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Abstract
Portfolio optimization in derivative ETF markets presents complex challenges in balancing competing objectives across

instruments with fundamentally different risk-return profiles. This paper constructs a portfolio strategy to optimize

NASDAQ-100 derivative ETF allocations by balancing tracking error minimization relative to the Invesco QQQ Trust

(QQQ) with excess return maximization. The approach dynamically allocates investments across three specialized

ETFs: a short-position fund (YQQQ), an income-focused covered-call fund (QYLD), and a triple-leveraged fund

(TQQQ). Using a deep reinforcement learning (DRL) framework, the strategy applies anomaly detection to optimize

rebalancing timing, incorporating dividend payments to enhance returns. The approach achieves positive excess returns

across all evaluation periods, though risk-adjusted performance progressively deteriorates from substantial

outperformance during training to underperformance during testing. This progression reveals both the potential and

limitations of reinforcement learning approaches for multi-objective portfolio optimization when encountering evolving

market conditions.
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1. Introduction

1.1 Objective

This research aims to formulate a portfolio strategy for retail and institutional investors, optimizing

allocations of NASDAQ-100 derivative ETFs to balance tracking error (TE) minimization relative

to the QQQ benchmark with excess return (ER) maximization. The portfolio dynamically allocates

capital across three specialized ETFs: YQQQ (short-position fund), QYLD (income-focused

covered-call fund), and TQQQ (triple-leveraged fund), achieving strategic diversification across

inverse, income-generating, and leveraged instruments. To enable this strategy, the framework

applies Deep Reinforcement Learning through Proximal Policy Optimization with actor-critic

architecture, anomaly detection via Isolation Forest algorithms, and multi-objective optimization

techniques to facilitate adaptive portfolio rebalancing across varying market regimes.

1.2 Literature Review

The literature relevant to this study encompasses three primary areas: derivative investment strategies,

portfolio optimization techniques, and machine learning applications in financial markets.

Although Covered Call ETFs represent a relatively recent innovation, the underlying Covered

Call strategy enjoys longstanding popularity. Israelov and Nielsen (2018) examined the S&P 500

Covered Call strategy’s performance from April 1996 to December 2013, discovering it produced

5% annualized ER while surpassing both long equity and short straddle approaches.

Constructing portfolios that effectively combine multiple investment approaches requires

sophisticated optimization frameworks. Markowitz’s (1952) pioneering work in modern portfolio

theory catalyzed the emergence of numerous linear programming techniques designed for optimal

portfolio allocation. Rudolf et al. (1999) found linear deviation best represents investor risk

profiles, while Crama and Schyns (2003) applied simulated annealing algorithms for near-global

portfolio optimization. Maringer and Kellerer (2003) introduced a hybrid metaheuristic combining

simulated annealing and evolutionary strategies for efficient portfolio optimization with limited

assets and non-negative weights, enabling multi-objective strategies. Subsequently, Wu et al. (2007)

developed a novel goal programming framework with dual-objectives tailored for Taiwan market.

Canakgoz and Beasley (2009) implemented regression-based methodologies to establish three-

stage index tracking alongside two-stage enhanced indexation models. Guastaroba and Speranza

(2012) introduced the Kernel Search methodology to reduce computational demands in MILP

applications for index-tracking problems. De Paulo et al. (2016) developed a computationally

efficient Lagrange multiplier framework for single-period enhanced indexation that balances TE and

ER under cardinality constraints.

Time series is used as part of the feature engineering process to enhance the input state for the

DRL model. Anomaly detection, alongside Vector Autoregression (VAR), plays a critical role in

my portfolio optimization framework. Sims (1980) established VAR methodology for modeling

multiple time series interactions, while Liu et al. (2008) developed the isolation forest algorithm,

which offers efficient anomaly detection in large financial datasets.

Moreover, machine learning’s expanding role in finance has driven adoption of DRL. Neuneier

(1995) spearheaded reinforcement learning applications for asset allocation in German equity

markets. Yu et al. (2019), Wu et al. (2020), and Chaouki et al. (2020) utilized DRL architectures to



enable dynamic allocation strategies. Su et al. (2024) deployed multi-module DRL systems targeting

risk management and profit enhancement. Cui et al. (2024) proposed a DRL hyper-heuristic

framework for multi-period portfolio optimization that searches for trading strategies rather than

actions, demonstrating superior performance from 2012 to 2022.

To evaluate risk-adjusted performance and risk exposure in this study, several key metrics are

employed. Sharpe (1966) introduced the Sharpe ratio, which measures portfolio performance by

dividing the excess return over the risk-free rate by the total standard deviation of returns. Sortino and

Price (1994) refined this approach by focusing solely on downside risk. This study also incorporates

Value at Risk (VaR), popularized by J.P. Morgan’s RiskMetrics framework (1994), and Conditional

Value at Risk (CVaR), proposed by Rockafellar and Uryasev (2000). CVaR quantifies the expected

severity of losses beyond the VaR threshold, offering a more comprehensive assessment of extreme

risks.

1.3 Background on the benchmark

QQQ, a passively managed ETF launched by Invesco on March 10, 1999, tracks the Nasdaq-

100 Index, encompassing 100 prominent Nasdaq-listed companies. Rebalanced quarterly and

reconstituted annually, it ranks as the second-most traded ETF in the U.S. by average daily volume

as of March 31, 2025.

1.4 Background on the portfolio constituents

QYLD, launched on December 12, 2013 by Global X, employs a “covered call” strategy. It invests at

least 80% in Nasdaq-100 securities while selling one-month at-the-money call options for premium

income. Tracking the CBOE NASDAQ-100 BuyWrite V2 (BXNT) Index, it prioritizes yield over

capital appreciation, limiting upside in bull markets. YQQQ, launched on August 14, 2024 by

YieldMax, is an actively managed ETF that generates monthly income by selling Nasdaq-100

call options, buying put options, and holding US treasuries. It provides inverse exposure to the

Nasdaq-100 with capped gains. TQQQ, launched on February 9, 2010 by ProShares, is a leveraged

ETF targeting three times (3X) the daily Nasdaq-100 Index performance using derivatives. It is

designed for short-term traders seeking amplified exposure to the Nasdaq-100.

2. Setting the Stage

2.1 Computational Environment

The main computation runs on a server with eight NVIDIA GeForce RTX 3090 GPUs. The portfolio

optimization framework is implemented using several Python packages. Data manipulation utilizes

pandas for ETF price data handling and log return computation, and numpy for numerical operations.

The DRL framework employs PyTorch to implement the PPO agent with Actor-Critic architecture

and ridge-regularized VAR models. Anomaly detection leverages the IsolationForest algorithm

from scikit-learn to identify market regime changes that trigger dynamic portfolio rebalancing.

Visualization is provided by matplotlib for plotting portfolio allocations and performance results.



2.2 Methodology

The PPO-based DRL algorithm with VAR and Isolation Forest optimizes NASDAQ 100 derivative

ETF portfolios by generating dynamic, uneven weights that account for each ETF’s distinct

characteristics. PPO handles nonlinear market dynamics through its policy gradient framework

without restrictive distributional assumptions, while VAR models capture temporal dependencies

and cross-asset correlations, and Isolation Forest detects market shifts to trigger timely rebalancing

during volatile periods. This integrated approach outperforms alternatives like Mean Variance

Optimization with its Gaussian return assumptions that fail during market stress, Mixed Integer

Linear Programming with its linear formulation limitations, autoencoders designed for feature

extraction, and traditional Q-learning methods unsuitable for continuous action spaces. The

methodology dynamically optimizes risk-return trade-offs through continuous adaptation rather than

relying on static distributions or simplistic market assumptions.

Initially, to address incomplete data, an OLS regression model was employed to estimate missing

returns using QQQ as the benchmark index, ensuring that all ETFs have return data for analysis

starting from January 5, 2010. The analysis employs a sequential time-based split: 2010-2018

data for model training, 2019-2023 for validation and parameter selection, and 2024 through June

2025 for out-of-sample testing. Subsequently, VAR modeling generates predictive features that

encapsulate temporal dependencies within financial datasets, thereby strengthening the DRL agent’s

decision-making capabilities. The model determines the optimal number of past periods to consider

by balancing accuracy and complexity using the Bayesian Information Criterion (BIC) by Schwarz

(1978), with regularization applied to prevent overfitting. These prediction errors and their trends

serve as key features for market anomaly detection.

Complementing the predictive modeling, Isolation Forest anomaly detection identifies critical

market shifts by analyzing multiple features, including market volatility and prediction errors, to

detect significant deviations from normal market behavior. This method triggers portfolio adjustments

at key dates alongside regular monthly rebalancing, enhancing the portfolio’s responsiveness to

changing market conditions.

Building upon these analytical components, the PPO-based DRL agent synthesizes predictive

signals and market anomaly insights to achieve optimal risk-return equilibrium. The portfolio

optimization aims to balance TE minimization and ER maximization relative to the QQQ benchmark.

The formal mathematical formulation of this optimization problem is detailed in Section 2.3. The

objective function optimized by the PPO agent is formulated as (1 − �) × ER − � × TE, where

the tracking weight parameter � controls this trade-off, allowing flexible prioritization between

minimizing TE and maximizing ER. Values of � closer to 1 prioritize tight benchmark tracking, while

lower values emphasize outperformance, enabling adaptation to different investor risk preferences.

Finally, the reinforcement learning approach generates probabilistic portfolio allocations based on

market features, with actions sampled to produce valid portfolio weights that comply with constraints.

The algorithm iteratively refines these allocations by optimizing a loss function that balances

performance, stability, and exploration. The tracking weight parameter � is dynamically adjusted

using validation data to optimize performance, with early stopping employed when improvements

stall to prevent overfitting. The complete algorithmic implementation of this PPO-based portfolio

optimization framework is detailed in Section 2.4.



2.3 Main Optimization Problem Formulation

The main optimization problem seeks to maximize utility� (�) defined as:

max
�
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Parameters:

• � ∈ [0, 1]: Scalar balancing trade-off between ER and TE

• �: Vector of ones; Size � × 1 used to sum excess returns across all periods

• �: Number of trading days

• �: Number of periods in optimization window

• �min, �max: Bounds on number of selected assets

• ��: Minimum weight for asset �

• ��: Weight of asset �

• ��: Maximum weight for asset �

• �� ∈ [0, 1]: Binary selection variable indicating whether asset � is selected



2.4 Algorithm

Algorithm 1 Deep Reinforcement Learning Portfolio Optimization with Dynamic Rebalancing

Require: Asset returns � ∈ R�×�

1: Train VAR(p) model on �; compute prediction errors ��
2: Apply Isolation Forest on market features; identify anomaly dates �anomaly

3: Generate rebalancing schedule � = {monthly dates ∪ �anomaly}, min days apart

4: Initialize actor �� : R� → R
�, critic �� : R� → R networks

5: for episode � = 0, 1, . . . , � do
6: Initialize experience buffer B = ∅
7: for each rebalancing date � ∈ � do

8: Construct state �� = [�window,market_indicators, �� ] ∈ R
�

9: �� , �� , �� ← �� (�� ), �� (�� )
10: Sample �raw ∼ N(�� , �� ); compute log �� ← log �� (�raw |�� )
11: �� ← Project Constraints(�raw,max_weight,min_stocks,max_stocks)
12: �� ← (1 − �) × Excess Return(�� , �, �) − � × Tracking Error(�� , �)
13: if � ≤ �train then
14: Store (�� , �� , log �� , �� , �� ) in buffer B
15: end if
16: end for
17: Compute advantages �� ← �� −�� ; normalize ��
18: for update � = 1, . . . , 10 do
19: Sample mini-batch from B; compute �� ← �� (�� |�� )/��old

(�� |�� )
20: Lactor ← −E[min(���� , clip(�� , 1 − �, 1 + �)�� )]
21: Lcritic ← E[(�� − �� )

2];H ← −E[�� log �� ]
22: Update �, � with Ltotal = Lactor + 0.5 × Lcritic − 0.05 ×H
23: end for
24: for � ∈ {��} do
25: Evaluate on validation set �val; compute �val(�)
26: end for
27: �best ← arg max� �val(�); store best weights if improved
28: if no improvement for 20 episodes then
29: break
30: end if
31: end for
32: �∗ ← best stored weights
33: Apply final constraints: �∗ [inactive] ← 0.01; renormalize to sum = 1
34: if ∥�∗∥0 < min_stocks then
35: force select additional stocks
36: end if
37: if ∥�∗∥0 > max_stocks then
38: trim lowest weighted positions
39: end if
40: return optimized portfolio weights�∗

3. Results

3.1 Impact of parameters on ER and TE

Figures 1 through 5 illustrate how adjusting key parameters of contamination, window size, max

stocks, min stocks, tracking weight, and minimum days for rebalancing affects the portfolio’s ability

to outperform QQQ while minimizing deviation relative to QQQ across training, validation, and

testing periods. The baseline configuration serves as the analytical foundation, featuring a tracking



weight of 0.25 that balances ER and TE, a maximum stock weight of 0.7, a minimum stock weight of

0.01, a contamination level of 0.01 for anomaly detection, a 30-day look-back window, a maximum

of 4 assets, a minimum of 1 asset, 1000 training episodes, and a minimum rebalancing interval of

30 days. Each parameter reveals a distinct performance pattern when compared to the baseline

configuration.

Figure 1 depicts the impact of tracking weights on the portfolio’s ER and TE relative to QQQ.

Tracking weights shape the balance between achieving higher ER and minimizing TE by adjusting

the emphasis on returns versus deviation. In the training period, extremely low tracking weights

achieved notably strong ER, while the validation period showed improved performance with higher

tracking weights. Out-of-sample testing indicated that moderate tracking weights were most effective

for both ER and TE management.

Figure 1: The effect of tracking weight on ER and TE

Figure 2 unveils the impact of contamination levels on the portfolio’s ER and TE relative to

QQQ. Contamination levels shape the balance between achieving higher ER and minimizing TE

by adjusting sensitivity to market anomalies. The analysis reveals notable variations in optimal

contamination settings across different time periods. In the training period, higher contamination

levels generally achieved stronger ER, while the validation period showed improved performance

with lower contamination settings. Out-of-sample testing indicated that the highest contamination

level was most effective, achieving both superior ER and optimal TE control.

Figure 2: The effect of contamination on ER and TE



Figure 3 exhibits the impact of window sizes on the portfolio’s ER and TE relative to QQQ.

Window sizes shape the balance between achieving higher ER and minimizing TE by adjusting

portfolio responsiveness to market trends. The analysis reveals notable differences in optimal

window configurations across time periods. In the training period, smaller window sizes achieved

substantially higher ER, while the validation and testing periods showed improved performance

with moderate window sizes. Out-of-sample analysis confirmed that moderate window sizes were

most effective, achieving superior ER compared to both smaller and larger windows.

Figure 3: The effect of window size on ER and TE

Figure 4 displays the impact of maximum weights on the portfolio’s ER and TE relative to

QQQ. Maximum weights shape the balance between achieving higher ER and minimizing TE by

constraining asset allocations. The analysis reveals complex relationships between weight constraints

and performance across different periods. In the training period, lower maximum weights achieved

substantially higher ER while also maintaining better TE control. The validation and testing periods

showed different patterns, with higher maximum weights generally improving ER but at the cost of

significantly elevated TE.

Figure 4: The effect of max weight on ER and TE

Figure 5 represents the impact of minimum days between rebalancing on the portfolio’s ER and

TE relative to QQQ. Minimum days shape the balance between achieving higher ER and minimizing

TE by controlling rebalancing frequency. In the training period, different rebalancing frequencies



showed varying performance patterns, with certain frequencies achieving favorable returns. The

validation period exhibited different market dynamics with more modest performance across

rebalancing frequencies. Out-of-sample testing indicated that moderate rebalancing frequencies

provided reasonably balanced performance, achieving acceptable ER while maintaining suitable TE

levels.

Figure 5: The effect of minimum days between rebalancing on ER and TE

3.2 Allocation

Figure 6 shows the allocation of the portfolio’s investments across three assets, TQQQ, QYLD, and

YQQQ, over time.

During the training period, QYLD dominates the portfolio with an average allocation of 40.0%,

reflecting an income focused investment strategy during this foundational period. TQQQ maintains

a substantial 35.8% average allocation, positioning the portfolio for growth opportunities. YQQQ

secures a meaningful 24.2% allocation, demonstrating consistent diversification rather than minimal

exposure.

During the validation period, the portfolio undergoes a strategic shift toward growth orientation.

TQQQ becomes the dominant asset with 42.5% average allocation, overtaking QYLD as market

conditions favor aggressive growth strategies. QYLD’s allocation decreases to 33.8% but remains

substantial, continuing to provide income stability. YQQQ maintains consistency at 23.7% average

allocation, proving its value as a portfolio stabilizer.

During the testing period, the portfolio adopts a more balanced approach with TQQQ averaging

38.1%, QYLD 35.3%, and YQQQ 26.6%. This period exhibits notable tactical adjustments,

with frequent 70% allocations to single assets during specific market conditions, indicating active

management responses to opportunities. YQQQ achieves its highest relative importance during this

period, reflecting refined portfolio optimization.



Figure 6: Portfolio allocation over time

3.3 Performance

Figure 7 reveals the portfolio’s dividend-adjusted performance from 2010 to 2025 compared to QQQ.

The portfolio incorporates dividends from all ETF holdings to adjust its returns. The benchmark

QQQ provides annual dividends of $2.8628 per share through quarterly payments of $0.7157, while

the portfolio receives annual dividends of $3.18 per share from YQQQ through monthly payments

of $0.265, $1.98 per share from QYLD through monthly payments of $0.165, and $0.7909 per

share from TQQQ through quarterly payments of $0.19773. The risk-free rate, referenced from

SOFR, used for calculating the Sharpe and Sortino ratios is arbitrarily set at 4.29% annually. All

performance metrics are calculated on a pre-tax and pre-transaction-cost basis to ensure unbiased

and standardized evaluation.

The portfolio demonstrates strong performance during the training period, achieving an ex-

ceptional ER of 30.96% with a controlled TE of 12.62%. Risk-adjusted metrics are particularly

impressive, with a Sharpe ratio of 2.34 significantly outperforming QQQ’s 0.88. The Sortino ratio of

2.40 versus QQQ’s 1.12 further demonstrates superior risk-adjusted performance when considering

only downside deviations. The 95% daily CVaR of 3.12% remains only marginally higher than

QQQ’s 2.69%, indicating well-managed tail risk during optimization.

The validation period unveils notable performance deterioration, with ER declining to 7.60%

and TE rising substantially to 19.65%. Risk-adjusted performance metrics decline substantially,

with the Sharpe ratio dropping to 0.80 compared to QQQ’s 0.67, while the Sortino ratio falls to 0.93

versus QQQ’s 0.85. The 95% daily CVaR increases to 4.99% compared to QQQ’s 3.85%, reflecting

heightened tail risk exposure as market conditions diverge from training patterns.

The testing period shows continued challenges, with ER diminishing to 3.25% and TE reaching

20.56%. Most notably, risk-adjusted performance deteriorates below benchmark levels for the first



time, with the Sharpe ratio declining to 0.55 versus QQQ’s 0.70 and the Sortino ratio falling to

0.61 compared to QQQ’s 0.92. This marks a fundamental shift where the portfolio underperforms

on both total volatility-adjusted and downside deviation-adjusted metrics. The 95% daily CVaR

deteriorates further to 5.05% versus QQQ’s 3.34%, indicating that the portfolio’s tail risk exposure

has increased significantly relative to the benchmark.

Table 1: Portfolio Performance Summary Across All Periods

Training Validation Testing

(2010-2019) (2019-2024) (2024-2025)

Metric Portfolio QQQ Portfolio QQQ Portfolio QQQ

Annual Return (%) 50.50 19.54 29.01 21.41 23.47 20.22

Excess Return (%) 30.96 – 7.60 – 3.25 –

Annual Volatility (%) 19.79 17.42 30.78 25.49 34.62 22.61

Tracking Error (%) 12.62 – 19.65 – 20.56 –

Sharpe Ratio 2.34 0.88 0.80 0.67 0.55 0.70

Sortino Ratio 2.40 1.12 0.93 0.85 0.61 0.92

Maximum Drawdown (%) −20.68 −22.74 −51.99 −37.78 −34.91 −23.42

Beta 0.88 1.00 0.93 1.00 1.26 1.00

95% Daily VaR (%) 1.59 1.80 3.20 2.59 2.83 2.40

99% Daily VaR (%) 3.94 3.20 6.18 4.38 5.57 3.75

95% Daily CVaR (%) 3.12 2.69 4.99 3.85 5.05 3.34

99% Daily CVaR (%) 5.65 4.00 7.67 6.11 10.61 5.05

Note: ER and TE are not applicable (–) for QQQ as it serves as the benchmark. All metrics calculated using
dividend-adjusted returns.



Figure 7: Cumulative Returns Comparison: Portfolio vs QQQ Benchmark (2010-2025)

4. Conclusion

The reinforcement learning-based portfolio optimization framework successfully constructs a

portfolio of NASDAQ-100 derivative ETFs including YQQQ, QYLD, and TQQQ that generates

consistent positive excess returns relative to the QQQ benchmark across all evaluation periods.

Nevertheless, the temporal analysis reveals a clear deterioration pattern: while the strategy

maintains positive excess returns, both tracking error and tail risk metrics progressively worsen,

and risk-adjusted performance deteriorates from substantial outperformance during training to

underperformance during testing periods. This progression suggests that the portfolio’s risk profile

becomes increasingly unfavorable as it encounters market conditions different from the training

environment.

The framework demonstrates the potential of DRL for multi-objective portfolio optimization,

effectively balancing efficiency through TQQQ, income generation via QYLD, and hedging through

YQQQ. However, the observed parameter instability across time periods indicates that future research

should implement more robust validation methodologies, such as rolling window cross-validation,

to improve generalization capability and reduce overfitting risks in evolving market conditions.
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