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Abstract

Portfolio optimization in derivative ETF markets presents complex challenges in balancing competing objectives across
instruments with fundamentally different risk-return profiles. This paper constructs a portfolio strategy to optimize
NASDAQ-100 derivative ETF allocations by balancing tracking error minimization relative to the Invesco QQQ Trust
(QQQ) with excess return maximization. The approach dynamically allocates investments across three specialized
ETFs: a short-position fund (YQQQ), an income-focused covered-call fund (QYLD), and a triple-leveraged fund
(TQQQ). Using a deep reinforcement learning (DRL) framework, the strategy applies anomaly detection to optimize
rebalancing timing, incorporating dividend payments to enhance returns. The approach achieves positive excess returns
across all evaluation periods, though risk-adjusted performance progressively deteriorates from substantial
outperformance during training to underperformance during testing. This progression reveals both the potential and
limitations of reinforcement learning approaches for multi-objective portfolio optimization when encountering evolving
market conditions.
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1. Introduction

1.1 Objective

This research aims to formulate a portfolio strategy for retail and institutional investors, optimizing
allocations of NASDAQ-100 derivative ETFs to balance tracking error (TE) minimization relative
to the QQQ benchmark with excess return (ER) maximization. The portfolio dynamically allocates
capital across three specialized ETFs: YQQQ (short-position fund), QYLD (income-focused
covered-call fund), and TQQQ (triple-leveraged fund), achieving strategic diversification across
inverse, income-generating, and leveraged instruments. To enable this strategy, the framework
applies Deep Reinforcement Learning through Proximal Policy Optimization with actor-critic
architecture, anomaly detection via Isolation Forest algorithms, and multi-objective optimization
techniques to facilitate adaptive portfolio rebalancing across varying market regimes.

1.2 Literature Review

The literature relevant to this study encompasses three primary areas: derivative investment strategies,
portfolio optimization techniques, and machine learning applications in financial markets.

Although Covered Call ETFs represent a relatively recent innovation, the underlying Covered
Call strategy enjoys longstanding popularity. Israelov and Nielsen (2018) examined the S&P 500
Covered Call strategy’s performance from April 1996 to December 2013, discovering it produced
5% annualized ER while surpassing both long equity and short straddle approaches.

Constructing portfolios that effectively combine multiple investment approaches requires
sophisticated optimization frameworks. Markowitz’s (1952) pioneering work in modern portfolio
theory catalyzed the emergence of numerous linear programming techniques designed for optimal
portfolio allocation. Rudolf et al. (1999) found linear deviation best represents investor risk
profiles, while Crama and Schyns (2003) applied simulated annealing algorithms for near-global
portfolio optimization. Maringer and Kellerer (2003) introduced a hybrid metaheuristic combining
simulated annealing and evolutionary strategies for efficient portfolio optimization with limited
assets and non-negative weights, enabling multi-objective strategies. Subsequently, Wu et al. (2007)
developed a novel goal programming framework with dual-objectives tailored for Taiwan market.
Canakgoz and Beasley (2009) implemented regression-based methodologies to establish three-
stage index tracking alongside two-stage enhanced indexation models. Guastaroba and Speranza
(2012) introduced the Kernel Search methodology to reduce computational demands in MILP
applications for index-tracking problems. De Paulo et al. (2016) developed a computationally
efficient Lagrange multiplier framework for single-period enhanced indexation that balances TE and
ER under cardinality constraints.

Time series is used as part of the feature engineering process to enhance the input state for the
DRL model. Anomaly detection, alongside Vector Autoregression (VAR), plays a critical role in
my portfolio optimization framework. Sims (1980) established VAR methodology for modeling
multiple time series interactions, while Liu et al. (2008) developed the isolation forest algorithm,
which offers efficient anomaly detection in large financial datasets.

Moreover, machine learning’s expanding role in finance has driven adoption of DRL. Neuneier
(1995) spearheaded reinforcement learning applications for asset allocation in German equity
markets. Yu et al. (2019), Wu et al. (2020), and Chaouki et al. (2020) utilized DRL architectures to



enable dynamic allocation strategies. Su et al. (2024) deployed multi-module DRL systems targeting
risk management and profit enhancement. Cui et al. (2024) proposed a DRL hyper-heuristic
framework for multi-period portfolio optimization that searches for trading strategies rather than
actions, demonstrating superior performance from 2012 to 2022.

To evaluate risk-adjusted performance and risk exposure in this study, several key metrics are
employed. Sharpe (1966) introduced the Sharpe ratio, which measures portfolio performance by
dividing the excess return over the risk-free rate by the total standard deviation of returns. Sortino and
Price (1994) refined this approach by focusing solely on downside risk. This study also incorporates
Value at Risk (VaR), popularized by J.P. Morgan’s RiskMetrics framework (1994), and Conditional
Value at Risk (CVaR), proposed by Rockafellar and Uryasev (2000). CVaR quantifies the expected
severity of losses beyond the VaR threshold, offering a more comprehensive assessment of extreme
risks.

1.3 Background on the benchmark

QQQ, a passively managed ETF launched by Invesco on March 10, 1999, tracks the Nasdag-
100 Index, encompassing 100 prominent Nasdaq-listed companies. Rebalanced quarterly and

reconstituted annually, it ranks as the second-most traded ETF in the U.S. by average daily volume
as of March 31, 2025.

1.4 Background on the portfolio constituents

QYLD, launched on December 12, 2013 by Global X, employs a “covered call” strategy. It invests at
least 80% in Nasdaq-100 securities while selling one-month at-the-money call options for premium
income. Tracking the CBOE NASDAQ-100 BuyWrite V2 (BXNT) Index, it prioritizes yield over
capital appreciation, limiting upside in bull markets. YQQQ, launched on August 14, 2024 by
YieldMax, is an actively managed ETF that generates monthly income by selling Nasdaq-100
call options, buying put options, and holding US treasuries. It provides inverse exposure to the
Nasdag-100 with capped gains. TQQQ, launched on February 9, 2010 by ProShares, is a leveraged
ETF targeting three times (3X) the daily Nasdaq-100 Index performance using derivatives. It is
designed for short-term traders seeking amplified exposure to the Nasdaqg-100.

2. Setting the Stage

2.1 Computational Environment

The main computation runs on a server with eight NVIDIA GeForce RTX 3090 GPUs. The portfolio
optimization framework is implemented using several Python packages. Data manipulation utilizes
pandas for ETF price data handling and log return computation, and numpy for numerical operations.
The DRL framework employs PyTorch to implement the PPO agent with Actor-Critic architecture
and ridge-regularized VAR models. Anomaly detection leverages the IsolationForest algorithm
from scikit-learn to identify market regime changes that trigger dynamic portfolio rebalancing.
Visualization is provided by matplotlib for plotting portfolio allocations and performance results.



2.2 Methodology

The PPO-based DRL algorithm with VAR and Isolation Forest optimizes NASDAQ 100 derivative
ETF portfolios by generating dynamic, uneven weights that account for each ETF’s distinct
characteristics. PPO handles nonlinear market dynamics through its policy gradient framework
without restrictive distributional assumptions, while VAR models capture temporal dependencies
and cross-asset correlations, and Isolation Forest detects market shifts to trigger timely rebalancing
during volatile periods. This integrated approach outperforms alternatives like Mean Variance
Optimization with its Gaussian return assumptions that fail during market stress, Mixed Integer
Linear Programming with its linear formulation limitations, autoencoders designed for feature
extraction, and traditional Q-learning methods unsuitable for continuous action spaces. The
methodology dynamically optimizes risk-return trade-offs through continuous adaptation rather than
relying on static distributions or simplistic market assumptions.

Initially, to address incomplete data, an OLS regression model was employed to estimate missing
returns using QQQ as the benchmark index, ensuring that all ETFs have return data for analysis
starting from January 5, 2010. The analysis employs a sequential time-based split: 2010-2018
data for model training, 2019-2023 for validation and parameter selection, and 2024 through June
2025 for out-of-sample testing. Subsequently, VAR modeling generates predictive features that
encapsulate temporal dependencies within financial datasets, thereby strengthening the DRL agent’s
decision-making capabilities. The model determines the optimal number of past periods to consider
by balancing accuracy and complexity using the Bayesian Information Criterion (BIC) by Schwarz
(1978), with regularization applied to prevent overfitting. These prediction errors and their trends
serve as key features for market anomaly detection.

Complementing the predictive modeling, Isolation Forest anomaly detection identifies critical
market shifts by analyzing multiple features, including market volatility and prediction errors, to
detect significant deviations from normal market behavior. This method triggers portfolio adjustments
at key dates alongside regular monthly rebalancing, enhancing the portfolio’s responsiveness to
changing market conditions.

Building upon these analytical components, the PPO-based DRL agent synthesizes predictive
signals and market anomaly insights to achieve optimal risk-return equilibrium. The portfolio
optimization aims to balance TE minimization and ER maximization relative to the QQQ benchmark.
The formal mathematical formulation of this optimization problem is detailed in Section[2.3] The
objective function optimized by the PPO agent is formulated as (1 — 1) X ER — A X TE, where
the tracking weight parameter A controls this trade-off, allowing flexible prioritization between
minimizing TE and maximizing ER. Values of A closer to 1 prioritize tight benchmark tracking, while
lower values emphasize outperformance, enabling adaptation to different investor risk preferences.

Finally, the reinforcement learning approach generates probabilistic portfolio allocations based on
market features, with actions sampled to produce valid portfolio weights that comply with constraints.
The algorithm iteratively refines these allocations by optimizing a loss function that balances
performance, stability, and exploration. The tracking weight parameter A is dynamically adjusted
using validation data to optimize performance, with early stopping employed when improvements
stall to prevent overfitting. The complete algorithmic implementation of this PPO-based portfolio
optimization framework is detailed in Section [2.4]



2.3 Main Optimization Problem Formulation

The main optimization problem seeks to maximize utility U(w) defined as:

max U(w) = (1 —=A)ER(w) — ATE (w) (D
w
Subject to:
Full investment: Z w; =1 (2)
i=1
Cardinality constraint:  Kpj, < Z Zi < Kmax 3)
i=1
Bounded weights:  «a;z; <w; < b;z;, i=1,...,N @)
Where:
D
TE(w) = | 511y = Rol} 5)
1
ER(w) = (R, = Ry)'e 6)
Parameters:

* A € [0,1]: Scalar balancing trade-off between ER and TE

* e: Vector of ones; Size P X 1 used to sum excess returns across all periods

D: Number of trading days

P: Number of periods in optimization window

Kmin, Kmax: Bounds on number of selected assets

a;: Minimum weight for asset

w;: Weight of asset

b;: Maximum weight for asset i

z; € [0, 1]: Binary selection variable indicating whether asset i is selected



2.4 Algorithm

Algorithm 1 Deep Reinforcement Learning Portfolio Optimization with Dynamic Rebalancing

Require: Asset returns R € RT*"
1: Train VAR(p) model on R; compute prediction errors &;
2: Apply Isolation Forest on market features; identify anomaly dates D zomaly
3: Generate rebalancing schedule 7 = {monthly dates U D jomaty }, min days apart
4: Initialize actor 7 : RY — R™, critic Vs : RY — R networks
5: for episode e =0,1,...,E do
6: Initialize experience buffer 8 = )
7:  for each rebalancing date r € T do

8: Construct state s; = [ Rwindow, market_indicators, &,] € R¢
9: He, 01, Vi = mo(s:), Vi (s1)
10: Sample wraw ~ N (g, 07); compute log 1, «— log mg(Wraw|Sz)
11: w; < Project Constraints(wy,y, max_weight, min_stocks, max_stocks)
12: ry < (1 = A) x Excess Return(w;, R, B) — A X Tracking Error(w;, B)
13: if t < Tipain then
14: Store (s;, wy,log s, ¢, V;) in buffer B
15: end if
16:  end for

17: Compute advantages A; « r; — V;; normalize A;
18: forupdateu =1,...,10do

19: Sample mini-batch from B; compute p; < wg(W;|s;)/mg, (Wels:)
20: Lactor — —E[min(p; A, clip(ps, | — &, 1 +&)A,)]

21: Leriic < E[(V, = r0)*]; H « ~E[nglogn]

22: Update 6, ¢ with Liotal = Lactor + 0.5 X Lesigic — 0.05 X H

23:  end for

24:  for A € {A;} do

25: Evaluate on validation set 7y,; compute Rya(A)

26:  end for

27:  Apest < argmax, Rya (A); store best weights if improved
28:  if no improvement for 20 episodes then

29: break
30: end if
31: end for

32: W* « best stored weights

33: Apply final constraints: W*[inactive] < 0.01; renormalize to sum = 1
34: if ||W*||p < min_stocks then

35:  force select additional stocks

36: end if

37: if [|W*|lo > max_stocks then

38:  trim lowest weighted positions

39: end if

40: return optimized portfolio weights W*

3. Results

3.1 Impact of parameters on ER and TE

Figures [I] through [5]illustrate how adjusting key parameters of contamination, window size, max
stocks, min stocks, tracking weight, and minimum days for rebalancing affects the portfolio’s ability
to outperform QQQ while minimizing deviation relative to QQQ across training, validation, and
testing periods. The baseline configuration serves as the analytical foundation, featuring a tracking



weight of 0.25 that balances ER and TE, a maximum stock weight of 0.7, a minimum stock weight of
0.01, a contamination level of 0.01 for anomaly detection, a 30-day look-back window, a maximum
of 4 assets, a minimum of 1 asset, 1000 training episodes, and a minimum rebalancing interval of
30 days. Each parameter reveals a distinct performance pattern when compared to the baseline
configuration.

Figure [I] depicts the impact of tracking weights on the portfolio’s ER and TE relative to QQQ.
Tracking weights shape the balance between achieving higher ER and minimizing TE by adjusting
the emphasis on returns versus deviation. In the training period, extremely low tracking weights
achieved notably strong ER, while the validation period showed improved performance with higher
tracking weights. Out-of-sample testing indicated that moderate tracking weights were most effective
for both ER and TE management.

Training (IS) Validation (VS) Testing (0OS)
TE ER TE ER TE ER
Fi2 FEZ F12
0.22 lig 022 Lig 022 L1o
0.20 F0.8 020 ro.8 020 to.8
018 | %6 o1g 08  gug [es
Fo.4 0.4 Fo.4
0.16 0.16 0.16
r0.2 ro.2 0.2
0.14 0.14 0.14
r0.0 F0.0 Fo.0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Window Window Window

TE ER TE ER | TE ER |

Figure 1: The effect of tracking weight on ER and TE

Figure [2] unveils the impact of contamination levels on the portfolio’s ER and TE relative to
QQQ. Contamination levels shape the balance between achieving higher ER and minimizing TE
by adjusting sensitivity to market anomalies. The analysis reveals notable variations in optimal
contamination settings across different time periods. In the training period, higher contamination
levels generally achieved stronger ER, while the validation period showed improved performance
with lower contamination settings. Out-of-sample testing indicated that the highest contamination
level was most effective, achieving both superior ER and optimal TE control.
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Figure 2: The effect of contamination on ER and TE



Figure [3| exhibits the impact of window sizes on the portfolio’s ER and TE relative to QQQ.
Window sizes shape the balance between achieving higher ER and minimizing TE by adjusting
portfolio responsiveness to market trends. The analysis reveals notable differences in optimal
window configurations across time periods. In the training period, smaller window sizes achieved
substantially higher ER, while the validation and testing periods showed improved performance
with moderate window sizes. Out-of-sample analysis confirmed that moderate window sizes were
most effective, achieving superior ER compared to both smaller and larger windows.
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Figure 3: The effect of window size on ER and TE

Figure {4| displays the impact of maximum weights on the portfolio’s ER and TE relative to
QQQ. Maximum weights shape the balance between achieving higher ER and minimizing TE by
constraining asset allocations. The analysis reveals complex relationships between weight constraints
and performance across different periods. In the training period, lower maximum weights achieved
substantially higher ER while also maintaining better TE control. The validation and testing periods
showed different patterns, with higher maximum weights generally improving ER but at the cost of
significantly elevated TE.
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Figure 4: The effect of max weight on ER and TE

Figure [5|represents the impact of minimum days between rebalancing on the portfolio’s ER and
TE relative to QQQ. Minimum days shape the balance between achieving higher ER and minimizing
TE by controlling rebalancing frequency. In the training period, different rebalancing frequencies



showed varying performance patterns, with certain frequencies achieving favorable returns. The
validation period exhibited different market dynamics with more modest performance across
rebalancing frequencies. Out-of-sample testing indicated that moderate rebalancing frequencies
provided reasonably balanced performance, achieving acceptable ER while maintaining suitable TE
levels.
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Figure 5: The effect of minimum days between rebalancing on ER and TE

3.2 Allocation

Figure [6] shows the allocation of the portfolio’s investments across three assets, TQQQ, QYLD, and
YQQQ, over time.

During the training period, QYLD dominates the portfolio with an average allocation of 40.0%,
reflecting an income focused investment strategy during this foundational period. TQQQ maintains
a substantial 35.8% average allocation, positioning the portfolio for growth opportunities. YQQQ
secures a meaningful 24.2% allocation, demonstrating consistent diversification rather than minimal
exposure.

During the validation period, the portfolio undergoes a strategic shift toward growth orientation.
TQQQ becomes the dominant asset with 42.5% average allocation, overtaking QYLD as market
conditions favor aggressive growth strategies. QYLD’s allocation decreases to 33.8% but remains
substantial, continuing to provide income stability. YQQQ maintains consistency at 23.7% average
allocation, proving its value as a portfolio stabilizer.

During the testing period, the portfolio adopts a more balanced approach with TQQQ averaging
38.1%, QYLD 35.3%, and YQQQ 26.6%. This period exhibits notable tactical adjustments,
with frequent 70% allocations to single assets during specific market conditions, indicating active
management responses to opportunities. YQQQ achieves its highest relative importance during this
period, reflecting refined portfolio optimization.
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Figure 6: Portfolio allocation over time

3.3 Performance

Figure[7|reveals the portfolio’s dividend-adjusted performance from 2010 to 2025 compared to QQQ.
The portfolio incorporates dividends from all ETF holdings to adjust its returns. The benchmark
QQQ provides annual dividends of $2.8628 per share through quarterly payments of $0.7157, while
the portfolio receives annual dividends of $3.18 per share from YQQQ through monthly payments
of $0.265, $1.98 per share from QYLD through monthly payments of $0.165, and $0.7909 per
share from TQQQ through quarterly payments of $0.19773. The risk-free rate, referenced from
SOFR, used for calculating the Sharpe and Sortino ratios is arbitrarily set at 4.29% annually. All
performance metrics are calculated on a pre-tax and pre-transaction-cost basis to ensure unbiased
and standardized evaluation.

The portfolio demonstrates strong performance during the training period, achieving an ex-
ceptional ER of 30.96% with a controlled TE of 12.62%. Risk-adjusted metrics are particularly
impressive, with a Sharpe ratio of 2.34 significantly outperforming QQQ’s 0.88. The Sortino ratio of
2.40 versus QQQ’s 1.12 further demonstrates superior risk-adjusted performance when considering
only downside deviations. The 95% daily CVaR of 3.12% remains only marginally higher than
QQQ’s 2.69%, indicating well-managed tail risk during optimization.

The validation period unveils notable performance deterioration, with ER declining to 7.60%
and TE rising substantially to 19.65%. Risk-adjusted performance metrics decline substantially,
with the Sharpe ratio dropping to 0.80 compared to QQQ’s 0.67, while the Sortino ratio falls to 0.93
versus QQQ’s 0.85. The 95% daily CVaR increases to 4.99% compared to QQQ’s 3.85%, reflecting
heightened tail risk exposure as market conditions diverge from training patterns.

The testing period shows continued challenges, with ER diminishing to 3.25% and TE reaching
20.56%. Most notably, risk-adjusted performance deteriorates below benchmark levels for the first



time, with the Sharpe ratio declining to 0.55 versus QQQ’s 0.70 and the Sortino ratio falling to
0.61 compared to QQQ’s 0.92. This marks a fundamental shift where the portfolio underperforms
on both total volatility-adjusted and downside deviation-adjusted metrics. The 95% daily CVaR
deteriorates further to 5.05% versus QQQ’s 3.34%, indicating that the portfolio’s tail risk exposure
has increased significantly relative to the benchmark.

Table 1: Portfolio Performance Summary Across All Periods

Training Validation Testing

(2010-2019) (2019-2024) (2024-2025)
Metric Portfolio QQQ Portfolio QQQ Portfolio QQQ
Annual Return (%) 50.50 19.54 29.01 21.41 23.47 20.22
Excess Return (%) 30.96 - 7.60 - 3.25 -
Annual Volatility (%) 19.79 17.42 30.78 25.49 34.62 22.61
Tracking Error (%) 12.62 - 19.65 - 20.56 -
Sharpe Ratio 2.34 0.88 0.80 0.67 0.55 0.70
Sortino Ratio 2.40 1.12 0.93 0.85 0.61 0.92
Maximum Drawdown (%)  -20.68 -22.74 -51.99 -37.78 -34.91 -23.42
Beta 0.88 1.00 0.93 1.00 1.26 1.00
95% Daily VaR (%) 1.59 1.80 3.20 2.59 2.83 2.40
99% Daily VaR (%) 3.94 3.20 6.18 4.38 5.57 3.75
95% Daily CVaR (%) 3.12 2.69 4.99 3.85 5.05 3.34
99% Daily CVaR (%) 5.65 4.00 7.67 6.11 10.61 5.05

Note: ER and TE are not applicable (—) for QQQ as it serves as the benchmark. All metrics calculated using
dividend-adjusted returns.
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Figure 7: Cumulative Returns Comparison: Portfolio vs QQQ Benchmark (2010-2025)

4. Conclusion

The reinforcement learning-based portfolio optimization framework successfully constructs a
portfolio of NASDAQ-100 derivative ETFs including YQQQ, QYLD, and TQQQ that generates
consistent positive excess returns relative to the QQQ benchmark across all evaluation periods.
Nevertheless, the temporal analysis reveals a clear deterioration pattern: while the strategy
maintains positive excess returns, both tracking error and tail risk metrics progressively worsen,
and risk-adjusted performance deteriorates from substantial outperformance during training to
underperformance during testing periods. This progression suggests that the portfolio’s risk profile
becomes increasingly unfavorable as it encounters market conditions different from the training
environment.

The framework demonstrates the potential of DRL for multi-objective portfolio optimization,
effectively balancing efficiency through TQQQ, income generation via QYLD, and hedging through
YQQQ. However, the observed parameter instability across time periods indicates that future research
should implement more robust validation methodologies, such as rolling window cross-validation,
to improve generalization capability and reduce overfitting risks in evolving market conditions.
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