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Abstract
This paper investigates the optimal strategy for mergers and acquisitions (M&A) within corporate finance. We assume

that two role model companies significantly influence the effort levels of other companies. As the effort level affects a

company's future rate of return, we model this rate using Brownian motion to determine the optimal timing for M&A.

Through this approach, we derive the optimal M&A strategy, specifying when and how much to acquire. Two

illustrative examples are provided to demonstrate constructive acquisition strategies. This research contributes to the

literature by offering a theoretical framework that optimizes M&A strategy, particularly regarding acquisition timing

and scale, in a stochastic environment.
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1. Introduction

This paper addresses optimal timing and scale in mergers and acquisitions (M&A) us-

ing a stochastic model. It represents a company’s cash flow as a Brownian motion, where

the drift is determined by the company’s effort level and influenced by role model com-

panies’ performance. By incorporating these dynamics, the study explores how external

benchmarks shape acquisition strategies. The model provides a theoretical framework

for identifying the optimal timing and scale of acquisitions, offering valuable insights for

corporate management in navigating uncertain and competitive environments.

1.1. Related literature. This study advances M&A literature by extending models like

Thijssen (2008) and Chen and Wang (2023). Thijssen’s work focuses on optimal M&A

timing using stochastic processes to evaluate synergies and risks. While aligning with this

approach, our model incorporates the effort level of firms as influenced by role models,

offering deeper insights into how efforts shape M&A timing.

Chen and Wang explore deal protections and sequential strategies in M&A, addressing

value maximization and risk mitigation. We build on their framework by introducing crit-

ical return thresholds and linking them to dynamic real options like exit and M&A. This

approach integrates market conditions and capital structures, enriching their analysis of

decision-making under uncertainty. While all references relate to M&A, Hackbarth and

Morellec (2008) and Lukas et al. (2019) offer option-theoretic models to analyze M&A

problems, whereas Mukherjee (2006) presents a profit-maximization model not based

on option theory. The remaining references primarily use statistical analysis to explore

M&A (see Bena and Li 2014, Bonaime and Wang 2024, Guo et al. 2023, Kaufmann and

Schiereck 2023). Especially, Alperovych et al. (2021) conclude that rumors destroy about

32% of transaction value, connecting to this study by emphasizing the need for optimal

M&A thresholds to enhance productivity. Similarly, Ellahie et al. (2024) propose a novel

measure of M&A outcomes using accounting theory, which aligns with our model’s con-

sideration of company-specific discount rates akin to Weighted Average Cost of Capital

(WACC). Lastly, Nguyen and Vu (2021) show that venture-capital-backed targets receive

higher acquisition premiums, paralleling our analysis of such scenarios in Section 3.

1.2. Methodology. In this paper, to compute the optimal timing to exit the market

and to agree an M&A deal, we use the value matching condition and smooth pasting

condition.

The value matching condition ensures that the value function (which represents the

optimal value of the problem) is consistent across different segments or phases of the

problem. Let denote the state variable by x, the value at the current phase by V (x)

and the value at the new phase by W (x). In order to simplify the explanation, we

focus on the upper critical boundary here. For the lower critical boundary, we can

construct the condition similarly to the upper critical boundary. When x reaches the

upper critical boundary B, the new phase realizes and then the value functions satisfy

limx↑B V (x) = limx↓B W (x) which is called as the value matching condition.
1



The smooth pasting condition ensures the smoothness and differentiability at the criti-

cal boundary B which is represented as limx↑B V ′(x) = limx↓B W ′(x) when B is the upper

critical boundary. When both conditions are satisfied, the value matching condition en-

sures the correctness of the value at the boundary and the smooth pasting condition

ensures the smoothness and consistency of the decision rule, confirming that it is opti-

mal.

2. Effort Level

In this section, we examine a scenario where two prominent role model companies influ-

ence the strategies of many other companies. It is common for highly successful companies

to model their practices after industry leaders. For instance, Amazon has adopted Toy-

ota’s Andon cord system, a signaling mechanism used to alert team members of issues in

the production process. This adoption illustrates how companies can benefit from lever-

aging proven methods of operational efficiency. The Andon system is just one of many

examples where successful companies have drawn inspiration from innovative practices

developed by other industry leaders. This trend of imitation underscores the importance

of learning from outstanding companies to enhance performance and competitiveness.

In this paper, we assume that any company derives its utility u(π, µ) from π and µ,

where π represents its contribution margin per unit of goods sold, and µ denotes the effort

level, which is equivalent to the expected growth rate of its cash flow. Let the utility

level of Company n be denoted by un. Since u0 and u1 are known, as they correspond

to the utility levels of the role model companies, we assume that un satisfies a second-

order difference equation. In the following subsection, we justify the reason of using

second-order difference equation that Companies’ utility satisfies.

2.1. Justification for the Second-Order Difference Equation Representation.

In this study, the effort level of companies is modeled using a second-order difference

equation. The primary reason for adopting this representation is that a company’s effort

level is influenced not only by its own characteristics but also by the performance of role

model companies. Specifically, the effort level of Company n depends on the effort levels

of Company n− 1 and n− 2, capturing industry-wide imitation and learning effects.

This structure is similar to adaptive decision-making models in behavioral economics

and management science, where companies adjust their effort levels by referencing the

strategies and performance of preceding companies. By employing a second-order differ-

ence equation, we can explicitly model these interdependencies, enabling a more realistic

representation of company behavior in competitive markets.

This formulation allows us to analyze how changes in external conditions or company-

specific parameters impact the long-term effort levels of companies. Consequently, it

provides valuable insights into critical decision-making aspects, such as the optimal timing

of mergers and acquisitions (M&A) or market exit.

2.2. The Difference Equation. The difference equation of interest is:



(2.1) un+2 = (1− α)un+1 + αun, α ∈ (0, 1).

We solve this difference equation in Appendix A. The solution is:

(2.2) un =
1

1 + α
(u0 − u1)(−1)nαn +

1

1 + α
(αu0 + u1).

In this paper, we assume that un = π1−βn
n µβn

n , where βn ∈ (0, 1) for any n. Using this

utility function, we can compute the effort level of Company n as follows.

(2.3) µn =
1

π
1−βn
βn

n

( 1

1 + α
(u0 − u1)(−1)nαn +

1

1 + α
(αu0 + u1)

)
1

βn
.

This function is useful for illustrating a common scenario where the effort level decreases

as the unit contribution margin increases.

2.3. Limit of the Solution. As n → ∞, the limit of the solution (2.3) converges to

(2.4) µ∞ =
1

π
1−β

β

(
αu0 + u1

1 + α
)

1

β

where π = π∞; β = β∞. The reason why it is so can be explained as: (1) Companies

observe and adjust their effort levels based on the success of leading companies; (2) over

time, Companies optimize their responses, leading to a stable equilibrium effort level,

just as a rumor or reputation eventually settles into a widely accepted state.

Although Alperovych et al. (2021) also examine the effect of rumors, their focus is on

transaction rumors and their impact on transaction value, which differs from the focus

of this study.

2.4. Sensitivity Analysis on the Limit of Effort Level. Although the next section

examines the optimal timing of exit or M&A, we first analyze how the effort level changes

in response to parameter variations. Since directly computing derivatives from equation

(2.3) is complex and extracting economic implications is challenging, we focus on its limit

as n → ∞, which serves as a strong benchmark for deriving economic insights.

2.4.1. Beta. We firstly consider the derivative of it with respect to β.

(2.5) ∂βµ∞ = µ∞ ·
1

β2
· log

( π
αu0+u1

1+α

)

.

If π is greater (resp. smaller) than (αu0 + u1)/(1 + α), then this value is always positive

(resp. negative). Thus, when π is sufficiently large, an increase in β leads to a higher

effort level.



2.4.2. Unit contribution margin.

(2.6) ∂πµ∞ =
β − 1

β
· π− 1

β · (
αu0 + u1

1 + α
)

1

β .

This expression is always negative, indicating that a higher unit contribution margin

leads to a lower effort level.

2.4.3. Alpha.

(2.7) ∂αµ∞ = µ∞ ·
1

β
·

u0 − u1

(1 + α)(αu0 + u1)
.

The sign of this outcome depends on the value of u0 − u1. When u0 is larger than u1

(resp. u0 is smaller than u1), the effect of α on the effort level is positive (resp. negative).

3. Optimal Timing

Note that (2.3) is the expected growth rate of cash flow of Company n which follows

the following Brownian motion:

(3.1) dxn(t) = µndt+ σdzn(t), (xn(0) = 0)

where t is the current time; xn denotes the cash flow dynamics of Company n; σ is the

volatility of any xn; and (zn) are mutually independent standard Brownian motions. Note

that the volatility is exactly same for any Company.

The value of Company n is defined as:

(3.2) vn(xn) = E[

∫ T (b)∧T (B)

t

e−ρn(s−t)xn(s)ds|xn(t) = xn],

where E[·] is the expectation operator which can use the whole information acquired

till time t; ρn is the constant discount rate of Company n which describes the capital

structure of Company n; b and B are the lower and upper critical thresholds respectively;

T (b) is the stopping time when xn reaches b; T (B) is the stopping time when xn reaches

B; we assume that xn(t) ∈ (b, B). Note that the problem is set up on an infinite time

horizon framework. And thus, the value function depends on x rather than (t, x).

The company’s constant discount rate does not affect the effort level because it can

be interpreted as the Weighted Average Cost of Capital (WACC), which reflects the

company’s capital structure. This is a realistic assumption in finance and corporate

finance. In contrast, the benefits a company can achieve depend on its effort level, which

is independent of its capital structure.

By the Feynman-Kac representation theorem, the value function vn satisfies the fol-

lowing ordinary differential equation:

(3.3) 0 = xn − ρnvn + µnv
′
n +

σ2

2
v′′n.

Using Fubini’s theorem, we obtain the closed form of vn as



(3.4) vn(xn) =
xn

ρn
+

µn

ρ2n
+ φ−e

δn−
xn + φ+e

δn+xn ,

where φ± are arbitrary constants; δn± are the solutions of the characteristic equation

associated with the differential equation that vn satisfies:

(3.5) δn± =
−µn ±

√

µ2
n + 2ρnσ2

σ2
.

Notice that, as previously stated in Section 1, Hackbarth and Morellec (2008) and Lukas

et al. (2019) compute the theoretical option value to assess optimal investment decisions.

Hackbarth and Morellec do not utilize the homogeneous solution as the real option, which

prevents them from applying the value-matching and smooth-pasting conditions used in

this study. In contrast, Lukas et al. employ a dynamic game-theoretic real options model

to examine the effects of uncertainty and synergies on strategic choices. While their study

is valuable, it differs from this paper, which incorporates a company’s effort level based on

role model companies and examines the impact of the company’s discount rate, reflecting

its capital structure. This study follows the approach established by Dixit and Pindyck

(1994) to derive optimal timing. On the other hand, Ellahie et al. (2024) develop an

M&A measure based on accounting theory. While their approach is highly valuable, this

paper focuses on determining the optimal exit and M&A timing, distinguishing it from

Ellahie et al.

Note that φ−e
δn−

xn + φ+e
δn+xn represents the value of the real option, where φ−e

δn−
xn

corresponds to the exit option and φ+e
δn+xn corresponds to the M&A option. Specifically,

for any Company n, when xn reaches the boundary b (resp. B), Company n exits the

market (resp. agrees to the M&A deal). This study is novel in that, while much of the

standard literature focuses on boundary conditions for entry and exit, this study instead

examines the boundaries for exit and M&A contracts.

It is important to note that we need only to consider one real option to derive the value

of each critical threshold because exercising one real option eliminates the possibility of

exercising another. For example, if Company n exercises the exit option, it forfeits its

entire business and thus loses the M&A option. Conversely, if Company n exercises the

M&A option, its board loses the option to exit the market. First, we will focus on the

lower critical threshold b, whose value-matching condition and smooth pasting condition

are respectively:

b

ρn
+

µn

ρ2n
+ φ−e

δn−
b = −ǫ,(3.6)

1

ρn
+ φ−δn−e

δn−
b = 0,(3.7)

where ǫ is the constant exit cost. From the smooth pasting condition, we obtain



(3.8) φ−e
δn−

b = −
1

ρnδn−
.

Substituting this into the value matching condition, we obtain the critical lower threshold

bn as follows.

(3.9) bn =
1

δn−
−

µn

ρn
− ρnǫ.

We present the figures illustrating the lower critical threshold, bn, in Figures 1 and 2. In

Figure 1, we examine the effect of the discount rate, ρn, and the exit cost, ǫ. We observe

a trend where a higher discount rate leads to a lower exit boundary. This is because

companies with unfavorable capital structures have high discount rates, which tie them

to short-term profits and limit their ability to exit quickly.

Figure 1. Exit Boundary:

µ = 0.2; σ = 0.1

Figure 2. Exit Boundary:

ρ = 0.1; ǫ = 1

Figure 2 explores the effect of the drift (the expected growth rate of x) and volatility

on the exit boundary. An increase in the drift lowers the exit boundary, as the board an-

ticipates larger future gains, making them less likely to exit. Conversely, higher volatility

suggests the possibility of significant future gains, leading to a lower exit boundary.

Note that bn is a negative value because we assume that the effort level µn is always

positive. This implies that any Company n continues its operations until x reaches a

certain negative value. Next, let us consider the upper critical threshold Bn. The value

matching condition and smooth pasting condition are respectively:

B

ρn
+

µn

ρ2n
+ φ+e

δn+B =
B

r
+

ν

r2
− γ,(3.10)

1

ρn
+ φ+δn+e

δn+B =
1

r
,(3.11)



where r is the discount rate of the acquiring company; ν is the expected growth rate of

Company n after the M&A; and γ is the constant cost for the M&A. Similarly to the

above, we can derive Bn as follows.

(3.12) Bn =
1

δn+
+

ρnν/r − µnr/ρn − ρnrγ

r − ρn
.

In this paper, we focus on constructive acquisitions, which implies that the second term

on the right-hand side of (3.12) is positive. This is significant because Bn may be negative

if the second term is negative. A negative Bn indicates that the acquiring company might

buy the bankrupt Company n, which is outside the scope of this paper. In constructive

acquisitions, we consider two cases. In Case 1, we examine the situation where r is

greater than ρn, implying that the acquiring company is inferior in the capital structure

compared to Company n. In this case, the second term of (3.12) is positive if its numerator

is positive, which is equivalent to

(3.13) ν >
r2

ρ2n
µn + r2γ.

That is, although the capital structure may not be preferable, the acquiring company

can ensure significant growth for Company n after the acquisition. This serves as one

example of constructive acquisitions. In Case 2, we observe that the discount rate of

the acquiring company is lower than that of Company n, implying that the acquiring

company has a better capital structure than Company n. In this case, the second term

of (3.12) is positive if and only if its numerator is negative, which is equivalent to

(3.14) ν −
r2

ρ2n
µn < r2γ.

This implies that the difference between ν and µn (modified by r2/ρ2n) is sufficiently small.

This indicates that the acquiring company is a rival to Company n in terms of x and

possesses a better capital structure than Company n. This serves as another example of

constructive acquisitions.

In Figures 3 and 4, we depict the M&A boundary. In the captions of the figures, DR

stands for Discount Rate. In these figures, we assume that Company n has a better

capital structure than the acquiring company, which means r > ρ. In Figure 3, we

consider the effect of the discount rate of Company n and the acquiring company. A

lower discount rate for the acquiring company leads to a higher M&A boundary. This is

because the acquiring company, despite being at a disadvantage compared to Company

n, has a favorable capital structure that allows it to wait to acquire Company n as x

increases, and it has the financial flexibility to withdraw funds when r decreases.

Figure 4 examines the expected growth rate of x before and after the M&A. If the drift

after M&A increases, the M&A boundary slightly rises. On the other hand, a higher drift

before the M&A leads to a higher M&A boundary. This is because Company n possesses



Figure 3. M&A Boundary:

µ = 0.2; ν = 1; σ = 0.1; γ =

1

Figure 4. M&A Boundary:

ρ = 0.1; r = 0.2; σ = 0.1;

γ = 1

ample management resources and can generate revenue easily, making it more reluctant

to engage in M&A. In this case, an increase in µn would mean the acquisition price for

Company n would skyrocket.

Similarly, we depict Figures 5 and 6 to illustrate the M&A boundary when the acquiring

company has a better capital structure than Company n, which means that r < ρ. Figure

5 considers the effect of the discount rate on the M&A boundary. The smaller discount

rate of Company n leads to a larger M&A boundary. This allows for long-term judgment

regarding M&A decisions when capital structures are favorable, even in less advantageous

cases.

Figure 5. M&A Boundary:

µ = 0.4; ν = 0.1 σ = 0.1;

γ = 1

Figure 6. M&A Boundary:

ρ = 0.2; r = 0.1; σ = 0.1;

γ = 1

Figure 6 describes the effect of drift on the M&A boundary. A larger expected growth

rate of x after M&A leads to a lower M&A boundary. This occurs because the board of

Company n decides to agree to the M&A sooner, anticipating higher returns following



the M&A. In this scenario, this implies that the acquisition price for Company n will fall

within a cooperative range.

4. Conclusion

This study underscores the significance of optimal strategies in M&A. We modeled

effort dynamics influenced by role model companies and analyzed the optimal timing for

market exit and M&A deals, considering key factors such as acquisition timing, the pur-

chase price of Company, and capital structure. Note that Company’s capital structure is

depicted by its discount rate, which is considered as WACC, allowing us to analyze op-

timal decision-making based on its effort level and capital structure. Our findings clarify

the relationship between a company’s capital structure and optimal M&A timing, making

a valuable contribution to finance and corporate finance. Future research could incor-

porate macroeconomic factors, examine multi-firm competition, and empirically validate

the model to enhance its applicability, helping firms seize opportunities, mitigate risks,

and create sustainable value.
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Appendix A. A Second-Order Difference Equation

(A.1) un+2 = (1− α)un+1 + αun, α ∈ (0, 1).

The solution of this difference equation takes the following form.

(A.2) un = c−λ
n

− + c+λ
n

+,

where λ± are the solutions of the characteristic equation associated with (2.1): λ2−(1−α)λ−α = 0.

They are

(A.3) λ− = −α, λ+ = 1.

And thus, we obtain the utility level of Company n as follows.

(A.4) un = c−(−1)nαn + c+.

Because u0 and u1 are given, we can obtain the two linear equation from the above (A.4). Solving

these, the solution of this problem is:

(A.5) un =
1

1 + α
(u0 − u1)(−1)nαn +

1

1 + α
(αu0 + u1).


