The coincidence of the core and the dominance core on multi−choice games

Yan−An Hwang *game*

Abstract

We propose a necessary and sufficient condition for the existence of dominance core and a necessary and sufficient condition for coincidence of the core and the dominance core to the setting of multi−choice games.

Citation: Hwang, Yan−An, (2005) "The coincidence of the core and the dominance core on multi−choice games." *Economics Bulletin,* Vol. 3, No. 14 pp. 1−8 **Submitted:** January 13, 2005. **Accepted:** March 18, 2005.

URL: [http://www.economicsbulletin.com/2005/volume3/EB−05C70002A.pdf](http://www.economicsbulletin.com/2005/volume3/EB-05C70002A.pdf)

1 Introduction

There are two different definitions of the core of TU games. Gillies (1959) defined the core in terms of the binary relation-domination. The other definition of the core is defined as the solution of a system of linear inequalities. We will call the former dominance core and the latter core. Chang (2000) proposed a necessary and sufficient condition for the existence of dominance core, and a necessary and sufficient condition for coincidence of the core and dominance core to the setting of TU games.

A multi-choice game, was introduced by Hsiao and Raghavan (1993), is a game in which each player has a certain number of activity levels at which he or she can choose to play. This is formalized as follows. Let $N = \{1, \ldots, n\}$ be a set of players $(n \in \mathbb{N})$ and suppose each player $i \in N$ has $m_i + 1 \in N$ activity levels at which he can play. We set $M_i = \{0, 1, \ldots, m_i\}$ as the action space of player $i \in N$, where the action 0 means not participating, and the zero vector $(0, \ldots, 0)$ will be denoted by θ . A function $v: \; \Pi$ $\prod_{i\in\mathbb{N}}M_i\to\mathbb{R}$ with $v(\theta)=0$ gives for each coalition $s=(s_1,\ldots,s_n)\in\prod_{i\in\mathbb{N}}$ $\prod_{i\in N}M_i$ the worth that the players can obtain when each player i plays at level $s_i \in M_i$. van den Nouweland et al. (1995) extended the core and dominance core to the setting of multi-choice games, and introduced a notion of balancedness to generalize the Theorem of Bondareva (1963) and Shapley (1967) to the class of multi-choice games. In this note, we will generalize Chang's (2000) results to the setting of multi-choice games.

2 Definitions, Notations and Facts

A multi-choice game is a triple (N, m, v) , where N is the set of players, $m \in (N \cup \{0\})^N$ is the vector describing the number of activity levels for all players, and $v: \Pi$ $\prod_{i\in N}M_i\to\mathbb{R}$ is the *characteristic function* with $v(\theta) = 0$. We will consider that $m_i \geq 1$ for each player $i \in N$ and if there can be no confusion we will denote a game (N, m, v) by v. We denote the set of all multi-choice games with player set N by MC^N .

A multi-choice game v is called zero-normalized if the players cannot gain anything by working alone, i.e., $v(j e^i) = 0$ for all $i \in N$ and $j \in M_i \setminus \{0\}$. For an arbitrary multi-choice game v, the zero-normalization game v₀ of v is defined by $v_0(s) = v(s) - \sum$ $\sum_{i\in N} a(s_i e^i)$ for all $s \in \Pi$ $\prod_{i \in N} M_i$ where $a(j e^i) = v(j e^i)$ for all $i \in N$ and $j \in M_i \setminus \{0\}.$

Let $(N, m, v) \in MC^N$. We define $M = \{(i, j) : i \in N, j \in M_i\}$. A (level) payoff vector for the game v is a function $x : M \to \mathbb{R}$, where, for all $i \in N$ and $j \in M_i \setminus \{0\}$, x_{ij} denotes the increase in payoff to player i corresponding to a change of activity from level j − 1 to level j by this player and $x_{i0} = 0$ for all $i \in N$. Let $S \subseteq N$. By e^{S} we denote the vector in \mathbb{R}^N satisfying $e_i^S = 0$ if $i \notin S$ and $e_i^S = 1$ if $i \in S$.

A payoff vector is called *efficient* if Σ i∈N $\frac{m_i}{\sum}$ $\sum_{j=1}^{n} x_{ij} = v(m)$ and it is called *level increase rational* if, for all $i \in N$ and level $j \in M_i \setminus \{0\}$, $x_{ij} \ge v(j e^i) - v((j-1)e^i)$.

Definition 2.1 A payoff vector is an imputation of v if it is efficient and level increase rational.

We denote the set of imputations of the game v by $I(v)$. It is easily seen that

$$
I(v) \neq \emptyset \Longleftrightarrow v(m) \ge \sum_{i \in N} v(m_i e^i)
$$

Now let x be a payoff vector for the game v. If a player i works at his jth level $(j \in M_i)$, then he obtains, according to x, the amount $\sum_{i=1}^{j}$ $\sum_{k=0}^{\infty} x_{ik}$. It will often be more natural to look at these accumulated payoffs. For $i \in N$ and $j \in M_i$ we denote $X_{ij} = \sum_{i=1}^{n}$ j $\sum_{k=0}^{\infty} x_{ik}$. The members of a coalition $s \in \Pi$ $\prod_{i\in N}M_i$ obtain $X(s) = \sum_{i\in N}X_{is_i}$. Using this, we come to the following

Definition 2.2 The core $C(v)$ of the game v consists of all $x \in I(v)$ that satisfy $X(s) \geq$ $v(s)$ for all $s \in \Pi$ $\prod_{i\in N}M_i, i.e.,$

$$
C(v) = \{ x \in I(v) : X(s) \ge v(s) \text{ for all } s \in \prod_{i \in N} M_i \}.
$$

Remark 2.3 Let v be a zero-normalized game and let

$$
\mathcal{C} = \{ z \in I\!\!R_+^N : \sum_{i \in N} z_i = v(m) \text{ and } \sum_{i \in A(s)} z_i \ge v(s), \text{ for all } s \in \prod_{i \in N} M_i \}.
$$

If x is a payoff vector in $C(v)$, we can define a vector $z \in \mathbb{R}^N_+$ by $z_i = \sum^{m_i}$ $\sum_{j=1}^{\infty} x_{ij}$ for all $i \in N$ such that $z \in \mathcal{C}$. On the other hand, let a vector $z \in \mathcal{C}$, we can also define a payoff vector $x : M \to \mathbb{R}$ such that $x \in C(v)$ by

$$
x_{ij} = \begin{cases} z_i & \text{if } i \in N \text{ and } j = 1 \\ 0 & o.w, \end{cases}
$$

That is, $C(v) = \{x \in I(v) : \Sigma$ $i \in A(s)$ $\sum_{i=1}^{S_i}$ $\sum_{j=1}^{\infty} x_{ij} \ge v(s)$, for all $s \in \prod_{i \in N}$ $\prod_{i\in N} M_i$ $\}\neq \emptyset$ if and only if $\mathcal{C} = \{z \in \mathbb{R}_{+}^{N} : \sum_{i=1}^{N}$ $\sum_{i\in N} z_i = v(m)$ and $\sum_{i\in A(s)} z_i \ge v(s)$, for all $s \in \prod_{i\in I}$ $\prod_{i\in N}M_i\}\neq\emptyset.$

Let $s \in \Pi$ $\prod_{i\in N} M_i$ and $x, y \in I(v)$. The imputation y dominates the imputation x via coalition s, denote y dom_s x, if $Y(s) \leq v(s)$ and $Y_{is_i} > X_{is_i}$ for all $i \in A(s)$, where $A(s) = \{i \in N : s_i > 0, s \in \Pi\}$ $\prod_{i\in N} M_i$ is the set of players who participate in s. We say that the imputation y dominates the imputation x if there exists a coalition $s \in \Pi$ $\prod_{i\in N}M_i$ such that y $dom_s x$.

Definition 2.4 The dominance core $DC(v)$ of the game v consists of all $x \in I(v)$ for which there exists no $y \in I(v)$ such that y dominates x, i.e.,

 $DC(v) = \{x \in I(v) : \exists y \in I(v) \text{ such that } y \text{ dominates } x\}.$

The following two Lemmas were studied by van den Nouweland et al. (1995,p.292,293).

Lemma 2.5 For each game v the core $C(v)$ is a subset of the dominance core $DC(v)$.

Lemma 2.6 Let v be an arbitrary game and v_0 its zero-normalization. Let x be a payoff vector for this game. Define $y : M \to \mathbb{R}$ by $y_{ij} = x_{ij} - v(j e^i) + v((j - 1)e^i)$ for all $i \in \mathbb{N}$ and $j \in M_i \setminus \{0\}$. Then we have

- (1) $x \in I(v) \Longleftrightarrow y \in I(v_0)$
- (2) $x \in C(v) \Longleftrightarrow y \in C(v_0)$
- (3) $x \in DC(v) \Longleftrightarrow y \in DC(v_0)$.

A notion of balancedness to the setting of multi-choice games was introduced by van den Nouweland et al. (1995) as follows.

Definition 2.7 A multi-choice game v is called balanced if for all maps $\lambda : \prod_{i \in N} M_i \to$ \mathbb{R}_+ satisfying

$$
\sum_{s \in \prod_{i \in N} M_i} \lambda(s) e^{A(s)} = e^N
$$

it holds that

$$
\sum_{s \in \prod_{i \in N} M_i} \lambda(s) v_0(s) \le v_0(m),
$$

where v_0 is the zero-normalization of v.

The next Theorem is an extension of the Theorem of Bondareva (1963) and Shapley (1967) to the setting of multi-choice games and gives a necessary and sufficient condition for the nonemptiness of the core of a game by van den Nouweland et al. (1995,p.297).

Theorem 2.8 Let v be a multi-choice game. Then the core $C(v)$ of v is non-empty if and only if v is balanced.

To end this section, we give two examples to explain that why we define such balancedness, corresponding to zero-normalization, on multi-choice games. One is that we provide a multi-choice game v with nonempty core but it does not satisfy

$$
\sum_{s \in \prod_{i \in N} M_i} \lambda(s)v(s) \le v(m) \text{ whenever } \sum_{s \in \prod_{i \in N} M_i} \lambda(s)e^{A(s)} = e^N. \tag{2.1}
$$

The other is that a multi-choice game v satisfies the condition (2.1) but it has empty core.

Example 2.9 Let (N, m, v) be a multi-choice game where $N = \{1, 2\}$, $m = (2, 1)$ and $v((0,1)) = v((1,1)) = v((2,1)) = 0, v((1,0)) = 1$ and $v((2,0)) = -1$. Then the payoff vector x with $x_{11} = 1$, $x_{12} = -1$ and $x_{21} = 0$ is in $C(v)$. For this game, we find a collection $\beta = \{(1, 0), (0, 1)\}$ and $\lambda((1, 0)) = 1$, $\lambda((0, 1)) = 1$ such that Σ s∈β $\lambda(s)v(s) = 1$ $0 = v((2, 1)).$

Example 2.10 Let (N, m, v) be a multi-choice game where $N = \{1, 2\}$, $m = (2, 1)$ and $v((0,1)) = v((1,0)) = v((1,1)) = -1, v((2,0)) = 1$ and $v((2,1)) = 0$. Then v clearly satisfies the condition (2.1). To verify that it has empty core, consider the zero-normalization v_0 of v with $v_0((0, 1)) = v_0((1, 0)) = v_0((2, 0)) = v_0((2, 1)) = 0$, and $v_0((1, 1)) = 1$. It is easy to see that $v_0((2, 1)) = 0 < 1 = \sum_{s \in \beta} \lambda(s)v_0(s)$ for $\beta = \{(1, 1)\}\$ and $\lambda((1, 1)) = 1$, thus $C(v_0) = \emptyset$.

3 Main Results

In this section we will extend Chang's (2000) results from TU games to multi-choice games. It is known that the core and the dominance core are invariant under strategic equivalence by Lemma 2.6. Hence, w.l.o.g., we assume that all multi-choice games are zero-normalized. Besides, we will assume that $v(m) \geq 0$ and thus $I(v) \neq \emptyset$.

Let (N, m, v) be a game. We define a new game by $v'(s) = \min\{v(s), v(m)\}\$ for all $s \in \Pi$ $\prod_{i\in N} M_i$. Then $v'(m) = v(m)$ and $v'(je^i) = v(j e^i) = 0$ for all $i \in N$ and $j \in M_i \setminus \{0\}$. Hence (N, m, v') is also with $v'(m) \geq 0$ and $v'(je^i) = 0$ for all $i \in N$ and $j \in M_i$. And it is easy to see that $I(v) = I(v')$.

Lemma 3.1 Let $s \in \prod$ $\prod_{i \in N} M_i$, $s \neq \theta$, and let $x, y \in I(v) = I(v')$. Then x dom_s y in v' if and only if x dom_s y in v.

proof: Let $s \in \Pi$ $\prod_{i\in N} M_i$, $s \neq \theta$, and let $x, y \in I(v) = I(v')$. If $x \text{ dom}_s y$ in v' , then $X(s) \leq v'(s)$ and $X_{is_i} > Y_{is_i}$ for all $i \in A(s)$. Therefore $X(s) \leq v(s)$ and x dom_s y in v. On the other hand, if x dom_s y in v, then $X(s) \le v(s)$ and $X_{is_i} > Y_{is_i}$ for all $i \in A(s)$. Since $x \in I(v)$, $X(s) = \sum$ i∈N $\sum_{i=1}^{m_i}$ $\sum_{j=1}^{\infty} x_{ij} - \sum_{i \in N}$ i∈N $\sum_{i=1}^{m_i}$ $\sum_{j=s_i+1}^{n} x_{ij} \le v(m)$. These imply that $X(s) \le v'(s)$ and $x \, dom_s \, y$ in v' . $Q.E.D.$ **Lemma 3.2** For any game $(N, m, v) \in MC^N$, $DC(v) = DC(v')$.

proof: It follows from Lemma 3.1. $Q.E.D.$

Lemma 3.3 For any game $(N, m, v) \in MC^N$, $C(v') = DC(v')$.

proof: According to Lemma 2.5, we know that $C(v') \subseteq DC(v')$. If $DC(v') = \emptyset$, it is easy to see that $C(v') = DC(v')$. If $DC(v') \neq \emptyset$, it remains to show that $DC(v') \subseteq C(v')$. Let $x \in DC(v')$ and suppose that $x \notin C(v')$. Then there exists a coalition $s \in \Pi$ $\prod_{i\in N}M_i$ such that $X(s) < v'(s)$. Since $v'(t) \le v'(m)$ for all $t \in \Pi$ $\prod_{i\in N}M_i$, we can define a payoff vector $y: M \to \mathbb{R}$ by

$$
y_{ij} = \begin{cases} x_{ij} + \frac{v'(s) - X(s)}{\sum_{k \in N} s_k} & \text{if } i \in N, j \in \{1, 2, \dots, s_i\} \\ \frac{v'(m) - v'(s)}{\sum_{k \in N} (m_k - s_k)} & \text{if } i \in N, j \in \{s_i + 1, \dots, m_i\}. \end{cases}
$$

Then $y_{ij} > x_{ij} \geq 0$ and

$$
Y(m) = \sum_{i \in N} \sum_{j=1}^{m_i} y_{ij}
$$

= $\sum_{i \in N} \left\{ \sum_{j=1}^{s_i} y_{ij} + \sum_{j=s_i+1}^{m_i} y_{ij} \right\}$
= $\left(\sum_{i \in N} \sum_{j=1}^{s_i} x_{ij} + \sum_{i \in N} s_i \frac{v'(s) - X(s)}{\sum_{k \in N} s_k} \right) + \sum_{i \in N} (m_i - s_i) \frac{v'(m) - v'(s)}{\sum_{k \in N} (m_k - s_k)}$
= $X(s) + v'(s) - X(s) + v'(m) - v'(s)$
= $v'(m)$.

Hence $y \in I(v')$. Since $Y_{is_i} > X$ is and $Y(s) = \sum_{i}$ i∈N $\sum_{i=1}^{S_i}$ $\sum_{j=1}^{n} y_{ij} = v'(s)$, y dom_s x in v'. This contradicts the assumption. Hence $x \in C(v')$ and $DC(v') \subseteq C(v')$ $Q.E.D.$

Lemma 3.4 For any game $(N, m, v) \in MC^N$, $DC(v) = C(v')$.

proof: It follows from Lemmas 3.2 and 3.3. $Q.E.D$

Lemma 3.5 For any game $(N, m, v) \in MC^N, DC(v) \neq \emptyset$ if and only if (N, m, v') is balanced.

proof: It follows from Theorem 2.8 and Lemma 3.4. Q.E.D.

Lemma 3.6 For any game $(N, m, v) \in MC^N$ with $C(v) \neq \emptyset$, $C(v) = C(v')$.

proof: Using Lemmas 2.5 and 3.4, we know that $C(v) \subseteq C(v')$. It remains to show that $C(v') \subseteq C(v)$. Let $x \in C(v')$, then $x \in I(v') = I(v)$ and $X(s) \ge v'(s)$ for all $s \in \Pi$ $\prod_{i\in N}M_i.$ Now we will show that $v(s) \leq v(m)$ for all $s \in \Pi$ $\prod_{i\in N} M_i$. Since $C(v) \neq \emptyset$, there exists an $y \in C(v)$ such that

$$
Y(s) \ge v(s) \text{ for all } s \in \prod_{i \in N} M_i \quad \text{and}
$$

$$
Y(s) = \sum_{i \in N} \sum_{j=1}^{m_i} y_{ij} - \sum_{i \in N} \sum_{j=s_i+1}^{m_i} y_{ij} \le v(m).
$$

Hence $v(s) \leq v(m)$. Therefore $X(s) \geq v'(s) = v(s)$ for all $s \in \Pi$ $\prod_{i\in N} M_i$ and $x \in C(v)$. This completes the proof. $Q.E.D.$

Lemma 3.7 For any game $(N, m, v) \in MC^N$, $C(v) = C(v')$ if and only if (N, m, v) is balanced or (N, m, v') is not balanced.

proof: For any game $(N, m, v) \in MC^N$. If $C(v) = C(v')$, then either both $C(v)$ and $C(v')$ are empty or both are nonempty. If both $C(v)$ and $C(v')$ are empty, then (N, m, v') is not balanced. If both $C(v)$ and $C(v')$ are nonempty, then (N, m, v) is balanced. On the other hand, if (N, m, v') is not balanced, $C(v) \subseteq C(v') = \emptyset$. This implies $C(v) = C(v')$. If (N, m, v) is balanced, $C(v) \neq \emptyset$. Using Lemma 3.6, we have $C(v) = C(v')$ $Q.E.D.$

Theorem 3.8 For any game $(N, m, v) \in MC^N$, $C(v) = DC(v)$ if and only if (N, m, v) is balanced or (N, m, v') is not balanced.

proof: Since we have known that $DC(v) = C(v')$ for any game $(N, m, v) \in MC^N$ by Lemma 3.4, it suffices to show $C(v) = C(v')$ if and only if (N, m, v) is balanced or (N, m, v') is not balanced. Then, using Lemma 3.7, we obtain $C(v) = DC(v)$ if and only if (N, m, v) is balanced or (N, m, v') is not balanced. $Q.E.D.$

References

- [1] Bondareva O (1963): "Some applications of linear programming methods to theory of cooperative games," Problemy Kybernetiki, 10, pp. 119-139 [in Russian]
- [2] Chang C (2000): "Remarks on theory of the core," Naval Research Logistics Quarterly, 47, pp. 455-458
- [3] Gillies D (1959): "Solutions to general non-zero-sum games," Annals of Math. Studies, 40, pp. 47-85
- [4] Hsiao C, Raghavan T (1993): "Shapley value for multi-choice cooperative games (I)," Games and Economic Behavior, 5, pp. 240-256
- [5] Nouweland A van den, Potters J, Tijs S, Zarzuelo J (1995): "Cores and related solution concepts for multi-choice games," Mathematical Methods of Operations Research, 41, pp. 289-311
- [6] Shapley L (1967): "On balanced set and cores," Naval Research Logistics Quarterly, 14, pp. 453-460