeneous individual

specific characteristics.

2.1 Estimation in Finite Sample

For finite value of T , we use a Poisson distribution3 (with mean m0) to model

the arrival time of the impact. Thus,

Pr (ki = j) =
mj
0 exp (−m0)

j!
, j = 0, 1, 2, ... (4)

where 0 ≤ m0 ≤ T is assumed. Hence,

Pr (ki 6 t) =
tX

x=0

mx
0 exp (−m0)

x!
=

Γ (t,m0)

Γ (t)
, (5)

where

Γ (t,m) =
tX

x=0

mx exp (−m)
x!

Γ (t) (6)

and

Γ (t) = (t− 1)!. (7)

Thus, we have

3Aoki (2002) studies the aggregation of individual binary decision rules, he shows that
under certain conditions, one can obtain a Poisson distribution.
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yt = (a1 + b1xt)

µ
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Γ (t)

¶
+ (a2 + b2xt)

Γ (t,m)

Γ (t)
+ εt. (8)

We estimate the model by using a two-step nonlinear LS estimation pro-

cedure. For any given m, we find the LS estimators ba1T (m) , ba2T (m) ,bb1T (m) and bb2T (m) to minimize the total sum of squared residuals RSS (m)
defined as

TX
t=0

µ
yt −

³ba1T (m) +bb1T (m)xt´µ1− Γ (t,m)

Γ (t)

¶
−
³ba2T (m) +bb2T (m)xt´ Γ (t,m)

Γ (t)

¶2
.

(9)

We then search for a value ofm which minimizesRSS (m). The estimator

for m is defined as

bm = Argmin
m∈(0,T )

RSS (m) . (10)

After obtaining the bm, the final structural estimators are
baiT (bm) and bbiT (bm) for i = 1, 2. (11)

2.2 Estimation in Large Sample

In order to allow for asymptotic analysis, we need to convert the time scale

from {0, 1, 2, 3..., T} into the [0, 1] interval. The Poisson distribution does
not have a continuous counterpart in the zero-one interval. Thus, we need to

employ a continuous distribution in this interval. Since the time is re-scaled,

the model should be rewritten as

yt = (a1 + b1xt) Pr(li > h) + (a2 + b2xt) Pr(li ≤ h) + εt . (12)
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where

h =
t

T
∈ [0, 1];

li =
mi

T
∈ [0, 1] is the diffusion duration of a crisis for individual i, i.e.,

the lag length in time before individual i is impacted by the crisis.

For simplicity, we employ the Beta distribution, which is in [0,1]. For the

Beta distribution, we have

Pr(li ≤ h) =

Z h

0

f(τ ;α, β)dτ, (13)

where

f(τ ;α, β) =

(
Γ(α+β)τα−1(1−τ)β−1

Γ(α)Γ(β)
if 0 ≤ τ ≤ 1 ,

0 otherwise .
(14)

When h = 0, we have Pr(li ≤ 0) = 0; when h = 1, we have Pr(li ≤ 1) = 1.
For any given positive α and β, the residual sum of squares is equal to

RSS(v) =
TX
t=0

[yt − (a1 + b1xt) Pr(li > h)− (a2 + b2xt) Pr(li ≤ h)]2 , (15)

where

v = (a1, a2, b1, b2, α, β). (16)

The nonlinear LS estimators are

bv = (ba1,ba2,bb1,bb2, bα, bβ) = argmin
v∈R4×R2+

RSS(v). (17)
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3 Simulations

In this section, we study the performance of our estimators for the following

mean-shift model:

yit = a11 {t < ki}+ a21 {t > ki}+ εt + ηit.

The pre- and post-shift parameters are a1 = −1 and a2 = 1 respectively.

All the error terms are drawn independently from a standard normal distri-

bution.

Experiment 1:

The objective of this experiment is to demonstrate the performance of the

estimators of the pre- and post-shift regression coefficients and the Poisson

mean coefficient m0. The sample sizes of the simulations are T = 50, 100

and 200. The true values of m0 are set to 0.5T and 0.3T . We carry out the

simulation for a sample with 100 individuals (n = 100) and a sample with

a larger number of individuals (n = 1000). The number of replications is

R = 200.

The Poisson random variable with mean m0 is simulated by using the

following inverse transformation method:

(1) Generate a uniform(0,1) random variable U .

(2) i = 0, p = exp (−m0), F = p.

(3) If U < F , set X = i and stop.

(4) p =
λp

i+ 1
, F = F + p, i = i+ 1.

(5) Go to step (3) until all the simulated observations are obtained.

Table 1 reports the average estimates across all replications. Note that

the estimates get closer to the true values as T increases. When we com-
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pare the results with different number of individuals (n=100 and 1000), the

performance of the estimators are similar.

Table 1: The Mean of the Estimators in the Poisson Case

T 50 50 100 100 200 200

m0 25 15 50 30 100 60

(n = 100, R = 200)ba1 (true value = -1) −1.0108 −1.0260 −1.0060 −0.9943 −0.9998 −1.0090ba2 (true value = 1) 1.0281 1.0304 1.0124 1.0209 1.0060 1.0016bm 24.87 15.16 49.95 30.28 99.88 59.80

(n = 1000, R = 200)ba1 (true value = -1) −1.0131 −1.0034 −1.0166 −1.0143 −1.0090 −0.9969ba2 (true value = 1) 1.0479 1.0188 0.9973 1.0060 0.9942 0.9968bm 24.94 15.21 50.07 29.88 99.67 60.17

Experiment 2:

This experiment evaluates the performance of the estimators in the Beta

case. The sample sizes are T = 50, 100 and 150. The numbers of individuals

are set to n = 150, 300 and 1000. The number of replications is set to R =

500. The parameters of Beta distribution are α and β. Let ba1, ba2, bα and bβ be
the average of the estimates from the 500 replications. There are four cases

of interest, namely, (i) α < 1 and β < 1, (ii) α > 1 and β < 1, (iii) α < 1

and β > 1, and (iv) α > 1 and β > 1. We exclude the cases where α or β

equals 1. The results are reported in Table 2.
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Table 2: The Mean of the Estimators in the Beta Case

T 50 50 50 100 100 100 150 150 150

n 150 300 1000 150 300 1000 150 300 1000

Case 1: α = 0.4, β = 0.7ba1 0.983 0.986 0.990 0.981 0.988 0.982 0.979 0.986 0.988ba2 −1.007 −1.060 −1.011 −1.017 −1.011 −1.016 −1.014 −1.012 −1.012bα 0.397 0.379 0.394 0.384 0.387 0.386 0.390 0.384 0.392bβ 0.685 0.696 0.679 0.680 0.693 0.689 0.688 0.691 0.683

Case 2: α = 1.3, β = 0.5ba1 0.989 0.993 0.991 0.990 0.988 0.992 0.987 0.991 0.997ba2 −1.015 −1.011 −1.012 −1.010 −1.014 −1.007 −1.011 −1.012 −1.002bα 1.297 1.294 1.289 1.293 1.296 1.292 1.288 1.291 1.297bβ 0.495 0.487 0.489 0.494 0.490 0.493 0.498 0.494 0.491

Case 3: α = 0.5, β = 1.6ba1 0.981 0.984 0.989 0.993 0.984 0.994 0.985 0.987 0.995ba2 −1.020 −1.017 −1.012 −1.011 −1.015 −1.008 −1.011 −1.019 −1.017bα 0.487 0.490 0.492 0.484 0.492 0.489 0.488 0.485 0.486bβ 1.587 1.589 1.592 1.584 1.587 1.586 1.595 1.592 1.597

Case 4: α = 1.2, β = 2ba1 0.989 0.986 0.987 0.983 0.995 0.982 0.987 0.994 0.992ba2 −1.017 −1.015 −1.013 −1.003 −1.011 −1.012 −1.012 −1.012 −1.010bα 1.189 1.192 1.190 1.192 1.194 1.192 1.189 1.190 1.189bβ 1.989 1.991 1.996 1.982 1.985 1.987 1.982 1.990 1.992
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Table 2 shows that the estimation method provides good estimates of the

pre- and post-shift regression coefficients and the distribution parameters α

and βwithout the need of using a sample with very large number of individu-

als. For all specified values of T, the estimators perform well for n = 150, 300

and 1000. Similarly, for all specified values of n, the estimators also perform

well for T = 50, 100 and 150.

4 Concluding Remarks

This paper contributes to the existing literature by developing a model that

combines the features of an aggregation model and a structural-change model.

The model is constructed by aggregating the individual abrupt-change mod-

els, with the transmission lag for each individual drawn from a distribution

with an unknown mean. A salient feature of the model is that it allows for

individual heterogeneity in the diffusion lag of economic crisis. The model

can be estimated via the nonlinear LS method. Simulation results suggest

that our estimators perform quite well in finite samples.
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