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Abstract

This paper characterizes optimal mechanisms facilitating the cost sharing and the selection of
a provider for a club good. These mechanisms are allocatively and Pareto efficient. However,
it appears that transfers occur even when the good is not provided. This result is due to the
weakening of the incentive notion to Bayesian−Nash equilibrium and to the balanced budget
condition. This phenomena disappears if the setting is perfectly symmetric.
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1. Introduction

Participation to collective action is the subject matter of a huge literature.
Many authors have built strategic models of the provision of discrete public
goods (see for example Bagnoli and Lipman (1989), Jackson and Moulin
(1992) or Palfrey and Rosenthal (1984)). Most of the time, these models
are particular variations of the voluntary contributions mechanism. There
also exists a vast literature on mechanism design and revelation mechanism.
Basically, these models ask the following questions : should the public good
be provided ? How much will pay an agent for the public good ? Therefore,
everything works as if nobody (or everybody) really hosts the facility.

In this paper, we address an additional question : which member of the
group should provide the public good ? Some researchers have already mo-
delled this questions. Our work must be regarded as an immediate successor
of these models. Kleindorfer and Kunreuther (1986) proposed a sealed-bid
auction mechanism for facilitating the siting process of a noxious facility and
they analyze the max-min strategies associated to it. A detailed discussion of
such procedures can be found in (Kunreuther et al. (1987)). More recently,
Kleindorfer and Sertel (1994) identi�ed an e�cient solution concept for such
problems. They design a class of auction-like mechanisms which implements
an e�cient, balanced budget, nominally egalitarian and envy free solution in
Cournot-Nash equilibrium. However, they do not intend to enter the usual
debate on informational requirements for such equilibrium. In contrast with
them, we will analyze this problem and consider the case in which information
is incomplete.

2. The Model

A group N of n risk-neutral agents contemplates the provision of a discrete
club good. Each agent i is able to provide the good at a cost ci. The value
of the public good is a commonly known constant γi for each member. Since
no agent can a�ord to provide alone the good, we let γi − ci < 0, for all i
in N . We assume that there exist technical possibilities of exclusion of some
agents from the bene�ts of collective action.

A mechanism takes the form of a game where agents send costless mes-
sages. Based on these messages, the social planner implements an allocation
consisting in the selection of a member as provider of the public good and
a vector of monetary transfers between agents (representing the cost sha-
ring). Facing this mechanism, the agents decide simultaneously whether they
participate or not in the proposed game. At this point, the social planner
can not coerce agents into participating. Finally, the participants play the
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game speci�ed and a collective outcome arises : selection of a provider and
realization of transfers. In an incomplete information framework, choosing
an optimal mechanism becomes complex : truthful reports are required since
each agent has an incentive to overestimate his true cost. If such misrepre-
sentations exist, it is impossible to ensure that the good is provided by the
best agent for the group (the one with the lowest possible cost). Therefore,
these strategies will lead to ine�ciencies. To avoid this, the social planner
must then take into account the incentive compatibility constraints.

Under incomplete information, each agent i knows his own cost ci with
certainty. The other agents and the social planner perceive this cost to be
independently drawn from a cumulative distribution function Fi(.) on the
compact interval Di =

[
c−i ; c+

i

]
. The function Fi(.) is continuously di�eren-

tiable, with derivative fi(.), and satis�es the assumption of non-decreasing
hazardous rate. The vector of agents' type c = (c1, ..., cn) is drawn from set
Ω = D1 × ... ×Dn according to probability f(c) =

n∏
i=1

fi(ci), and the vector
of all individual costs except i, c−i = (c1, ..., ci−1, ci+1, ..., cn) is drawn from
set Ω−i = D1× ...×Di−1×Di+1× ...×Dn according to f−i(c−i) =

∏
j 6=i

fj(cj).

By the revelation principle (see Myerson (1981)), there is no loss of ge-
nerality in restricting attention to direct revelation mechanisms where each
agent reveals his true cost and where payments are made accordingly. An
optimal mechanism is a couple {x; t} where x speci�es the selection rule of a
provider for the public good, and t represents the transfers rule. The rule x is
such that xi : Ω → [0; 1], ∀i ∈ N represents agent i's probability of selection
as provider. The rule t takes the form of a vector t = (t1, ..., tn) in which
ti : Ω → <,∀i ∈ N is the average transfer of agent i.

Agent i's utility is additively separable. If i provides the good, he obtains
γi − ci + ti. If agent j is provider, then agent i obtains γi + ti. Hence, when
agent i reports his true cost and the other agents adopt a similar strategy,
his expected utility is :

Ui(ci) = Ec−i
[u(x, t, ci, c−i)] = γi

n∑
j=1

Xj
i (ci)− ciX

i
i (ci) + Ti(ci) (1)

with Xj
i (ci) =

∫
Ω−i

xj(ci; c−i)f−i(c−i)dc−i and Ti(ci) =
∫

Ω−i

ti(ci; c−i)f−i(c−i)dc−i.

The social planner's objective function is the expected sum of individual
utilities :
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E(W ) =

∫

Ω

n∑
i=1

{ui(x, t, c)}f(c)dc

=

∫

Ω

{
n∑

i=1

{(
n∑

j=1

γj − ci)xi(c)}+
n∑

i=1

ti(c)

}
f(c)dc (2)

To characterize the optimal mechanism, the social planner maximizes her
objective function subject to four kinds of constraints imposed by her lack of
information. The Possibility Constraints (PC) specify that xi takes the form
of a probability :

n∑
i=1

xi(c) ≤ 1, and 0 ≤ xi(c) ≤ 1,∀i ∈ N, ∀c ∈ Ω (3)

The Budget constraints (BC) impose that no surplus, nor losses of public
funds occur :

n∑
i=1

ti(c) = 0,∀c ∈ Ω (4)

The Individual Rationality Constraints (IRC) imply that participation to
the collective process is an optimal strategy for each agent :

Ui(ci) ≥ 0, ∀i ∈ N, ∀ci ∈ Di (5)
The Incentive Compatibility Constraints (ICC) imply that the revelation

of the true characteristic is the best Bayesian strategy for each agent i :

Ui(ci; ci) ≥ Ui(ĉi; ci), ∀i ∈ N, ∀ci, ĉi ∈ D2
i (6)

An optimal mechanism is one that maximizes E(W ) subject to PC, BC,
IRC, and ICC.

3. First best mechanisms

First best mechanisms maximizes E(W ) subject to PC and BC. They
satisfy the following proposition :

Proposition 1 If a mechanism {x∗; t∗} satis�es, ∀c ∈ Ω :

1.





x∗i (c) = 0,∀i ∈ N, if ci >
n∑

j=1

γj,∀i ∈ N

x∗i (c) = 1 and x∗j(c) = 0, ∀j 6= i, if ci = min
j∈N

{cj} and if ci ≤
n∑

j=1

γj
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2.
n∑

i=1

ti(c) = 0

then, {x∗, t∗} is �rst best optimal.

The proof is straightforward. It can be easily shown that the selection
rule x∗ is non increasing in ci, ∀i ∈ N .

4. Implementation of �rst best mechanisms

By implementable, we mean, given the �rst best selection rule x∗, there
exists a transfers rule t such that the mechanism {x∗, t} satis�es BC, IRC
and ICC. Then, {x∗, t} will be the optimal Bayesian mechanism.

Proposition 2 If a mechanism {x∗; t∗} satis�es, ∀c ∈ Ω :

1.





x∗i (c) = 0,∀i ∈ N, if ci >
n∑

j=1

γj,∀i ∈ N

x∗i (c) = 1 and x∗j(c) = 0, ∀j 6= i, if ci = min
j∈N

{cj} and if ci ≤
n∑

j=1

γj

2. t∗ belongs to the set of optimal transfers rules STR de�ned by,
STR
= {t(.) ∈ <n/∀i ∈ N, ∀c ∈ Ω, ti(c) = Bi(ci)− 1

n−1

∑
j 6=i

Bj(cj) + ai,

n∑
i=1

ai = 0, ai ≥ 1
n−1

∑
j 6=i

∫
Dj

Bj(cj)fj(cj)dcj}

with Bi(ci) = −γi

n∑
j=1

Xj
i (ci) + ciX

i
i (ci) +

c+i∫
ci

X i
i (si)dsi,∀i ∈ N, ∀ci ∈ Di

then, {x∗, t∗} is an optimal Bayesian mechanism.

Proof 1 (See appendix 1)

The optimal mechanisms are e�cient in a �rst best sense since the public
good is provided at the lowest possible cost for the group (by the lowest
cost agent), each time it is possible (each time the sum of individual bene�ts
covers the lowest cost of provision). The de�nition of the optimal selection
rule reveals the existence of a reserve value for the costs' reports. This value,
noted c∗, is simply equal to the maximal social value of the collective project,
namely, the sum of individual bene�ts. It can be easily check that, at the
optimum, the IRC does not bind for all agents : the expected utility of the
worse agent (with cost c+

i ) is not necessarily 0. In fact, the IRC bind in a
very special case where ci = c∗,∀i ∈ N . The condition (16) (see appendix 1)
ensures the existence of the ai and the transfers rule at the optimum. Indeed,
this condition simply states that, at the optimum, the collective welfare can
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always �nance the �incentive� part of the mechanism (represented by the
second term).

Let c∗ lies strictly in the interior of the compact Di for all i in N . Take
the extreme case in which the cost ci is higher than c∗ for all i in N .
Consequently, the expected probability of selection of each agent is zero :
X i

i (ci) = 0,∀i ∈ N . However, since the reserve value is di�erent from c+
i , for

all i, then the expected probability of provision of the public good is strictly
positive :

∑
j 6=i

Xj
i (ci) > 0,∀i ∈ N . In this case and from the de�nition of

optimal mechanisms, the transfers take the following form, ∀i ∈ N, ∀c ∈ Ω :

t∗i (c) = −γi

∑

j 6=i

Xj
i (ci) +

1

n− 1

∑

j 6=i

{γj

∑

l 6=j

X l
j(cj)}+ ai (7)

In the general case, this transfers are non-zero.

Corollary 1 In general, transfers may occur even if the public good is not
provided.

This corollary exhibits a problem due to the weakening of the incentive
notion to Bayesian-Nash equilibrium and to the existence of the balanced
budget constraints. The optimal transfers are in the spirit of those de�ned
by D'Aspremont and Gérard-Varet (1979) : they only depend on the expec-
ted probability of selection of each agent and are independent of the identity
of the selected provider. Hence, transfers are independent of the �nal out-
come of the collective process (provision or not). However, since transfers are
balanced, this phenomena does not a�ect the value of the collective welfare
but modi�es each individual situation.

Take now a more traditional case in which the setting is symmetric. By
de�nition, a setting is symmetric if for all i, j in N : γi = γj = γ, fi = fj = f ,
and Di = Dj = D = [c−; c+]. In the extreme case (ci > c∗, ∀i ∈ N), we then
obtain from (7) :

t∗i (c) = ai,∀i ∈ N, ∀c ∈ Ω (8)
Appendix 2 shows that ai can be 0 for all i ∈ N . This implies the next

corollary :

Corollary 2 If the setting is symmetric and if ai is equal to 0 for all i in
N , then no transfer occurs when the public good is not provided.

5. Conclusion
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In this paper, we provide a framework for the theoretical analysis of auc-
tions in the context of the provision of club goods. More precisely, we fully
characterize the optimal auctions mechanisms for the siting and the cost
sharing of noxious facilities. These mechanisms are both pareto e�cient and
allocatively e�cient. The optimal selection rule appears to be identical to the
one under complete information : the agent selected as provider is the lowest
cost agent when his cost of provision is below the social value of the collec-
tive project. In contrast, the optimal transfers rule is not unique and depends
heavily on the value of the additive constant ai, for all i in N . In fact, this
value is identity-dependent. Therefore, through this value, the social planner
can redirect a part of the collective welfare to some agents without lowering
the e�ciency of the optimal mechanisms. This phenomena disappears when
the setting is symmetric and ai can be zero for all i in N .

Our mechanisms are not Vickrey-type auctions (Vickrey (1961)). Indeed,
they can be regarded as Vickrey-Clarke-Groves mechanisms in expectations
(Vickrey (1961), Clarke (1971), Groves (1973)). Hence, our results contrast
with the ones of Kleindorfer and Kunreuther (1986) and Kleindorfer and Ser-
tel (1994) in which optimal mechanisms can be implemented by a kth lowest
bidder sealed bids auction. Therefore, the introduction of incomplete infor-
mation leads to strengthen the complexity of the optimal mechanisms and
their respective implementation. Thus, our work fully extends the analysis
of the preceding authors.

Appendices

Appendix 1
Let t ∈ STR de�ned as in proposition 2. We must prove that the transfers

rule t satis�es BC, ICC and IRC.
Since

n∑
i=1

ai = 0, it is obvious that
n∑

i=1

ti(c) = 0,∀c ∈ Ω. Then, t satis�es
BC.

If we take the expected value of the transfer ti(c), we obtain, ∀i ∈ N, ∀ci ∈
Di :

Ti(ci) (9)

= −γi

n∑
j=1

Xj
i (ci) + ciX

i
i (ci) +

c+i∫

ci

X i
i (si)dsi + ai

− 1

n− 1

∑

j 6=i

∫

Dj

{Bj(cj)} fj(cj)dcj
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Therefore, the expected utility of each agent is given by, ∀i ∈ N, ∀ci ∈ Di :

Ui(ci) (10)

=

c+i∫

ci

X i
i (si)dsi + ai − 1

n− 1

∑

j 6=i

∫

Dj

{Bj(cj)} fj(cj)dcj

The expected utility of lying (announcing ĉi when true cost is ci) can be
written as, ∀i ∈ N, ∀ci, ĉi ∈ D2

i :

Ui(ci, ĉi)

= γi

n∑
j=1

Xj
i (ĉi)− ciX

i
i (ĉi) + Ti(ĉi)

= Ui(ĉi) + (ĉi − ci).X
i
i (ĉi)

From (10), it comes, ∀i ∈ N, ∀ci, ĉi ∈ D2
i :

Ui(ci, ĉi)

=

c+i∫

bci

X i
i (si)dsi + ai − 1

n− 1

∑

j 6=i

∫

Dj

{Bj(cj)} fj(cj)dcj

+ (ĉi − ci).X
i
i (ĉi) (11)

Combining (10) and (11) gives, ∀i ∈ N, ∀ci, ĉi ∈ D2
i :

Ui(ci)− Ui(ci, ĉi)

=

c+i∫

ci

X i
i (si)dsi −

c+i∫

bci

X i
i (si)dsi − (ĉi − ci).X

i
i (ĉi) (12)

Then, Ui(ci) − Ui(ci, ĉi) ≥ 0, if the last member of equation (12) is non
negative. This is true if the selection rule x∗ is non increasing in ci.

Lemma 1 The transfers rule t satis�es the ICC if x∗ is non increasing in
ci, ∀c ∈ Ω,∀i ∈ N .
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Following equation (10), the expected utility of the worst agent is given
by, ∀i ∈ N :

Ui(c
+
i ) (13)

= ai − 1

n− 1

∑

j 6=i

∫

Dj

{Bj(cj)} fj(cj)dcj

Since, by de�nition ai ≥ 1
n−1

∑
j 6=i

∫
Dj

{Bj(cj)} fj(cj)dcj,∀i ∈ N , then Ui(c
+
i ) ≥

0,∀i ∈ N.
Equations (10) and (13) yield :

Ui(ci) = Ui(c
+
i ) +

c+i∫

ci

X i
i (si)dsi, ∀i ∈ N, ∀ci ∈ Di (14)

Hence, Ui(ci) ≥ 0 if
c+i∫
ci

X i
i (si)dsi ≥ 0, which is true if the selection rule x∗

is non increasing in ci.

Lemma 2 The transfers rule t satis�es the IRC if x∗ is non increasing in
ci, ∀c ∈ Ω,∀i ∈ N .

Therefore, the two lemmas above show that the transfers rule t ∈ STR
satis�es BC, ICC and IRC if the �rst best selection rule is non-increasing.

Now, we must show that, at the �rst best optimum, STR is non empty,
that is, the ai exist.

If we sum the ai over i, we obtain :

n∑
i=1

ai (15)

≥
n∑

i=1





1

n− 1

∑

j 6=i

∫

Dj

{Bj(cj)} fj(cj)dcj





However, we know
n∑

i=1

ai = 0 and rearranging (15) gives :
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E(W )−
n∑

i=1

∫

Di





c+i∫

ci

X i
i (si)dsi





fi(ci)dci ≥ 0 (16)

Therefore, there are ai such that
n∑

i=1

ai = 0 and ai ≥ 1
n−1

∑
j 6=i

∫
Dj

{Bj(cj)} fj(cj)dcj,∀i ∈
N if (16) is true.

From the de�nition of the optimal selection rule, if si >
n∑

j=1

γj, then

x∗i (si; c−i) = 0. Hence, we can write :

c+i∫

ci

x∗i (si; c−i)dsi =

nP
j=1

γj∫

ci

x∗i (si; c−i)dsi (17)

Moreover, since the optimal selection rule is non-increasing in ci, we have :

(
n∑

j=1

γj − ci)x
∗
i (c)−

c+i∫

ci

x∗i (si; c−i)dsi ≥ 0,∀i ∈ N, ∀ci ∈ Di (18)

In return, this implies :

∫

Ω

n∑
i=1





(
n∑

j=1

γj − ci)xi(c)−
c+i∫

ci

xi(si; c−i)dsi





f(c)dc ≥ 0 (19)

That is :

E(W )−
n∑

i=1

∫

Di





c+i∫

ci

X i
i (si)dsi





fi(ci)dci ≥ 0 (20)

Therefore, the �rst best selection rule satis�es condition (16) and ensures
the existence of the ai at the optimum : STR is non empty at the optimum

Lemma 3 If x∗ satis�es E(W ) −
n∑

i=1

∫
Di

{
c+i∫
ci

X i
i (si)dsi

}
fi(ci)dci ≥ 0, then

the set of transfers rules is non empty at the optimum.
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Appendix 2
Since the setting is symmetric, we have

∫
D

Bi(ci)f(ci)dci =
∫
D

Bj(cj)f(cj)dcj,
∀i, j ∈ N . Therefore,∀i ∈ N ,

1

n− 1

∑

j 6=i

∫

D

Bj(cj)f(cj)dcj (21)

=
1

n

n∑
j=1

∫

D

Bj(cj)f(cj)dcj

=
1

n

n∑
j=1

∫

D




−γ

n∑

l=1

X l
j(cj) + cjX

j
j (cj) +

c+∫

cj

Xj
j (sj)dsj





f(cj)dcj

=
1

n

n∑
j=1

∫

Ω




−γ

n∑

l=1

xl(c) + cjxj(c) +

c+∫

cj

xj(sj; c−j)dsj





f(c)dc

Moreover,
n∑

j=1

{−γ

n∑

l=1

xl(c)} =
n∑

j=1

(−nγxj(c)) (22)

This gives :

1

n− 1

∑

j 6=i

∫

D

Bj(cj)f(cj)

=
1

n

n∑
j=1

∫

Ω





(−nγ + cj)xj(c) +

c+∫

cj

xj(sj; c−j)dsj





f(c)dc (23)

From the de�nition of the optimal selection rule and its monotonicity, we
obtain :

c+j∫

cj

xj(sj; c−j)dsj =

nγ∫

cj

xj(sj; c−j)dsj ≤ (nγ − cj)xj(c) (24)

Therefore,
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(−nγ + cj)xj(c) +

nγ∫

cj

xj(sj; c−j)dsj ≤ 0 (25)

Finally, we have :

1

n− 1

∑

j 6=i

∫

D

Bj(cj)f(cj)

=
1

n

n∑
j=1

∫

Ω





(−nγ + cj)xj(c) +

c+∫

cj

xj(sj; c−j)dsj





f(c)dc ≤ 0 (26)

Then since ai ≥ 1
n−1

∑
j 6=i

∫
D

Bj(cj)f(cj) then ai can be zero for all i ∈ N .
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