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Abstract
Whether and how environmental taxes affect R&D at the macro-level is an empirical question that has not been

addressed in the literature. This paper fills this gap by examining the impact of environmental taxes on R&D

expenditures using panel data for the period 1994-2021 from 49 countries. The main results of this study are as

follows: (i) environmental taxes have, on average, a positive long-run effect on R&D expenditures; (ii) the direction of

causality runs from environmental taxes to R&D and not from R&D to environmental taxes; and (iii) while the long-

run effect of environmental taxes varies across countries, it is positive in almost all cases, suggesting that the average

positive long-run effect of environmental taxes on R&D is not driven by a few countries. We also find some evidence

of a positive effect of environmental taxes on both environmental and non-environmental R&D, based on a smaller

sample of countries over a shorter time period.
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1. Introduction 
Securing both economic growth and environmental sustainability stands as one of the most 

critical global challenges of today and the future. As evidenced by numerous studies (see, e.g., 

Blanco et al., 2016; Minniti and Venturini, 2017; Herzer, 2022), research and development 

(R&D) drives technological progress and is therefore a crucial pillar for long-term economic 

growth. In addition, R&D may play a pivotal role in advancing environmental sustainability, 

either directly through the development of cleaner technologies or indirectly by generating 

knowledge that can be utilized in the development of green technologies.  

By imposing taxes on activities with negative environmental impacts, governments 

worldwide seek not only to encourage the adoption of environmentally friendly practices, but 

also to stimulate R&D in green technologies. The simple logic is that firms can avoid taxes by 

reducing their harmful environmental impacts either through installing existing pollution 

abatement technologies or developing new green technologies.  

However, even if environmental taxes provide incentives to reduce harmful 

environmental impacts by developing new technologies, this does not necessarily imply that 

environmental taxes lead to an increase in overall R&D activity. Since environmental taxes 

impose costs on producers, such taxes may reduce the resources available for non-

environmental R&D. Thus, non-environmental R&D activity may decline due to 

environmental taxes, which may compensate the increase in environmental R&D activity. If 

many firms choose to acquire existing environmental technologies instead of investing in 

uncertain environmental R&D, environmental taxes may also have a negative net effect on 

overall R&D in such a scenario. 

Alternatively, environmental taxes also have the potential to sustain or even increase 

the resources allocated to non-environmental R&D if tax revenues are recycled to reduce 

corporate taxes or other non-environmentally related taxes that have negative effects on R&D 

activity. Thus, environmental taxes may have a large positive effect on overall R&D, including 

the R&D of firms not subject to environmental taxes, not only by providing incentives for the 

development of environmentally-friendly technologies but also by increasing the availability 

of resources for R&D (including non-environmental R&D) through the reduction of corporate 

taxes or other non-environmentally related taxes. Furthermore, environmental taxes may have 

an economically significant positive effect on overall R&D if their revenues are instead used 

to finance public R&D expenditures or R&D subsidies. 

It is thus an empirical question whether and how environmental taxes affect overall 

R&D activity, including that of firms not taxed for environmental reasons, as well as that of 

the public sector. Surprisingly, however, there are no studies on this macro question, and 

related studies at the firm- or industry-level are very scarce. More specifically, we identified 

only two such related studies.  

Liu et al. (2023) find, in Chinese firm-level data, that environmental taxes reduce the 

overall R&D expenditures of firms that are taxed. However, their study, by its nature, is unable 

to capture the effect of environmental taxes on the R&D expenditures of all firms, including 

those that are not taxed for environmental reasons but possibly benefit from environmental 

taxes through revenue recycling to reduce other, non-environmental taxes or through R&D 

subsidies. In addition, their study cannot capture the potential indirect effect of environmental 

taxes on public R&D expenditures. 

Costa-Campi et al. (2017) observe in their industry-level study for Spain not only a 

significant positive impact of environmental taxes on environmental R&D expenditures in the 

manufacturing sector, but also a positive but insignificant effect of environmental taxes on non-

environmental R&D expenditures. Thus, although Costa-Campi et al. (2017) do not explicitly 

examine the impact of environmental taxes on overall R&D expenditures of all firms, their 

findings suggest that this impact is positive, at least for Spain. However, the study by Costa-



 

 

Campi et al. (2017) is inherently unable to capture the potential effects of environmental taxes 

when the government uses the revenues from these taxes to finance governmental R&D. 

In addition, the studies by Liu et al. (2023) and Costa-Campi et al. (2017) are case 

studies for individual countries, and their results may not necessarily be generalized to a 

broader cross-section of countries. 

Given the lack of studies on the effect of environmental taxes on overall R&D, the aim 

of this paper is to fill this gap. Our study is novel in several respects. First, it examines the 

impact of environmental taxes on R&D expenditures at the macro-level. Second, it explores 

this macro impact across a cross-section of (49) countries, including high-, middle-, and low-

income countries. Third, it employs recently developed heterogeneous panel data techniques. 

These techniques allow us to investigate both the average long-run effect of environmental 

taxes on R&D across countries and the potential cross-country heterogeneity in this effect. 

Fourth, it employs causality tests to evaluate the direction of causality in the long-run 

relationship between environmental taxes and R&D expenditures. Fifth, this study presents 

some preliminary results on the impact of environmental taxes on both environmental and non-

environmental R&D at the macro level across countries, though these findings are based on a 

smaller sample of (16) countries. 

 

2. Basic model and methodology 
The basic model we use in our main analysis is a cross-sectionally augmented autoregressive 

distributed lag (CSARDL) model developed by Chudik and Pesaran (2015). In our application, 

it is represented in error correction form by the equation 
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where logR&Dit is the natural logarithm of real R&D expenditures of country i in year t, while 

logTAXESit denotes the natural logarithm of real revenues from environmental taxes for the 

same countries and years. The variables logR&D
t-1
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N
i  and logTAXES
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N
i  represent the cross-sectional averages of logR&Dit-1 and logTAXESit-1, 

respectively.1  

The CSARDL estimator belongs to the class of so-called common correlated effects 

(CCE) estimators, which use cross-sectional averages as proxies for unobserved time-varying 

common factors. Failure to control for such factors can induce cross-sectional dependence in 

the residuals, εit, and thereby lead to inconsistent estimates if the common factors are correlated 

with both the dependent variable and the explanatory variable(s). Since all coefficients in 

equation (1) are country specific, the effects of the unobserved common factors are allowed to 

vary across countries.  

                                                      
1 If the number of lags of the cross-sectional averages in the original levels CSARDL model is denoted as p, then 

the number of lags of the first-differences of the cross-sectional averages in the reformulated CSARDL model in 

error correction form is p – 1. Chudik and Pesaran (2015) recommend setting the number of lags of the cross-

sectional averages in the original CSARDL model equal to the integer part of T1/3, which is equivalent to 

recommending setting p – 1 in the error correction form of the CSARDL model equal to the integer part of T1/3.. 

Given that the average number of observations per country in our sample is T� = 25, we estimate equation (1) with 

p – 1 = 1 lag. 



 

 

While the CCE approach controls for more than one common factor and permits the 

individual responses to the common factors to differ across countries, the common practice of 

employing time dummies (or demeaned data) implicitly assumes a single common factor and 

an equal effect of the common factor across all countries. Due to these assumptions, time 

dummies (or demeaned data) are generally less effective in removing error cross-sectional 

dependence compared to the CCE approach. 

However, the CCE procedure does not guarantee error cross-sectional independence. 

Therefore, to test whether our models are free from error cross-sectional dependence stemming 

from unobserved common factors, we use the cross-sectional dependence test proposed by 

Juodis and Reese (2021).2 

The ci are country-specific constants; the coefficient b3i captures the short-run, one-

period effect of environmental taxes on R&D; and the coefficient b1i is the so-called error 

correction coefficient, which quantifies the speed with which logR&Dit adjusts towards its 

long-run level following a change in logTAXESit. This coefficient should be negative and 

statistically significant if logTAXESit has a long-run effect on logR&Dit. Finally, the ratio 

(b2i/|b1i|) represents the long-run coefficient on logTAXESit.  

Since equation (1) is estimated using the mean group estimator developed by Pesaran 

and Smith (1995), it represents a CSARDL mean group (CSARDLMG) regression. Such a 

mean group regression involves estimating separate regressions for each country and then 

averaging the individual country coefficients. Thus, the average long-run coefficient on 

logTAXESit represents the mean of the individual or country-specific long-run coefficients on 

logTAXESit, and the individual or country-specific long-run coefficients on logTAXESit are the 

individual or country-specific ratios of the country-specific coefficients on logTAXESit-1 to the 

absolute values of the country-specific coefficients on logR&Dit-1. Alternatively, the, long-run 

average coefficient on logTAXESit can be computed as the ratio of the average of the country-

specific coefficients on logTAXESit-1 to the absolute value of the average of the country-specific 

coefficients on logR&Dit-1. 

While the mean group estimator allows the slope coefficients to vary across countries, 

it is well known that efficiency gains can be achieved through the use of pooled estimators 

when the individual slope coefficients are homogeneous. Therefore, to assess whether the mean 

group estimator is the correct choice, or whether we should use a pooled version of the 

CSARDL estimator, we explicitly test whether the slope coefficients are heterogeneous using 

the test for slope homogeneity developed by Blomquist and Westerlund (2013). 

In this context it is important to mention a potential issue when estimating panel data 

models with a long time-series dimension, as in the present application: If the underlying 

variables exhibit stochastic trends or are unit root non-stationary, then: (i) residual non-

stationarity—and thus the absence of cointegration between the variables—can lead to spurious 

regressions (see, e.g., Kao, 1999), and (ii) inference in non-stationary panel models can be 

misleading even when the variables are cointegrated (see, e.g., Kao and Chiang, 2000). 

However, while Chudik and Pesaran (2015) prove the consistency of the CSARDLMG 

estimator under the assumption of stationarity, Kapetanios et al. (2011) demonstrate 

theoretically and experimentally that the static mean group and pooled CCE estimators remain 

consistent and yield correctly sized tests even when the variables are I(1), provided that they 

cointegrate. In addition, Pesaran and Shin (1999) show that if the underlying variables are I(1) 

and cointegrated, the conventional time series ARDL estimator yields (super) consistent 

estimates of the long-run coefficients and that valid inferences on the long-run parameters can 

be drawn using standard asymptotic theory. In the case of non-stationary variables, it can 

therefore be assumed that inference based on the CSARDLMG estimator remains valid, 

                                                      
2 We use the Juodis and Reese (2021) test instead of the standard Pesaran (2004) test due to the latter's lack of 

power in detecting error cross-sectional dependence when the estimated models involve cross-sectional averages. 

The Juodis and Reese (2021) test, a modified version of the Pesaran (2004) test, eliminates this limitation. 



 

 

provided that the variables are cointegrated. Thus, before applying the CSARDLMG estimator, 

it is important to investigate the integration and cointegration properties of the variables. 

To check the robustness of the results from the CSARDLMG estimator, we employ the 

CCE mean group (CCEMG) estimator of Pesaran (2006) and the cross-sectionally augmented 

distributed lag mean group (CSDLMG) estimator of Chudik et al. (2016). The CCEMG 

estimator is static and, in our case, relies on a mean group regression of logR&Dit on 

logTAXESit as well as the cross-sectional averages of both variables. The CSDLMG estimator 

is dynamic and, in our case, is based on a mean group regression of logR&Dit on logTAXESit 

and one lag of the first differences of logTAXESit, as well as cross-sectional averages of 

logR&Dit and logTAXESit, and two lags of the cross-sectional averages of logTAXESit.
3 Both 

estimators estimate the average long-run coefficient on logTAXESit directly. The disadvantage 

of both these estimators compared to the CSARDLMG estimator is that they require the 

regressors to be strictly exogenous, whereas the CSARDLMG estimator is valid in the case of 

weakly exogenous regressors (and thus in the case of short-run feedback effects between the 

variables). In addition, the error correction model given by equation (1) has the advantage that 

it allows us to test whether logR&Dit is not weakly exogenous to logTAXESit — by estimating 

the error correction coefficient b1i, which should be both negative and statistically significant 

if logR&Dit is endogenous.4 

It is well known that under cointegration, endogeneity does not lead to inconsistent 

parameter estimates. It is also well known that the existence of cointegration means the 

presence of long-run causality in at least one direction (Granger, 1988). However, while a 

significant error correction coefficient in equation (1) can be interpreted as an indication that 

long-run causality runs from logTAXESit to logR&Dit, it cannot be ruled out that long-run 

causality also runs from logR&Dit to logTAXESit, for example, if R&D efforts contribute to 

output growth, and the resulting increase in output leads to higher pollution emissions that are 

taxed.  

If there is long-run causality from logR&Dit to logTAXESit, one may be skeptical about 

whether a positively estimated long-run coefficient on logTAXESit indeed captures a positive 

effect of environmental taxes on R&D expenditures, or if it instead reflects a positive effect of 

R&D expenditures on revenues from environmental taxes. Therefore, we carefully examine the 

direction of causality between the two variables — after estimating the long-run coefficient on 

logTAXESit. Finally, we provide the estimated long-run coefficients on logTAXESit for each 

country in our sample. This allows us to investigate whether our finding for the average long-

run effect of environmental taxes on R&D is due to a limited number of countries with large 

positive or negative effects. Although this is not the focus of the study, we also present some 

preliminary results on the impact of environmental taxes on both environmental and non-

environmental R&D in a separate section. 

 

3. Data 
To construct our measure of real R&D expenditures, we use gross expenditures on R&D as a 

percentage of GDP from the UNESCO database, available at http://data.uis.unesco.org, and 

from the OECD Main Science and Technology Indicators database, available at https://data-

explorer.oecd.org/vis?df[ds]=DisseminateFinalDMZ&df[id]=DSD_MSTI%40DF_MSTI&df[

ag]=OECD.STI.STP&df[vs]=1.3&dq=.A.G%2BT_RS...&lom=LASTNPERIODS&lo=5&to[

TIME_PERIOD]=false, and multiply this percentage ratio by real GDP at PPP from the World 

Development Indicators (WDI), accessible at https://databank.worldbank.org/source/world-

development-indicators.  

                                                      
3 This specification is based on the recommendation of Chudik and Pesaran (2015) and Chudik et al. (2016), who 

suggest setting the number of lags of the cross-sectional averages equal to the integer part of T1/3. 
4 A potential disadvantage of the CSARDLMG estimator is that it may suffer from the well-known small T time 

series bias in dynamic panel data models. To mitigate this bias, we apply the recursive mean adjustment method.  



 

 

Similarly, we construct our measure of real revenues from environmental taxes by 

multiplying the WDI’s GDP in constant PPP dollars by environmentally related tax revenues 

as a percentage of GDP from the OECD Environmental Statistics, available at 

https://stats.oecd.org/Index.aspx?DataSetCode=EPS#. Since the data on environmentally 

related tax revenues (as a percentage of GDP) are available between 1994 and 2021, our 

analysis covers this period.  

Data on environmentally related tax revenues and real R&D expenditures (as a 

percentage of GDP) are not available for many countries for all years between 1994 and 2021. 

Since our analysis focuses on the long-run effect of environmental taxes on R&D, requiring 

sufficient time to develop, we include only those countries with complete time series data on 

logR&Dit and logTAXESit spanning at least 15 years within this period. This results in an 

unbalanced panel of 49 countries (listed in Table 5) with an average of 25 observations per 

country.5 

 

4. Results 
4.1. Estimates of the long-run relationship between revenues from environmental taxes and 

R&D expenditures for our entire panel of 49 countries 

The results of panel unit root and panel cointegration tests, reported in Table A1 and Table A2 

in the appendix, indicate that logR&Dit and logTAXESit are I(1) and cointegrated. Thus, the 

CSARDLMG estimator is applicable here. 

Column (1) of Table 1 reports both the average long-run coefficient on logTAXESit and 

the long-run average coefficient on logTAXESit, along with the coefficient on logR&Dit-1, from 

the CSARDLMG regression given by equation (1). Column (1) of the table also reports the 

result of the test for slope homogeneity developed by Blomquist and Westerlund (2013), 

denoted by SL, as well as the result of the cross-sectional dependence test developed by Juodis 

and Reese (2022), denoted by CD, applied to the residuals from the regression. The slope 

homogeneity test suggests that the individual slope coefficients are heterogeneous, justifying 

the use of the mean group version of the CSARDL estimator, and the cross-sectional 

dependence test indicates no sign of error cross-sectional dependence due to omitted common 

factors.  

Turning to the estimated coefficients we find evidence that environmental taxes exert a 

long-run causal effect on R&D expenditures, as indicated by the negative and statistically 

significant coefficient on logR&Dit-1. In addition, both the average long-run coefficient on 

logTAXESit and the long-run average coefficient on logTAXESit are positive and statistically 

significant.  

In columns (2) and (3) of Table 1, we use the CCEMG estimator and the CSDLMG 

estimator. The estimates of the average long-run coefficient on logTAXESit from these 

estimators are qualitatively and quantitatively very similar to the corresponding estimate in 

column (1). For completeness, it should however be noted that the Juodis and Reese (2022) 

test indicates the presence of cross-sectional dependence due to unobserved common factors 

in the residuals from the CCEMG regression in column (2). 

 

 

 

 

 

                                                      
5 Three points should be mentioned here. First, for some countries, we filled small data gaps by log-linear 

interpolation. Second, we excluded Mexico due to the nature of its environmental tax revenue data, which, unlike 

the data for other countries, are net of subsidies and therefore sometimes negative. Third, our sample includes all 

countries for which data are reported except five countries with very few observations (Costa Rica, Pakistan, the 

Philippines, Trinidad and Tobago, and Vietnam). 



 

 

Table 1. Estimates of the long-run relationship between environmental taxes and R&D 

 (1) 

CSARDLMG 

(2) 

CCEMG 

(3) 

CSDLMG 

logR&Dit-1 -0.296*** 

(0.035) 

  

Average long-run coefficient on logTAXESit 0.975*** 

(0.073) 

0.930** 

(0.418) 

0.908*** 

(0.166) 

Long-run average coefficient on logTAXESit 1.027*** 

(0.065) 

  

SL (p-value) 0.000 0.000 0.000 

CD (p-value) 0.325 0.000 0.499 

Number of observations 1079 1226 1128 

Notes: CSARDLMG = cross-sectionally augmented autoregressive distributed lag mean group estimator (in error 

correction form) developed by Chudik and Pesaran (2015); CSDLMG = cross-sectionally augmented distributed 

lag mean group estimator of Chudik et al. (2016); CCEMG = common correlated effects mean group estimator of 

Pesaran (2006). The dependent variable in the CSARDLMG regression is ΔlogR&Dit. The dependent variable in 

the CSDLMG and CCEMG regressions is logR&Dit. The average long-run coefficient on logTAXESit is the 

average of the individual or country-specific long-run coefficients on logTAXESit. The individual or country-

specific long-run coefficients on logTAXESit are the individual or country-specific ratios of the country-specific 

coefficients on logTAXESit-1 to the absolute values of the country-specific coefficients on logR&Dit-1 (computed 

using the delta method). The long-run average coefficient on logTAXESit represents the ratio of the average of the 

country-specific coefficients on logTAXESit-1 to the absolute value of the average of the country-specific 

coefficients on logR&Dit-1 (computed using the delta method). We applied the recursive mean adjustment method 

to mitigate the small sample time series bias in the CSARDLMG estimation. All regressions control for country 

fixed effects. The CSARDLMG, CCEMG, and CSDLMG estimators control for error cross-sectional dependence 

due to unobserved common factors via the use of (weighted) cross-sectional averages. While the CSARDLMG 

results are derived from a specification without lags of the first differences of logTAXESit and logR&Dit, and 

include one lag of the cross-sectional averages of the first differences of logTAXESit and logR&Dit, the CSDLMG 

results are based on a specification with one lag of the first differences of logTAXESit and two lags of the cross-

sectional averages of logTAXESit (following the suggestion of Chudik and Pesaran (2015) and Chudik et al. (2016), 

who recommend setting the number of lags of the cross-sectional averages equal to the integer part of T1/3). SL 

denotes the test for slope homogeneity developed by Blomquist and Westerlund (2013). CD denotes the cross-

sectional dependence test of Juodis and Reese (2022), applied to the residuals from the regressions. Standard errors 

are in parentheses. The CSARDLMG, CCEMG, and CSDLMG standard errors are robust not only to 

heteroscedasticity and autocorrelation but also to general forms of spatial dependence. *** (**) indicates 

significance at the 1% (5%) level. 

 

4.2. Causality tests 

To investigate the direction of causality in the long-run relationship between logTAXESit and 

logR&Dit, we employ the two-step procedure suggested by Canning and Pedroni (2008). In the 

first step, we use the individual country estimates of the long-run coefficients to construct an 

error correction term. In the second step, we include this term lagged one period in a panel 

vector error correction model. If the coefficient α1 of the lagged error correction term in the 

ΔlogR&Dit equation of the model is significantly different from zero and the coefficient α2 of 

the lagged error correction term in the ΔlogTAXESit equation is not significantly different from 

zero, then long-run causality runs from logTAXESit to logR&Dit. If α2 is not significantly 

different from zero and α1 is significantly different from zero, then long-run causality runs from 

logR&Dit to logTAXESit. If both coefficients are significantly different from zero, then long-

run causality runs in both directions. Following Eberhardt and Teal (2013), we augment the 

error correction equations with cross-sectional averages of both the dependent and independent 

variables as additional regressors to control for error cross-sectional dependence, thus 

following the CCE approach. The results of the tests for long-run causality between logTAXESit 

and logR&Dit from the Canning and Pedroni (2008) procedure are presented in Panel A of 

Table 2. They suggest that long-run causality is unidirectional from environmental tax revenues 

to R&D expenditures.  

As an additional test for causality between logTAXESit and logR&Dit, we use the 

Granger causality test developed by Dumitrescu and Hurlin (2012), which involves applying 

the standard VAR-based Granger causality test to each country separately and then averaging 



 

 

the individual Wald statistics. The bootstrap approach of Dumitrescu and Hurlin (2012) is used 

to calculate p-values that account for error cross-sectional dependence. The results are 

presented in Panel B of Table 2. Similar to the results in Panel A, they suggest that the direction 

of causality runs from logTAXESit to logR&Dit but not from logR&Dit to logTAXESit.  

 
Table 2. Causality tests 

 

Wald tests for causality 

(p-values) 

Panel A: Canning and Pedroni (2008) approach 

 H0: logTAXESit does not long-run cause logR&Dit 0.000 

 H0: logR&Dit does not long-run cause logTAXESit  0.362 

Panel B: Dumitrescu and Hurlin (2012) approach 

 H0: logTAXESit does not cause logR&Dit 0.018 

 H0: logR&Dit does not cause logTAXESit  0.405 

Notes: The results from the Canning and Pedroni (2008) approach were obtained from a vector error correction 

model estimated based on the mean group estimator and are p-values of tests for the significance of the error 

correction term, which was calculated using the individual long-run coefficients from the CSARDLMG 

regressions. One lag of the first differences was included in the vector error correction model. The results from 

the Dumitrescu and Hurlin (2012) approach are p-values of tests for the joint significance of lagged explanatory 

variables, calculated using an average Wald statistic. One lag of the explanatory variables was included, as 

suggested by the BIC. All tests are based on regressions that control for country fixed effects. Following 

Eberhardt and Teal (2013), we augmented the error correction equations with cross-sectional averages of both 

the dependent and independent variables as additional regressors to control for error cross-sectional dependence 

arising from unobserved common factors. To account for error cross-sectional dependence in the Dumitrescu 

and Hurlin (2012) tests, we used their bootstrap approach. Since Dumitrescu and Hurlin’s (2012) test combined 

with the bootstrap technique in Stata requires balanced panel data, the dataset was limited to 41 countries with 

complete data over the period 2000-2019. This dataset does not include Canada, Chile, Ecuador, India, Korea, 

Malta, Singapore, and South Africa. 

 

4.3. Country-specific estimates of the long-run relationship between revenues from 

environmental taxes and R&D expenditures 

We find that, on average, environmental taxes have a positive long-run effect on R&D. 

However, our finding for our entire panel of 49 countries does not necessarily imply a positive 

effect of environmental taxes on R&D in the majority of countries. The country-specific 

estimates of the long-run coefficients on logTAXESit from the individual CSARDL regressions 

are reported in Table 3. 

While caution is warranted in interpreting these estimates due to the relatively limited 

number of observations for each country, it can be concluded that there are cross-country 

differences in the long-run effects of environmental taxes on R&D, consistent with the tests for 

slope homogeneity. The coefficients vary from -0.475 in Ecuador to 2.385 in Ireland. However, 

the long-run coefficient on logTAXESit is negative in only three countries (Australia, Ecuador, 

and Slovenia), and in all of these countries, it is not significantly different from zero. Thus, 

although the long-run coefficients vary from country to country, almost all (46) are positive. 

The implication is that the average positive long-run effect of environmental taxes on R&D is 

not due to a limited number of countries.  

 

 

 

 

 

 

 

 

 

 



 

 

 
Table 3. Individual country estimates of the long-run relationship between environmental taxes and R&D 

Country logTAXESit Standard errors Country logTAXESit Standard errors 

Argentina 0.858 0.636 Italy 0.953** 0.446 

Australia -0.138 5.230 Japan 1.062*** 0.226 

Austria 0.956** 0.481 Korea 0.921 1.171 

Belgium 1.059** 0.537 Latvia 1.029*** 0.368 

Brazil 1.228 1.212 Lithuania 0.833* 0.507 

Bulgaria 0.877 1.158 Luxembourg 1.223 0.880 

Canada 1.059** 0.489 Malaysia 1.293 3.388 

Chile 1.064* 0.605 Malta 0.598 0.984 

China  1.129* 0.646 Netherlands 1.036 1.381 

Colombia 0.936* 0.553 New Zealand 1.056 0.669 

Croatia 1.002*** 0.361 Norway 1.000** 0.509 

Cyprus 0.983* 0.565 Poland 1.092 0.828 

Czech Republic 1.033** 0.451 Portugal 0.652*** 0.151 

Denmark 0.916*** 0.243 Romania 0.915 0.640 

Ecuador -0.475 0.858 Singapore 1.111 1.904 

Estonia 0.950* 0.529 Slovak Republic 0.516 1.166 

Finland 0.958** 0.396 Slovenia -0.306 0.651 

France 0.916** 0.405 South Africa 1.152 0.667 

Germany 1.045 1.662 Spain 1.101** 0.536 

Greece 1.227 0.859 Sweden 1.082** 0.456 

Hungary 1.544 1.628 Türkiye 1.293 0.891 

Iceland 1.333*** 0.495 United Kingdom 1.219*** 0.416 

India 0.386 0.334 United States 0.521 0.660 

Ireland 2.385 5.879 Uruguay 1.902*** 0.383 

Israel 1.297*** 0.431    
Notes: The individual or country-specific long-run coefficients on logTAXESit are the individual or country-

specific ratios of the country-specific coefficients on logTAXESit-1 to the absolute values of the country-specific 

coefficients on logR&Dit-1(computed using the delta method). The reported standard errors are heteroskedasticity- 

and autocorrelation-consistent standard errors. 

 

5. Additional results 
We find evidence that environmental taxes lead to an increase in overall R&D activity, both on 

average across the countries and in the majority of countries in our sample. The obvious critique 

of this finding is that it is unclear whether the positive effect of environmental taxes on overall 

R&D activity is solely due to their impact on environmental R&D, or if environmental taxes 

also positively affect non-environmental R&D, or if they lead to a reduction in non-

environmental R&D, as discussed in the Introduction. Unfortunately, the limited availability 

of data on environmental and non-environmental R&D makes it difficult to answer this 

question with a high degree of confidence.  

To provide a preliminary answer to this question, we use the limited data on real R&D 

expenditures available from the OECD, classified by socioeconomic objectives, to construct 

measures of both environmental and non-environmental R&D.6 We then regress these two 

                                                      
6 We define environmental R&D as the sum of real R&D expenditures at PPP for pollution prevention and real 

energy R&D expenditures. The former is classified by the OECD under its R&D classification by socioeconomic 

objectives as 'Environment,' while the latter is classified under 'Energy.' Since energy R&D covers efforts aimed 

at improving the production, storage, transportation, distribution, and rational use of all forms of energy, including 

improving energy efficiency, we include it in our measure of environmental R&D. Non-environmental R&D is 

defined as total R&D minus our measure of environmental R&D. The data used to construct our measures of 

environmental and non-environmental R&D are available at  

https://data-

explorer.oecd.org/vis?df[ds]=DisseminateFinalDMZ&df[id]=DSD_RDS_GERD%40DF_GERD_SEO&df[ag]=

OECD.STI.STP&dq=.A.._T....._T.XDC.&pd=2015%2C&to[TIME_PERIOD]=false. 



 

 

measures (in logs) on environmental taxes (also in logs), lagged by one year to mitigate 

potential endogeneity and to account for the time it may take for the taxes to affect 

environmental and non-environmental R&D. The regressions also include several control 

variables, as well as country and time fixed effects.  

We control for the growth rate of real GDP at PPP GDPGROWTHit, the gross tertiary 

enrolment rate TERTIARY_SCHOOLINGit, the percentage ratio of trade to GDP 

(TRADE/GDP)i, the percentage ratio of net FDI inflows to GDP (FDI/GDP)it, and an index of 

regulatory quality REGULATORY_QUALITYit.
7 All these variables are included with one lag, 

like environmental taxes. The data on these variables are from the WDI. Combining the data 

on all variables, including environmental taxes, results in an unbalanced panel of 16 countries 

from 1994 to 2015.8 It is perhaps needless to say that the unbalanced nature of this panel and 

its short time dimension prevent us from using the methods from the previous section. 

As can be seen from Table 4, logTAXESit-1 is significantly and positively correlated with 

both environmental R&D and non-environmental R&D.9 From this, it can be cautiously 

concluded that the positive effect of environmental taxes on overall R&D activity, found in the 

previous section, is likely due to both a positive effect on environmental R&D and a positive 

effect on non-environmental R&D. Of course, this conclusion should be viewed with caution 

given the small sample size and potential issues associated with these simple regressions. 

 
Table 4. Estimates of the relationship between lagged environmental taxes and both environmental and non-

environmental R&D 

 (1) 

Dependent variable: log of 

environmental R&D  

(2) 

Dependent variable: log of 

non-environmental R&D 

logTAXESit-1 0.721*** 

(0.213) 

0.228** 

(0.114) 

GDPGROWTHit-1 

 

1.409* 

(0.794) 

0.699** 

(0.334) 

TERTIARY_SCHOOLINGit-1 

 

-0.008 

(-1.591) 

-0.001 

(0.003) 

(TRADE/GDP)it-1 -0.009*** 

(0.003) 

-0.002 

(0.002) 

(FDI/GDP)it-1 

 

0.003 

(0.003) 

-0.001 

(0.002) 

REGULATORY_QUALITYit-1 -0.128 

(0.189) 

0.061 

(0.098) 

Number of countries 16 16 

Number of observations 151 151 

 Notes: The regressions include country and time fixed effects. Numbers in parentheses are White 

heteroskedasticity-consistent standard errors. *** (**) [*] indicates significance at the 1% (5%) [10%] level. 

 

6. Conclusion 
This study was the first to examine the relationship between environmental taxes and overall 

R&D activity at the macro-level. Using unbalanced panel data for 49 countries between 1994 

and 2021, and employing heterogeneous panel data techniques, we found that: (i) 

environmental taxes have, on average, a positive long-run effect on R&D expenditures; (ii) the 

direction of causality runs from environmental taxes to R&D and not vice versa; and (iii) while 

the long-run effect of environmental taxes varies across countries, it is positive in almost all 

                                                      
7 Since net FDI inflows are negative in some years, as is the index of regulatory quality, we do not use the 

logarithms of our ratio variables as well as REGULATORY_QUALITYit. 
8 The countries in our sample are Argentina, Bulgaria, Chile, the Czech Republic, Estonia, Hungary, Iceland, 

Korea, Lithuania, Norway, Portugal, Romania, the Slovak Republic, Slovenia, South Africa, and Spain. 
9 For space reasons, we do not discuss the signs of the estimated coefficients of the control variables in detail here. 

However, we briefly note that the unexpected sign of some coefficients, such as the coefficient on 

TERTIARY_SCHOOLINGit-1, could be due to collinearity problems. 



 

 

cases, indicating that the average positive long-run effect of environmental taxes on R&D is 

not driven by a few countries. We also found some support for a positive effect of 

environmental taxes on both environmental R&D and non-environmental R&D, although this 

is based on a smaller sample of countries over a shorter time period. 

The obvious limitation of this study is that it provides no explanation for the observed 

cross-country heterogeneity in the effects of environmental taxes on R&D. It thus does not 

address which factors may influence the impact of environmental taxes on overall R&D 

activity, as well as on environmental and non-environmental R&D. We leave this question for 

future research, at both the micro and macro levels. 
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Appendix 
Table A1. Panel unit root tests 

 Pesaran (2007)  Karavias and Tzavalis (2014) 

Levels  
logR&Dit 0.908  0.910  
logTAXESit 0.450  1.000 

First differences  
ΔlogR&Dit 0.000  0.000  
ΔlogTAXESit 0.000  0.000 

Notes: Reported values are p-values. The unit root tests for the levels include country-specific intercepts and 

country-specific linear time trends. The unit root tests for the first differences include country-specific intercepts. 

The panel unit root tests developed by Pesaran (2007) control for error cross‐sectional dependence by 
incorporating (weighted) cross-sectional averages and are applied to the original, untransformed data. To control 

for error cross‐sectional dependence due to unobserved common factors in the panel unit root test developed by 

Karavias and Tzavalis (2014), we use demeaned data. The Pesaran (2007) test does not allow for structural breaks, 

which may lead to a false acceptance of the null hypothesis of a unit root. Therefore, we use also the Karavias 

and Tzavalis (2014) test, which allows for possible structural breaks. We allow for one endogenously determined 

structural break in the intercepts (and trends) of the series. One lag of the first differences was used in the Pesaran 

(2007) tests. The Karavias and Tzavalis (2014) test, by construction, does not involve lags of the first differences. 

 
 

 

 

 

 

 

 

 

 

Table A2. Panel cointegration tests 

 Panel statistics Group mean statistics 

Pedroni (1999)   

 Variance ratio statistic 3.186***  

 PP rho-statistics -8.363*** -7.826*** 

 PP t-statistics -9.957*** -14.440*** 

 ADF t-statistics -11.525*** -15.438*** 

Westerlund (2005)   

 Variance ratio statistics -1.5615* -2.893*** 

Westerlund (2007)   

 τ-statistics (z-values) 

[Bootstrap p-values] 

-518.668 

[0.000]*** 

-29.094  

[0.000]*** 

 α-statistics (z-values) 

[Bootstrap p-values] 

-442.031 

[0.000]*** 

-9.624 

[0.000]*** 

Gengenbach et al. (2016)   

 ECM t-statistic  -3.713*** 

Notes: The dependent variable in the Pedroni (1999) and Westerlund (2005) tests is logR&Dit. The dependent 

variable in the tests of Westerlund (2007) and Gengenbach et al. (2016) is ΔlogR&Dit. One lag of the first 

differences was used in the Pedroni (1999) (PP and ADF) tests. One lead and one lag of the first differences were 

included in the Westerlund (2007) tests. No lags of the first differences were included in the Gengenbach et al. 

(2016) tests. The Pedroni (1999) and Westerlund (2005) test statistics are distributed as standard normal. The 

Westerlund (2007) statistics are distributed as standard normal in the case of no error cross-sectional dependence. 

While Pedroni’s variance ratio test has a one-sided rejection region consisting of large positive values, all other 

tests reject for large negative values. The critical value at the 1% significance level for the Gengenbach et al. 

(2016) t-test for N = 50 (and one regressor) is -2.672. The results of the Pedroni (1999) and Westerlund (2005) 

tests are based on demeaned data to account for potential error cross-sectional dependence due to unobserved 

common factors. To account for error cross-sectional dependence in the Westerlund (2007) tests, we used the 

bootstrap approach of Westerlund (2007). Bootstrap p-values (based on 500 replications) are in brackets. The 

Gengenbach et al. (2016) test accounts for error cross-sectional dependence via the use of cross-sectional 

averages. We included one lag of the first differences of the cross-sectional averages in the Gengenbach et al. 

(2016) test. *** [*] indicates rejection of the null hypothesis of no cointegration at the 1% [10%] level. 

 


