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Abstract

Knoblauch (2014) and Knoblauch (2015) investigate the relative size of the collection of binary relations with desirable
features as compared to the set of all binary relations using symmetric difference metric (Cantor) topology and
Hausdorff metric topology. We consider Ellentuck and doughnut topologies to further this line of investigation. We
report the differences among the size of the useful binary relations in Cantor, Ellentuck and doughnut topologies.
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binary relation 8 C X x X by zg. The notation R, is used for the binary relation coded by
z € 2N, Following examples would be helpful to clarify the notations.

Let the set X = {x1, x5, x3, - - } contain countably infinitely many elements. The number
of all possible pairs of elements in set X x X is countably infinite as well, with the enumeration
denoted by ¢z, k € N. We fix this enumeration of the pairs and define binary relations
as a sequence z € {0,1}. Thus, 2 = {1,1,---} describes a binary relation containing
all pairs of alternatives, ie., R, = {(v;,z;) : z;,2; € X Vi,j € N} If 1 = (21,23),
then 2z = {0,1,1,---} describes a binary relation containing all pairs of alternatives except
(1, 23) 1.e., R =R, \ (21, 23).

2.2 Ideals of small subsets

The notion of small subsets of 2V is captured by the following notion.

Definition. Ideal Z;; of U-small subsets of 2V: Let U be a non-empty collection of subsets
of 2V (i.e. U C P(2Y)) such that:

o for all u € U there exists non-empty v C u such that v’ € U, and
o for all z € 2" there exists u € U such that z € u.

Set X € Zy if and only if for every u € U there exists non-empty «' € U, v’ C u such that
uNX=0.

For instance, the notion of U-small subsets generalizes the concepts of nowhere dense and
Lebesgue null sets. Indeed if U is the collection of all open sets with respect to the Cantor
topology, then Z;; is exactly the ideal of nowhere dense sets with respect to the Cantor
topology. It is easy to check that Z; is the ideal of Lebesgue measure zero sets when we
consider U to be the collection of all closed subsets of 2V with positive Lebesgue measure.

Our objective is to analyze various notions of smallness of a collection of subsets of a set
so as to extend the investigation on the rarity of properties of binary relations. We employ
two notions of smallness (borrowed from the descriptive set theory), namely the ideal of
Ramsey null sets (also called Ellentuck nowhere dense sets) and the ideal of doughnut null
sets. Following definitions are needed in order to capture these notions.

2.3 Cantor, Ellentuck and doughnut collections

A partial function f : X — Y is a function from a subset S of X to Y C R. If S equals
X, the partial function is said to be total. Domain and range of function f are denoted by
dom(f) and ran(f) respectively.

Definition. Let f : N — {0,1} be a partial function and define Ny := {x € 2 : Vn €
dom(f)(x(n) = f(n))}.

Cantor collection v: It consists of all Ny such that dom(f) is finite.



Ellentuck collection e: It consists of all Ny such that dom(f) and N\ dom(f) are both
infinite and there ezists k € N for alln € dom(f)(n >k = f(n) =0).

Doughnut collection §: It consists of all Ny such that dom(f) and N\ dom(f) are both
infinite.

The sets in v, € and § are the basic open sets of the Cantor, Ellentuck and doughnut
topologies respectively. Ellentuck and Doughnuts topologies are well-studied in descriptive
set theory.

2.4 Equity and Pareto principles

We will be dealing with following equity and Pareto principles in this paper. The anonymity
(also called finite anonymity) axiom is a notion of procedural equity. Strong equity belongs
to the class of consequentialist equity. The efficiency notion we use is the standard Pareto
principle. Definitions and formal notations are as below.

Definition. Let R C X x X be a binary relation.

Anonymity: R is said to be anonymous if and only if for all t,t' € X =Y there are
i,7 <N, t(j) =t'(i) and t(i) = t/(j) and for all k # 1,7, t(k) = t'(k), then (t',t) € R
and (t,t') € R hold, i.e., (t ~, t').

t~vo th e 30,5 < N(6() = /() A t(0) = t/(7) AVE # 4, j(6(k) = t'(R))).

Strong equity: R is said to satisfy strong equity if and only if for all t,t' € YN there
exist i,j < N such that t(i) < t'(i) < t'(j) < t(j) and for all k # 1,7, t(k) = t'(k),
then (t',t) € R and (t,t') ¢ R, ie., (t <st').

t < t' < Ji,j < N(t() < /(i) < t'(j) < t(j)) AVE £, j(t(k) = t'(k)).

Pareto principle: R is said to be Paretian if and only if for all t,t' € YV for all
i < N, t(i) < t'(i) and there exists i < N such that t(i) < t'(i), then (t',t) € R and
(t,t) ¢ R, de, t<, t')

t<,t Vi< N(i) < /(i) AJi < N(t@) < t/(0)).

3 Basic properties of binary relations

In economic theory, social welfare relations and preference relations satisfy some properties,
which we may a priori split into two categories: basic properties, such as reflexivity, irreflex-
ivity, symmetry, asymmetry and transitivity; economic property, such as Pareto, anonymity,
strong equity. In this section we consider the basic properties of binary relations, in the next
one we deal with the economic properties.

3See Jech (2003, p. 524, Definition 25.26) for a textbook definition of the Ellentuck topology. Brendle
et al] (2005) defines and investigates the properties of doughnut topology.



Proposition 1. Let T, IR, A, and AS C 2" be the coding sets of all transitive, irreflexive,
asymmetric and antisymmetric binary relations respectively. Then there exists Ny, Ny, Ng,
Ny, € € such that Ny C'T, Ny CIR, Ny, C A and N, € AS. In particular, T, IR, A, and
AS are not e-small.

Proof. We give a detailed proof for transitivity and leave to the reader the other cases.
It is sufficient to prove that there exists Ny € ¢ such that every x € Ny codes a transitive
binary relation on X.
Let
R :={n;, € N: there exists k € N, such that ¢,, = (2, z)}. (1)

Set R is both infinite and co-infinite and collects the enumeration of all pairs in X x X with
identical elements chosen in the pair (i.e., the reflexive part of any binary relation). Note
that for all n € N\ R, ¢, = (z;, x,) with z; # x,,. Next, let

ny € min{n : n € N\ R} with ¢,, = (2}, 2, ), and (2)
ny € (N\ R)\ {n:}, such that ¢,; = (zm,,z),). (3)
Having defined (ny,n}), -, (ng—1,n)_4), let
ni € min{n :n € (N\ R)\ {ny,n}, - ,ng_1,n,_, } with ¢,, = (2, Tm,), and  (4)
ny, € (N\ R)\ {ny,ny,- - ,ng1,m)_y,mi}, such that ¢, = (T, z5,)- (5)

Denote the disjoint subsets of N recursively defined in (@) and (B) as A and B respectively,
ie.,

A:={ny:keN}, and B:={nj, : k € N}. (6)

The set N\ R has been partitioned in the sets A and B in the following manner. First
(minimum) and each subsequent element of B lists the same pair of distinct elements but in
reverse order as the first (minimum) and the corresponding subsequent element of A. Also
let

[':={(ng,ny):nx € A, and n;, € B,k € N}. (7)

Set I" is a sequential listing of elements in A x B.

Let dom(f) = AU B and f : N — 2 be such that for all n € dom(f), f(n) = 0. To show
that every element in Ny codes a transitive binary relation, pick z € Ny arbitrarily and let
R. be the corresponding binary relation. Recall that transitivity is the following property:

For all z,2', 2" € X, ((z,2") e R, A (2,2") e R, = (z,2") € R,).

As a consequence, R, trivially satisfies it because the left hand side of the implication
never holds, since all pairs in R, are of the form (z,,x,), unless x = 2’ = 2" in which case
the property trivially holds. Therefore Ny C T. [

Remark 1. Proposition El distinguishes Ellentuck topology from Cantor topology. Knoblauch
(2014) has shown that the binary relations satisfying basic properties are rare in Cantor
topology. In contrast, the transitive, asymmetric or antisymmetric binary relations are not
rare in Ellentuck topology.



Proposition 2. Let C, S, R C 2" be the coding sets of all complete, symmetric and reflexive
binary relations, respectively. Then C, S, R are e-small, but they contain open subsets in
0, and so in particular, C, S, R are not 6-small.

Proof. We give details proofs for complete relations and leave to the reader the other cases.
C is e-small: Pick arbitrarily Ny € ¢, we aim to find N, € ¢, N, C N; such that
N,NC =0. Let
dom'(f) := {n € dom(f): f(n) =0}. (8)
Observe that dom’(f) is an infinite set. For k € dom’(f), there are ji,m) € N such that
Q@ = (2, Tm, ). Also there is ¥’ € N such that ¢ = (2, x;,). Pick k € dom’(f) such that
k' > k. There are two cases.

(1) k¥ € dom(f): Then NyN C = (), for both f(k) = f(k') = 0 and so neither (z;, z,,) nor
(@m, ;) are in any binary relation coded by any z € Ny.

(2) k' ¢ dom(f): Then the partial function ¢ : N — 2 with dom(g) := dom(f) U {k'} is

defined as: )
| f(n) ifnedom(f
9(n) = { 0 ifn=Fk ©)
Note that N, is a well-defined subset in ¢ and N, C N;. Moreover, since g(k) =
g(k") =0, it follows that neither (x;, z,,) nor (z,,, ;) are in any binary relation coded
by any z € N,; which gives N, N C = ().

C is not d-small: We need to show that there is a set Ny € ¢ such that Ny C C. First, we
partition N into three sets R, A and B as in the proof of Proposition m Define f : N — 2 such
that dom(f) := AU R and for all i € dom(f), f(i) = 1. Through the inductive construction,
every pair (z,y) € X x X has been considered. Either (x,y) or (y,z) has been added to
AU R. As a consequence, since every z € Ny takes value 1 for all pairs coded in AU R, it

follows that every z € Ny codes a complete binary relation.
O

Table m below summarizes the results. None of the basic properties of binary relation
is rare in doughnut topology whereas all of them are rare in the Cantor topology. Further,
transitive or asymmetric or antisymmetric or irreflexive binary relations are not rare in
Ellentuck topology whereas symmetric, or reflexive, or complete or linear binary relations
are rare in Ellentuck topology. If we put together these three observations we can say that
Ellentuck collections plays an important role as it allows to make a distinction between the
former four properties (transitivity, asymmetry, antisymmetry and irreflexivity) on the one
side, and the latter four properties (symmetry, reflexivity, completeness and linearity) on the
other.

4 Egalitarian binary relations

In this section we consider anonymity- a procedural equity principle; strong equity - a conse-
quentialist equity principle and the Pareto axiom- an efficiency principle. The utility space



Property \ ~v-small \ e-small \ d-small ‘

Transitivity yes no no
Asymmetry yes no no
Antisymmetry | yes no no
Irreflexivity yes no no
Symmetry yes yes no
Reflexivity yes yes no
Completeness | yes yes no
Linearity yes yes no

Table 1: Basic properties of binary relations

X we consider here is countable. Take for instance X := Y for N € N and Y is any
countable subset of [0, 1]. One could choose Y := QN [0, 1] for example.

Proposition 3. Let AN, P, SE C 2" be the coding set of all binary relations on X satisfying
Anonimity, Pareto and Strong Equity, rispectively. Then AN, P and SE consist of v- and
e-small sets, but they are not §-small.

Proof. First we prove that there is Ny € § such that Ny C AN. Let {e, : n € N} enumerate
all streams in YV. Let z € 2N be defined as: for all s,t € YV ((5,t) € R, & s ~, t).
Note that both {n € N : z(n) = 1} and {n € N : z(n) = 0} are infinite. Finally let
f : N — 2 be the function such that dom(f) := {n € N : z(n) = 1} (in particular,
Vn € dom(f)(f(n) = 1)). Then note that every x € 2% is a code for an anonymous binary
relation if it satisfies x(n) = 1 for every n € dom(f). Hence, every x € Ny codes an
anonymous binary relation, i.e., Ny C AN.

Next we prove that AN is e-small, and notice that a similar (and actually simpler ar-
gument) shows AN is y-small as well. Fix arbitrarily an element Ny € €. Let k € N large
enough so that for all n > k, if n € dom(f) then f(n) = 0. Now pick m > k such that
z(m) = 1. As in the proof of Proposition P, we then distinguish two cases.

(1) If m € dom(f), then Ny N AN = (.
(2) If m ¢ dom(f), then define the partial function g : N — 2 with dom(g) := dom(f)U{m}

as:
~ .| f@) ifiedom(f)
9(0) '_{ 0 ifi=m.
Note that N, € € and N, C N;. Moreover, since g(m) = 0, it follows that for any
binary relation coded by any z € N, we can find a pair (¢,t) such that ¢ ~, ' but
(t,t') is not in the binary relation coded by z; which gives N, N AN = ().

Similar argument holds for Paretian binary relation. First, we prove that there exists
Ny € 0 such that Ny C PA. Define A(n) C N and B(n) C (N\ R) (where R is as defined in

) recursively as follows:
o Start from ¢; = (2j,,2m,). Let k(1) € N be such that gyq)y = (2m,, ;). If (2, 2m,)

satisfies the Pareto condition, then put A(1) := {1} and B(1) := {k(1)}. Otherwise
let A(1) =0 and B(1) = 0.



o Assume A(n — 1) and B(n — 1) have been defined for n > 2 and pick ¢, = (z;,, Tm,.);
if (xj,,xm,) satisfies the Pareto condition, then put A(n) := A(n — 1) U {n} and
B(n) := B(n — 1) U{k(n)}; otherwise let A(n) = A(n —1) and B(n) := B(n — 1).

Finally put A := U,,ey A(n) and B := U,y B(n). By construction, both A and B are infinite.
Set A enumerates all pairs of alternatives (x;,x;) such that z; <, z;. For each element in set
A, set B enumerates all the corresponding opposite pairs of alternatives (z;, ;) such that
x; <, ;. Since R is infinite, the complement of AU B is also infinite. Then define the partial
function f: N — 2 with dom(f) := AU B as:

1 iftneA
f(”)‘_{o ifn e B.

We claim that every z € Ny codes a Paretian binary relation. In fact, if n € IV is such that
the pair (zj,,,,,) satisfies the Pareto axiom, then n € A and the related k(n) € B and
therefore z(n) = f(n) =1 (which means (z;,, z,,,) € R,) and z2(k(n)) = f(k(n)) = 0 (which
means (T, , %, ) ¢ R.).

The proof to show that PA is e-small follows the same line as for AN.

We leave to the reader the similar details for SE as well. [

Table @ summarizes these results.

’ Property \ ~v-small \ e-small \ 0-small ‘
Anonymity yes yes no
Paretian yes yes no
Strong equity | yes yes no

Table 2: Equity and efficiency properties of preference relations

5 Concluding remarks

In this paper, we have used the Ellentuck and doughnut topologies (from the branch of de-
scriptive set theory in the mathematical logic literature) to investigate the rarity of binary
relations endowed with useful basic features (transitive, asymmetric, etc.) and economic fea-
tures (Paretian, anonymous, equity). Propositions [I| and P show that these binary relations
are not rare in the finest (doughnut) topology. The Ellentuck topology yields mixed results.
Transitive, asymmetric or antisymmetric binary relations are not rare whereas complete,
reflexive or symmetric binary relations are rare in Ellentuck topology. These results lead
to a better understanding of the distinct nature of Cantor topology compared to the Ellen-
tuck and doughnut topologies. Finally, Propositions B on the equitable or Paretian binary
relations show that none of them are rare in doughnut topology.

In future research, we intend to study the pervasiveness or rarity of the binary relations
endowed with desirable features (basic properties, equity or efficiency axioms) on the set
of alternatives X containing uncountably many elements using analytical tools from the
generalized descriptive set theory.
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