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Abstract
Knoblauch (2014) and Knoblauch (2015) investigate the relative size of the collection of binary relations with desirable

features as compared to the set of all binary relations using symmetric difference metric (Cantor) topology and

Hausdorff metric topology. We consider Ellentuck and doughnut topologies to further this line of investigation. We

report the differences among the size of the useful binary relations in Cantor, Ellentuck and doughnut topologies.
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binary relation ℜ ⊆ X × X by zℜ. The notation ℜz is used for the binary relation coded by
z ∈ 2N. Following examples would be helpful to clarify the notations.

Let the set X = {x1, x2, x3, · · · } contain countably ininitely many elements. The number
of all possible pairs of elements in set X×X is countably ininite as well, with the enumeration
denoted by qk, k ∈ N. We ix this enumeration of the pairs and deine binary relations
as a sequence z ∈ {0, 1}N. Thus, z = {1, 1, · · · } describes a binary relation containing
all pairs of alternatives, i.e., ℜz = {(xi, xj) : xi, xj ∈ X ∀i, j ∈ N}. If q1 = (x1, x3),
then z′ = {0, 1, 1, · · · } describes a binary relation containing all pairs of alternatives except
(x1, x3) i.e., ℜz′ = ℜz \ (x1, x3).

2.2 Ideals of small subsets

The notion of small subsets of 2N is captured by the following notion.

Deinition. Ideal IU of U-small subsets of 2N: Let U be a non-empty collection of subsets
of 2N (i.e. U ⊆ P(2N)) such that:

• for all u ∈ U there exists non-empty u′ ⊆ u such that u′ ∈ U , and

• for all x ∈ 2N there exists u ∈ U such that x ∈ u.

Set X ∈ IU if and only if for every u ∈ U there exists non-empty u′ ∈ U , u′ ⊆ u such that
u′ ∩ X = ∅.

For instance, the notion of U -small subsets generalizes the concepts of nowhere dense and
Lebesgue null sets. Indeed if U is the collection of all open sets with respect to the Cantor
topology, then IU is exactly the ideal of nowhere dense sets with respect to the Cantor
topology. It is easy to check that IU is the ideal of Lebesgue measure zero sets when we
consider U to be the collection of all closed subsets of 2N with positive Lebesgue measure.

Our objective is to analyze various notions of smallness of a collection of subsets of a set
so as to extend the investigation on the rarity of properties of binary relations. We employ
two notions of smallness (borrowed from the descriptive set theory), namely the ideal of
Ramsey null sets (also called Ellentuck nowhere dense sets) and the ideal of doughnut null
sets. Following deinitions are needed in order to capture these notions.

2.3 Cantor, Ellentuck and doughnut collections

A partial function f : X → Y is a function from a subset S of X to Y ⊂ R. If S equals
X, the partial function is said to be total. Domain and range of function f are denoted by
dom(f) and ran(f) respectively.

Deinition. Let f : N → {0, 1} be a partial function and deine Nf := {x ∈ 2N : ∀n ∈
dom(f)(x(n) = f(n))}.

Cantor collection γ: It consists of all Nf such that dom(f) is inite.



Ellentuck collection ε: It consists of all Nf such that dom(f) and N \ dom(f) are both
ininite and there exists k ∈ N for all n ∈ dom(f)(n ≥ k ⇒ f(n) = 0).3

Doughnut collection δ: It consists of all Nf such that dom(f) and N \ dom(f) are both
ininite.

The sets in γ, ε and δ are the basic open sets of the Cantor, Ellentuck and doughnut
topologies respectively. Ellentuck and Doughnuts topologies are well-studied in descriptive
set theory.

2.4 Equity and Pareto principles

We will be dealing with following equity and Pareto principles in this paper. The anonymity
(also called inite anonymity) axiom is a notion of procedural equity. Strong equity belongs
to the class of consequentialist equity. The eiciency notion we use is the standard Pareto
principle. Deinitions and formal notations are as below.

Deinition. Let ℜ ⊆ X × X be a binary relation.

Anonymity: ℜ is said to be anonymous if and only if for all t, t
′ ∈ X = Y N there are

i, j ≤ N , t(j) = t
′(i) and t(i) = t

′(j) and for all k ̸= i, j, t(k) = t
′(k), then (t′, t) ∈ ℜ

and (t, t
′) ∈ ℜ hold, i.e., (t ∼a t

′).

t ∼a t
′ ⇔ ∃i, j ≤ N(t(j) = t

′(i) ∧ t(i) = t
′(j) ∧ ∀k ̸= i, j(t(k) = t

′(k))).

Strong equity: ℜ is said to satisfy strong equity if and only if for all t, t
′ ∈ Y N there

exist i, j ≤ N such that t(i) < t
′(i) < t

′(j) < t(j) and for all k ̸= i, j, t(k) = t
′(k),

then (t′, t) ∈ ℜ and (t, t
′) /∈ ℜ, i.e., (t <s t

′).

t <s t
′ ⇔ ∃i, j ≤ N(t(i) < t

′(i) < t
′(j) < t(j)) ∧ ∀k ̸= i, j(t(k) = t

′(k)).

Pareto principle: ℜ is said to be Paretian if and only if for all t, t
′ ∈ Y N for all

i ≤ N , t(i) ≤ t
′(i) and there exists i ≤ N such that t(i) < t

′(i), then (t′, t) ∈ ℜ and
(t, t

′) /∈ ℜ, i.e., (t <p t
′)

t <p t
′ ⇔ ∀i ≤ N(t(i) ≤ t

′(i)) ∧ ∃i ≤ N(t(i) < t
′(i)).

3 Basic properties of binary relations

In economic theory, social welfare relations and preference relations satisfy some properties,
which we may a priori split into two categories: basic properties, such as relexivity, irrelex-
ivity, symmetry, asymmetry and transitivity; economic property, such as Pareto, anonymity,
strong equity. In this section we consider the basic properties of binary relations, in the next
one we deal with the economic properties.

3See Jech (2003, p. 524, Deinition 25.26) for a textbook deinition of the Ellentuck topology. Brendle
et al. (2005) deines and investigates the properties of doughnut topology.



Proposition 1. Let T, IR, A, and AS ⊆ 2N be the coding sets of all transitive, irrelexive,
asymmetric and antisymmetric binary relations respectively. Then there exists Nf , Nf ′, Ng,
Nh ∈ ε such that Nf ⊆ T, Nf ′ ⊆ IR, Ng ⊆ A and Nh ⊆ AS. In particular, T, IR, A, and
AS are not ε-small.

Proof. We give a detailed proof for transitivity and leave to the reader the other cases.
It is suicient to prove that there exists Nf ∈ ε such that every x ∈ Nf codes a transitive

binary relation on X.
Let

R := {nk ∈ N : there exists k ∈ N, such that qnk
= (xk, xk)}. (1)

Set R is both ininite and co-ininite and collects the enumeration of all pairs in X × X with
identical elements chosen in the pair (i.e., the relexive part of any binary relation). Note
that for all n ∈ N \ R, qn = (xj, xm) with xj ̸= xm. Next, let

n1 ∈ min{n : n ∈ N \ R} with qn1
= (xj1

, xm1
), and (2)

n′

1 ∈ (N \ R) \ {n1}, such that qn′

1
= (xm1

, xj1
). (3)

Having deined (n1, n′
1),· · · , (nk−1, n′

k−1), let

nk ∈ min{n : n ∈ (N \ R) \ {n1, n′

1, · · · , nk−1, n′

k−1} with qnk
= (xjk

, xmk
), and (4)

n′

k ∈ (N \ R) \ {n1, n′

1, · · · , nk−1, n′

k−1, nk}, such that qn′

k
= (xmk

, xjk
). (5)

Denote the disjoint subsets of N recursively deined in (4) and (5) as A and B respectively,
i.e.,

A := {nk : k ∈ N}, and B := {n′

k : k ∈ N}. (6)

The set N \ R has been partitioned in the sets A and B in the following manner. First
(minimum) and each subsequent element of B lists the same pair of distinct elements but in
reverse order as the irst (minimum) and the corresponding subsequent element of A. Also
let

Γ := {(nk, n′

k) : nk ∈ A, and n′

k ∈ B, k ∈ N}. (7)

Set Γ is a sequential listing of elements in A × B.
Let dom(f) = A ∪ B and f : N → 2 be such that for all n ∈ dom(f), f(n) = 0. To show

that every element in Nf codes a transitive binary relation, pick z ∈ Nf arbitrarily and let
ℜz be the corresponding binary relation. Recall that transitivity is the following property:

For all x, x′, x′′ ∈ X, ((x, x′) ∈ ℜz ∧ (x′, x′′) ∈ ℜz ⇒ (x, x′′) ∈ ℜz).

As a consequence, ℜz trivially satisies it because the left hand side of the implication
never holds, since all pairs in ℜz are of the form (xn, xn), unless x = x′ = x′′ in which case
the property trivially holds. Therefore Nf ⊆ T.

Remark 1. Proposition 1 distinguishes Ellentuck topology from Cantor topology. Knoblauch
(2014) has shown that the binary relations satisfying basic properties are rare in Cantor
topology. In contrast, the transitive, asymmetric or antisymmetric binary relations are not
rare in Ellentuck topology.



Proposition 2. Let C, S, R ⊆ 2N be the coding sets of all complete, symmetric and relexive
binary relations, respectively. Then C, S, R are ε-small, but they contain open subsets in
δ, and so in particular, C, S, R are not δ-small.

Proof. We give details proofs for complete relations and leave to the reader the other cases.
C is ε-small: Pick arbitrarily Nf ∈ ε, we aim to ind Ng ∈ ε, Ng ⊆ Nf such that

Ng ∩ C = ∅. Let
dom

′(f) := {n ∈ dom(f) : f(n) = 0} . (8)

Observe that dom
′(f) is an ininite set. For k ∈ dom

′(f), there are jk, mk ∈ N such that
qk = (xjk

, xmk
). Also there is k′ ∈ N such that qk′ = (xmk

, xjk
). Pick k ∈ dom

′(f) such that
k′ > k. There are two cases.

(1) k′ ∈ dom(f): Then Nf ∩ C = ∅, for both f(k) = f(k′) = 0 and so neither (xj, xm) nor
(xm, xj) are in any binary relation coded by any z ∈ Nf .

(2) k′ /∈ dom(f): Then the partial function g : N → 2 with dom(g) := dom(f) ∪ {k′} is
deined as:

g(n) :=

{

f(n) if n ∈ dom(f)
0 if n = k′.

(9)

Note that Ng is a well-deined subset in ε and Ng ⊆ Nf . Moreover, since g(k) =
g(k′) = 0, it follows that neither (xj, xm) nor (xm, xj) are in any binary relation coded
by any z ∈ Ng; which gives Ng ∩ C = ∅.

C is not δ-small: We need to show that there is a set Nf ∈ δ such that Nf ⊆ C. First, we
partition N into three sets R, A and B as in the proof of Proposition 1. Deine f : N → 2 such
that dom(f) := A ∪ R and for all i ∈ dom(f), f(i) = 1. Through the inductive construction,
every pair (x, y) ∈ X × X has been considered. Either (x, y) or (y, x) has been added to
A ∪ R. As a consequence, since every z ∈ Nf takes value 1 for all pairs coded in A ∪ R, it
follows that every z ∈ Nf codes a complete binary relation.

Table 1 below summarizes the results. None of the basic properties of binary relation
is rare in doughnut topology whereas all of them are rare in the Cantor topology. Further,
transitive or asymmetric or antisymmetric or irrelexive binary relations are not rare in
Ellentuck topology whereas symmetric, or relexive, or complete or linear binary relations
are rare in Ellentuck topology. If we put together these three observations we can say that
Ellentuck collections plays an important role as it allows to make a distinction between the
former four properties (transitivity, asymmetry, antisymmetry and irrelexivity) on the one
side, and the latter four properties (symmetry, relexivity, completeness and linearity) on the
other.

4 Egalitarian binary relations

In this section we consider anonymity- a procedural equity principle; strong equity - a conse-
quentialist equity principle and the Pareto axiom- an eiciency principle. The utility space



Property γ-small ε-small δ-small

Transitivity yes no no
Asymmetry yes no no
Antisymmetry yes no no
Irrelexivity yes no no
Symmetry yes yes no
Relexivity yes yes no
Completeness yes yes no
Linearity yes yes no

Table 1: Basic properties of binary relations

X we consider here is countable. Take for instance X := Y N , for N ∈ N and Y is any
countable subset of [0, 1]. One could choose Y := Q ∩ [0, 1] for example.

Proposition 3. Let AN, P, SE ⊆ 2N be the coding set of all binary relations on X satisfying
Anonimity, Pareto and Strong Equity, rispectively. Then AN, P and SE consist of γ- and
ε-small sets, but they are not δ-small.

Proof. First we prove that there is Nf ∈ δ such that Nf ⊆ AN. Let {en : n ∈ N} enumerate
all streams in Y N . Let z ∈ 2N be deined as: for all s, t ∈ Y N ((s, t) ∈ ℜz ⇔ s ∼a t).
Note that both {n ∈ N : z(n) = 1} and {n ∈ N : z(n) = 0} are ininite. Finally let
f : N → 2 be the function such that dom(f) := {n ∈ N : z(n) = 1} (in particular,
∀n ∈ dom(f)(f(n) = 1)). Then note that every x ∈ 2N is a code for an anonymous binary
relation if it satisies x(n) = 1 for every n ∈ dom(f). Hence, every x ∈ Nf codes an
anonymous binary relation, i.e., Nf ⊆ AN.

Next we prove that AN is ε-small, and notice that a similar (and actually simpler ar-
gument) shows AN is γ-small as well. Fix arbitrarily an element Nf ∈ ε. Let k ∈ N large
enough so that for all n ≥ k, if n ∈ dom(f) then f(n) = 0. Now pick m ≥ k such that
z(m) = 1. As in the proof of Proposition 2, we then distinguish two cases.

(1) If m ∈ dom(f), then Nf ∩ AN = ∅.

(2) If m /∈ dom(f), then deine the partial function g : N → 2 with dom(g) := dom(f)∪{m}
as:

g(i) :=

{

f(i) if i ∈ dom(f)
0 if i = m.

Note that Ng ∈ ε and Ng ⊆ Nf . Moreover, since g(m) = 0, it follows that for any
binary relation coded by any z ∈ Ng we can ind a pair (t, t′) such that t ∼a t′ but
(t, t′) is not in the binary relation coded by z; which gives Ng ∩ AN = ∅.

Similar argument holds for Paretian binary relation. First, we prove that there exists
Nf ∈ δ such that Nf ⊆ PA. Deine A(n) ⊂ N and B(n) ⊂ (N \ R) (where R is as deined in
1) recursively as follows:

• Start from q1 = (xj1
, xm1

). Let k(1) ∈ N be such that qk(1) = (xm1
, xj1

). If (xj1
, xm1

)
satisies the Pareto condition, then put A(1) := {1} and B(1) := {k(1)}. Otherwise
let A(1) = ∅ and B(1) = ∅.



• Assume A(n − 1) and B(n − 1) have been deined for n ≥ 2 and pick qn = (xjn
, xmn

);
if (xjn

, xmn
) satisies the Pareto condition, then put A(n) := A(n − 1) ∪ {n} and

B(n) := B(n − 1) ∪ {k(n)}; otherwise let A(n) = A(n − 1) and B(n) := B(n − 1).

Finally put A :=
∪

n∈N A(n) and B :=
∪

n∈N B(n). By construction, both A and B are ininite.
Set A enumerates all pairs of alternatives (xi, xl) such that xi <p xl. For each element in set
A, set B enumerates all the corresponding opposite pairs of alternatives (xl, xi) such that
xl <p xi. Since R is ininite, the complement of A∪B is also ininite. Then deine the partial
function f : N → 2 with dom(f) := A ∪ B as:

f(n) :=

{

1 if n ∈ A
0 if n ∈ B.

We claim that every z ∈ Nf codes a Paretian binary relation. In fact, if n ∈ N is such that
the pair (xjn

, xmn
) satisies the Pareto axiom, then n ∈ A and the related k(n) ∈ B and

therefore z(n) = f(n) = 1 (which means (xjn
, xmn

) ∈ ℜz) and z(k(n)) = f(k(n)) = 0 (which
means (xmn

, xjn
) /∈ ℜz).

The proof to show that PA is ε-small follows the same line as for AN.
We leave to the reader the similar details for SE as well.

Table 2 summarizes these results.

Property γ-small ε-small δ-small

Anonymity yes yes no
Paretian yes yes no
Strong equity yes yes no

Table 2: Equity and eiciency properties of preference relations

5 Concluding remarks

In this paper, we have used the Ellentuck and doughnut topologies (from the branch of de-
scriptive set theory in the mathematical logic literature) to investigate the rarity of binary
relations endowed with useful basic features (transitive, asymmetric, etc.) and economic fea-
tures (Paretian, anonymous, equity). Propositions 1 and 2 show that these binary relations
are not rare in the inest (doughnut) topology. The Ellentuck topology yields mixed results.
Transitive, asymmetric or antisymmetric binary relations are not rare whereas complete,
relexive or symmetric binary relations are rare in Ellentuck topology. These results lead
to a better understanding of the distinct nature of Cantor topology compared to the Ellen-
tuck and doughnut topologies. Finally, Propositions 3 on the equitable or Paretian binary
relations show that none of them are rare in doughnut topology.

In future research, we intend to study the pervasiveness or rarity of the binary relations
endowed with desirable features (basic properties, equity or eiciency axioms) on the set
of alternatives X containing uncountably many elements using analytical tools from the
generalized descriptive set theory.
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