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Abstract
This study explores how individual mental models and beliefs—when misaligned with the objective structure of wealth

distribution—can influence macroeconomic inequality. Using an integrated framework that combines agent-based

modeling (ABM) and system dynamics (SD), we investigate the effects of micro-level behavioral assumptions on

wealth outcomes. Drawing inspiration from Michael Sandel's critique of meritocracy, we test whether cognitive biases,

such as those grounded in prospect theory and meritocratic perceptions, can reshape wealth dynamics even in a purely

stochastic economic environment. Our simulations are based on a modified version of Wilensky's Simple Economy

model, termed the Flexible Simple Economy, which introduces agents with differing risk profiles based on behavioral

economics. The findings reveal that mental models significantly affect the long-term distribution of wealth: prospect

theory-based agents produce more egalitarian outcomes, whereas meritocratic beliefs tend to exacerbate inequality.

These results suggest that policies targeting belief systems and behavioral expectations—rather than solely

redistributive interventions—may be crucial for addressing economic inequality. By demonstrating a feedback loop

between individual perceptions and systemic outcomes, this study highlights the central role of cognitive and

psychological factors in shaping economic distributions.
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Misaligned Beliefs and Wealth Distribution: An Agent-Based Analysis 

 

1. Introduction 
 
Michael Sandel's (2021) critique of meritocracy in his book "The Tyranny of Merit" has 
sparked a significant social debate. Sandel argues that the success of the American upper and 
middle classes is often falsely attributed to individual merit when it is largely due to luck or 
heritage. He contends that an excessive belief in meritocracy reinforces overinvestment in 
education, leading to greater inequality. While this argument is worthy of discussion in its own 
right, it raises an important and under-explored scientific question: Can micro-level "beliefs" 
held by individuals systematically change the distribution of wealth in the market, leading to 
macro-level outcomes of inequality, even when these beliefs are misaligned with reality? 
 
Wealth distribution studies have primarily focused on uncovering general laws governing the 
distribution of wealth from empirical data. Pareto (1897) pioneered the search for these laws, 
finding that income followed a specific, heavily skewed distribution toward the top in most 
cities at the end of the 19th century. Subsequent studies have further explored the nature of 
wealth distribution, with some finding exponential (Drăgulescu & Yakovenko, 2001; Tao et al., 
2019) or Pareto distributions (Jones, 2015) based on empirical data. However, these studies 
have not investigated the influence of individual mental models on the market mechanism itself 
and the resulting inequality. 
 
Behavioral economics research, on the other hand, has extensively used experiments to explain 
how people develop mental models of reality and how these models drive behavior that may 
be misaligned with reality. Prospect theory (Kahneman & Tversky, 1979) and various biased 
behavioral economic properties, such as the endowment effect, loss aversion, and status quo 
bias (Kahneman et al., 1991), have been introduced to explain seemingly irrational decision-
making. Kahneman (2003) synthesizes these concepts into the notion of "bounded rationality." 
However, these studies do not typically examine whether these behavioral economic properties 
lead to specific macro-level changes, such as alterations in the distribution of wealth. 
 
Some research has sought to explore the interaction between individual beliefs and market 
mechanisms. Solt et al. (2016) find that higher levels of economic inequality can strengthen 
beliefs in meritocracy, even when such beliefs may not be justified by actual economic mobility. 
Cruces et al. (2013) demonstrate that biased perceptions of income distribution affect 
preferences for redistribution, highlighting the feedback loop between beliefs and economic 
policies. Cappelen, de Haan, and Tungodden (2024) delve into how individuals process limited 
information to form beliefs about fairness and meritocracy, arguing that people tend to be 
“Bayesian meritocrats.” While these studies provide valuable insights into the relationship 
between inequality structures and individual perceptions, they do not directly address how 
mental models themselves can affect the distribution of wealth.  
 
To fill this research gap, we conduct a hypothetical thought experiment by narrowing down our 
research question: In a society where wealth distribution is solely dependent on luck, would 
the distribution of wealth differ when participants with specific beliefs about the distribution 
rules compete, compared to a situation without such beliefs? For example, in this hypothetical 
society, whether the belief is meritocratic or its opposite, it may not increase the overall wealth 
of the society or enable individuals to acquire more or less wealth. However, could it still cause 
changes in the distribution of wealth? The purpose of this study is to test these intuitive 



hypotheses using agent-based modeling (ABM) and system dynamics (SD) models. 
 
In a broader sense, this research aims to explore whether transformations in mental models 
within civil society can trigger systemic changes in economic distribution. If they can, it would 
necessitate fundamental changes in policy measures to address economic inequality. This study 
intends to contribute to this crucial discussion. 
 

2. Methodology 
 
To bridge the research gap between behavioral economics and wealth distribution studies, we 
propose an integrated modeling approach that combines system dynamics (SD) and agent-
based modeling (ABM). This approach allows us to incorporate individual mental models, as 
studied in behavioral economics, into the analysis of wealth distribution dynamics at the macro 
level. 
 
The methodological divergence between behavioral economics and wealth distribution studies 
is the main reason for the identified research gap. In behavioral economics, research on mental 
models is primarily conducted through experiments on individual behavior in controlled 
environments. These studies provide a detailed understanding of how individual mental models, 
or psychological processes, distort reality, create biases, and ultimately lead to irrational 
decisions. However, in these studies, the macro-level wealth distribution is often treated as an 
exogenous variable. In contrast, most wealth distribution studies rely on large-scale 
administrative or survey data to examine the distribution of income or assets among individuals, 
treating individuals as atoms without mental models. Consequently, while the general laws 
about wealth distribution and individual mental models have been studied in detail, the 
interaction between the two is difficult to describe. The research gap arises precisely from the 
methodological heterogeneity between macro-level wealth distribution studies and micro-level 
mental model studies. 
 
To address this gap, we employ system dynamics (SD) to model individual mental models, 
capturing the dynamic decision-making process at the micro level. Although SD is commonly 
known for its usefulness in modeling macro-level system dynamics, it is also a valuable tool 
for modeling individual mental processes (Sterman, 2001). SD allows us to represent mental 
models where the inflow is real-world information that an individual encounters, the stock is 
the accumulation of the information, and the outflow is the behavior or decisions originating 
from the inflow and the stock. Concurrently, at the macro level, we use agent-based modeling 
(ABM) to simulate a market where agents interact and engage in transactions. ABM is suitable 
for analyzing how micro-behaviors (actions of individuals or small groups) influence macro-
outcomes (the state of the entire system) (Wilensky & Rand, 2015). This design allows us to 
examine the feedback loop between individual decision-making processes and market 
functioning. 
 
Our integrated modeling approach consists of the following key steps: 
(1) Designing the Market: Implement the market structure and rules in an agent-based modeling 
(ABM) framework, where agents interact in a simulated economy. 
(2) Designing Agents: Use a system dynamics framework to develop individual agents' mental 
models that are misaligned with reality but guide their decision-making within the simulated 
market, based on insights from behavioral economics literature. 
(3) Designing the Integrated Model: Link the agents to the market, using their market 



performance as an inflow to their mental models and their risk-taking decisions as an outflow 
back to the market. 
(4) Running Experiments: Simulate various economic scenarios with different agents' mental 
models to analyze the impact of individual mental models on wealth distribution dynamics. 
 

3. Model 
 

3.1. Market: The Flexible Simple Economy 
 
The Flexible Simple Economy model, a modified version of Wilensky and Rand (2015)’s 
Simple Economy model, serves as the market model for this study. The Simple Economy model 
simulates a discrete-time closed economy where agents engage in wealth transactions purely 
based on chance. Despite its simplicity, this model remarkably replicates the exponentially 
distributed wealth patterns observed in real-world economies (Wilensky, 1998; Tao et al., 2019). 
 

When � denotes the total population and �!
(#)

 denotes the wealth which agent � owns at 

time �, Simple Economy Model Rules are: 

(1) The population consists of (� = 500) agents. 

(2) Each agent initially possesses (�%
(#)
= $100) in wealth. 

(3) At each time step �, an agent � randomly gives $1 to another agent �, where � ≠ �. 

(4) No agent's wealth �!
(#)

 can fall below zero, i.e., (∀�,�!
(#)
≥ 0). 

(5) Agents who run out of money �!
(#)

=0 cannot give money to others until they have money 

again. 

(6) The total amount of money in the system is conserved (∀#,! , ∑ �!
(#)

# = � ×�%
(#)
). 

 

As a result, the wealth that agent � owns at time � is the wealth after �-th transaction – the 

last transaction for the time (�!(#) = �!,&(#)). Therefore, the wealth an agent	 � holds at time � before 

the initiation of any transaction is equivalent to the wealth after the completion of all transactions at 

time � − 1 (�!,'(#) = �!(),&(#) ). 
 

Now, we define �!,*(#→,)  as the amount of wealth transferred from agent �  to �  during the � -th 

transaction at time �, as noted in the rule (3) above. This transfer function is given by: 

 

 �!,*(#→,) = -1,			� ≠ �	���	�!,*()(#) ≥ 10,																						��ℎ������. (1) 

 

Since �!,*(,→#)	is the amount of wealth transferred from agent � to � after the �-th transaction at time �, the wealth of agent � is updated as follows: 

 
 �!,*(#) = �!,*()(#) − �!,*(#→,) +=�!,*(,→#)

,-#

 

																					= �!,'(#) −=�!,.(#→,)*

./)

+==�,,.(,→#)
,-#

*

./)

. 
 

(2) 

 

 



In the Flexible Simple Economy model, rule (3) is modified into rule (3-1) with Equation (3) 
below to allow transaction patterns to vary based on the agent's risk tolerance level: 
 

(3-1) At each time step �, agents are categorized as risk-seeking or risk-averse based on their 

tolerable risk level. A risk-seeking agent � gives $2 to another risk-seeking agent � (where 

� ≠ �), while a risk-averse agent � gives $1 to another risk-averse agent � (where � ≠ �). 
Therefore, Equation (1) is modified as follows: 
 
 �!,*(#→,) = >2,			� ≠ �, 	�!,*()(#) ≥ 2, ���	�����	�	���	�	���	���� − �������1,			� ≠ �,�!,*()(#) ≥ 1, ���	�����	�	���	�	���	���� − ������			0,			��ℎ������.																																																																																						  

 

 (3) 

 
This flexibility in the model allows for the observation of changes in the market system 
resulting from variations in agents' mental models. The modified rule introduces heterogeneity 
in the agents' risk preferences, which influences their trading behavior. Risk-seeking agents 
engage in higher-stakes transactions, transferring larger amounts of wealth per interaction, 
while risk-averse agents opt for smaller, more conservative transfers. 
 
It is important to note that in this market model, an agent's risk preference affects their 
individual trade decisions but does not necessarily impact their average performance in terms 
of wealth accumulation. The model is designed such that the expected value of wealth transfer 
remains the same for both risk-seeking and risk-averse agents. This design choice allows for a 
focused examination of how variations in risk preferences and trading behavior can influence 
the overall distribution of wealth in the system, without confounding the results with 
differences in average agent performance. 
 

3.2. Agents 
 

3.2.1. Prospect Theory-Based Agent 
 
Kahneman and Tversky's (1979) prospect theory posits that individuals evaluate economic 
outcomes relative to a reference point, which separates potential gains from losses and impacts 
sensitivity to gains and losses differently. Specifically, individuals exhibit loss aversion, being 
more sensitive to losses than to gains above the reference point, and risk-seeking behavior 
when below the reference point. 
 
Note that both mental models are misaligned with reality, as the agents adjust their investment 
decisions based on past performance or current wealth, even though neither past performance 
nor wealth directly affects future investment outcomes in our model, where all transactions are 
performed on a purely random basis. 
 
For simplicity, we define the prospect theory-based agent as follows: 
 
(1) Risk Aversion Above the Reference Point:  

Agent �  at time � , whose current wealth is greater than the initial wealth (�!
(#)
> �%

(#)
) 

perceives their 'prospect' as negative, becoming risk-averse and preferring lower investment 
amounts. 
 



(2) Risk Seeking Below the Reference Point:  

Agent � at time �, whose current wealth is the same as or less than the initial wealth (�!
(#)
≤

�%
(#)
)  perceives their 'prospect' as positive, becoming risk-seeking and preferring higher 

investment amounts. 

3.2.2. Meritocratic Agent 
 
We design a meritocratic agent using Chatterjee et al. (2011)'s research on capability cues. The 
study suggests that CEOs tend to assess their own abilities based on environmental changes, 
such as recent profit levels of their firms. If these cues suggest high capability, CEOs are 
inclined towards high-risk investment strategies; conversely, if the cues suggest low capability, 
they prefer low-risk investment strategies. A mental model with capability cues reflects the 
very nature of meritocracy, in that it is a belief that one's performance is solely dependent upon 
one's capabilities. 
 
For simplicity, we define the meritocratic agent as follows: 
 
(1) Risk Aversion with Negative Capability Cues: 

- Agent � for time �, for whom the sum of return over the past five periods is less than or 

equal to the sum of their investments (∑ �!
(#)!

!'( ≤ ∑ �!
(#)!

!'( ) perceive their 'capability cue' as 

negative, leading to risk-averse behavior and a preference for lower investment amounts. 
 
(2) Risk Seeking with Positive Capability Cues: 

- Agent � for time �, for whom the sum of return over the past five periods exceeds the sum 

of their investments (∑ �!
(#)!

!'( > ∑ �!
(#)!

!'( ) perceive their 'capability cue' as positive, leading 

to risk-seeking behavior and a preference for higher investment amounts. 
 
Note that there are delays between performance itself and the resulting behavior change. 
Sterman (2001) correctly modeled system dynamics mental models, accounting for delays 
between reality and perception, illustrating how such gaps can transform the entire system.  
The feedback loops between the agent mental model and the market are depicted in Figure 1.  
 

Figure 1. Feedback Loop of the Flexible Simple Economy 



 
 

 

In Figure 1, “investment” is �!,)
(#→+)

, “return” is ∑ �!,)
(+→#)

+,# , and “bearable risk level” indicates 

whether agent � is risk-seeking or risk-averse at time �. Agents take returns from the market 
as inflows and feed back investments to the market as outflows according to their own mental 
models, forming a feedback loop for the Flexible Simple Economy. 
 

3.3. Baseline and Comparative Models 

 

3.3.1. Baseline Model: Simple Economy 
 
The original Simple Economy model without agent mental models serves as the baseline model 
for this study. This baseline model is effectively equivalent to the Flexible Simple Economy 
where all agents are risk-averse. The baseline model is compared with two comparative models, 
in which the market operates entirely randomly, but the agents, unaware of this randomness, 
create rational mental models to make investment decisions. The study then observes how 
wealth distribution changes in comparison to the baseline model. 
 

3.3.2 Comparative Model A: Moderate Rich's Society 

 
Model A is the Flexible Simple Economy with prospect theory-based agents. These agents use 
their initial asset size as the reference point. They perform high-risk investing when their asset 
sizes are above the reference points and low-risk investing when their asset sizes are equal to 
or below the reference points. 
 

3.3.3 Comparative Model B: Rise of Meritocracy 

 
Model B is the Flexible Simple Economy with meritocratic agents. Although the model 
operates purely by chance, agents mistakenly believe they are in a meritocratic society and 
make decisions based on capability cues. Agents with positive capability cues make risk-



seeking investments, while those with negative cues make risk-averse decisions. 
 
By comparing these models, the study aims to understand the impact of different mental models 
on wealth distribution within a purely random market environment. 
 

4. Results 
 

4.1 Evaluation Metrics 
 
This study adopts Lee and Yoon (2023)’s proposal of four evaluation metrics as the evaluation 
criteria for analyzing wealth distribution. 
 
(1) Distribution shape: The distribution is considered more unequal if it fits an exponential 
distribution more quickly, as the steady-state distribution of the Simple Economy is exponential. 
(2) Gini coefficient: A higher Gini coefficient indicates greater inequality. 
(3) Share of wealth held by the top 1% of agents: A larger share of wealth held by the top 1% 
of agents suggests greater inequality. 
(4) Share of wealth held by the top 10% of agents: Similarly, a larger share of wealth held by 
the top 10% of agents indicates greater inequality. 
 

4.2 Changes in Wealth Distribution 
 
The baseline model, Simple Economy, starts with a uniform distribution where each agent 

initially has $100. Over the long term (50,000 time steps), it evolves into an exponential 
distribution as Wilensky & Rand (2015) described, with many agents holding low wealth and 
a few holding high wealth (Figure 2). To capture perception delays, we assume a memory 
length of 5 turns for agents' perceived capability in the meritocratic scenario, meaning agents 
perceive their capability based on average performance over the last five turns.  
 
While the base case assumes a 5-turn memory and initial wealth of $100, sensitivity analyses 
are performed with memory lengths of 8 and 10 turns and initial wealth levels of $80 and $120. 
The resulting distributions over time under these alternative conditions are presented in Figures 
2 to 4. 
 
Figure 2: Baseline model wealth distributions at turn 500, 5000, and 50000. 

 
<memory = 5, initial wealth = 100> 

 
 
<memory = 8, initial wealth = 100> 



 
 
<memory = 10, initial wealth = 100> 

 
 
<memory = 5, initial wealth = 80> 

 
 
<memory = 5, initial wealth = 120> 

 
 

 
Comparative Model A, which also begins with a uniform distribution, maintains a more even 
distribution over time, with the middle tier being the most populous (Figure 3). Unlike the 



baseline model, Comparative Model A does not trend towards an exponential distribution. 
 
Figure 3: Model A’s wealth distributions at turn 500, 5000, and 50000. 

 
<memory = 5, initial wealth = 100> 

 
 
<memory = 8, initial wealth = 100> 

 
 
<memory = 10, initial wealth = 100> 

 
 
<memory = 5, initial wealth = 80> 



 
 
<memory = 5, initial wealth = 120> 

 
 
Comparative Model B, however, beginning with a uniform distribution, follows a similar long-
term exponential distribution pattern as the baseline model (Figure 4). 
 
Figure 4: Model B’s wealth distributions at turn 500, 5000, and 50000. 

 
<memory = 5, initial wealth = 100> 

 
 
<memory = 8, initial wealth = 100> 



 
 
<memory = 10, initial wealth = 100> 

 
 
<memory = 5, initial wealth = 80> 

 
 
<memory = 5, initial wealth = 120> 

 
 
To evaluate the wealth distribution models, we conducted a Kolmogorov-Smirnov test for each 
model at turn 50,000 (Table 1). To control for stochastic effects inherent in agent-based 
simulations, we utilize an ensemble average of 100 simulations for statistical robustness in the 



Kolmogorov-Smirnov (K-S) tests. Silveira et al. (2018) demonstrated that ensemble-based 
approaches significantly enhance the statistical robustness of Kolmogorov-Smirnov tests 
compared to single-simulation applications, with approximately 100 ensemble members 
representing the optimal balance between stochastic control and computational efficiency. 
 

The decision to accept or reject the null hypothesis (�%) for the K-S tests is based on two steps: 
firstly, the median p-value across simulations must exceed the 0.05 threshold; secondly, at least 
80% of the simulations must individually fail to reject H_0, thereby ensuring robustness and 
consistency in hypothesis testing results (Lorscheid, Heine, & Meyer, 2012). 
 

Table 1. Ensemble Averages of Kolmogorov-Smirnov Test Results for Wealth Distribution Models 

(number of simulations = 100, initial wealth = 100) 
Model Acceptance case 

(p-value>0.05) 
�' �-value 

(median) 

Outcome  

Baseline 89% Exponential Distribution 0.2624 Fail to reject �' 

Baseline 32% Normal Distribution 0.0142 Reject �' 

Model A 1% Exponential Distribution <1e-05 Reject �' 

Model A 81% Normal Distribution 0.2577 Fail to reject �' 

Model B 94% Exponential Distribution 0.3096 Fail to reject �' 

Model B 33% Normal Distribution 0.0163 Reject �' 

 
The Baseline Model did not reject the null hypothesis for an exponential distribution (median 
p-value = 0.2624), indicating it closely follows an exponential pattern. Model A rejected the 
null hypothesis for an exponential distribution (median p-value < 1e-05), suggesting significant 
deviation, but did not reject it for a normal distribution (median p-value = 0.2577). Model B, 
like the Baseline Model, did not reject the null hypothesis for an exponential distribution (p-
value = 0.3096), but rejected it for a normal distribution (p-value = 0.0163), indicating a 
deviation towards an exponential distribution. These results suggest that Model A (Moderate 
Rich's Society) produced a long-term wealth distribution distinct from that of the baseline 
Simple Economy model, whereas Model B (Rise of Meritocracy) did not. This highlights the 
significance of agent mental models in shaping long-term wealth distribution. 
 
Tables 2 and 3 present the detailed K-S test results from sensitivity analyses conducted on each 
model, varying perception delays and initial wealth levels. Note that the baseline case (memory 
= 5, initial wealth = 100) represents the ensemble average of 100 simulations. 
 
Table 2. Perception Delays Sensitivity in KS Test Results (sample size = 100, Initial Wealth = 100) 

Model Memory 

(delay) 
�' �-value Outcome  

(% of p-value>0.05 case) 

Baseline Model 

(100 simulations) 

5 Exponential Distribution 0.2624 

(median) 
Fail to reject �' 
(89%) 

Baseline Model 6 Exponential Distribution 0.1141 Fail to reject �' 

Baseline Model 8 Exponential Distribution 0.0292 Reject �' 

Baseline Model 10 Exponential Distribution 0.2890 Fail to reject �' 

Baseline Model 

(100 simulations) 
5 Normal Distribution 0.0142 

(median) 
Reject �' 

(32%) 

Baseline Model 6 Normal Distribution 0.0175 Reject �' 

Baseline Model 8 Normal Distribution 0.1666 Fail to reject �' 

Baseline Model 10 Normal Distribution 0.2213 Fail to reject �' 

Model A 5 Exponential Distribution <1e-05 Reject �' 



(100 simulations) (median) (1%) 

Model A 6 Exponential Distribution <1e-07 Reject �' 

Model A 8 Exponential Distribution <1e-05 Reject �' 

Model A 10 Exponential Distribution <1e-07 Reject �' 

Model A 

(100 simulations) 

5 Normal Distribution 0.2577 

(median) 
Fail to reject �' 

(81%) 

Model A 6 Normal Distribution 0.4542 Fail to reject �' 

Model A 8 Normal Distribution 0.3939 Fail to reject �' 

Model A 10 Normal Distribution 0.4044 Fail to reject �' 

Model B 

(100 simulations) 

5 Exponential Distribution 0.3096 

(median) 
Fail to reject �' 

(94%) 

Model B 6 Exponential Distribution 0.6847 Fail to reject �' 

Model B 8 Exponential Distribution 0.0358 Reject �' 

Model B 10 Exponential Distribution 0.3706 Fail to reject �' 

Model B 

(100 simulations) 

5 Normal Distribution 0.0163 

(median) 
Reject �' 

(67%) 

Model B 6 Normal Distribution <0.0314 Reject �' 

Model B 8 Normal Distribution 0.0523 Fail to reject �' 

Model B 10 Normal Distribution <1e-04 Reject �' 

 

Table 3. Initial Wealth Sensitivity in KS Test Results (sample size = 100, memory = 5) 
Model Initial 

Wealth 
�' �-value Outcome 

(95% Confidence) 

Baseline Model 80 Exponential Distribution 0.2290 Fail to reject �' 

Baseline Model 90 Exponential Distribution 0.1271 Fail to reject �' 

Baseline Model 

(100 simulations) 
100 Exponential Distribution 0.2624 

(median) 
Fail to reject �' 
(89%) 

Baseline Model 110 Exponential Distribution 0.6762 Fail to reject �' 

Baseline Model 120 Exponential Distribution 0.1033 Fail to reject �' 

Baseline Model 80 Normal Distribution 0.0800 Fail to reject �' 

Baseline Model 90 Normal Distribution 0.0002 Reject �' 

Baseline Model 

(100 simulations) 
100 Normal Distribution 0.0142 

(median) 
Reject �' 

(32%) 

Baseline Model 110 Normal Distribution 0.0481 Reject �' 

Baseline Model 120 Normal Distribution 0.0004 Reject �' 

Model A 80 Exponential Distribution <1e-05 Reject �' 

Model A 90 Exponential Distribution <1e-04 Reject �' 

Model A 

(100 simulations) 

100 Exponential Distribution <1e-05 

(median) 
Reject �' 

(1%) 

Model A 110 Exponential Distribution <1e-05 Reject �' 

Model A 120 Exponential Distribution <1e-09 Reject �' 

Model A 80 Normal Distribution 0.0248 Reject �' 

Model A 90 Normal Distribution 0.4710 Fail to Reject �' 

Model A 

(100 simulations) 

100 Normal Distribution 0.2577 

(median) 
Fail to reject �' 

(81%) 

Model A 110 Normal Distribution 0.3381 Fail to reject �' 

Model A 120 Normal Distribution 0.6691 Fail to reject �' 

Model B 80 Exponential Distribution 0.5829 Fail to reject �' 

Model B 90 Exponential Distribution 0.0957 Fail to reject �' 

Model B 
(100 simulations) 

5 Exponential Distribution 0.3096 
(median) 

Fail to reject �' 
(94%) 



Model B 110 Exponential Distribution 0.0883 Fail to reject �' 

Model B 120 Exponential Distribution 0.4878 Fail to reject �' 

Model B 80 Normal Distribution 0.0001 Reject �' 

Model B 90 Normal Distribution 0.0348 Reject �' 

Model B 100 Normal Distribution 0.0163 Reject �' 

Model B 110 Normal Distribution 0.0107 Reject �' 

Model B 120 Normal Distribution 0.0038 Reject �' 

 

The sensitivity analysis shows that the ensemble average outcomes in the baseline scenario are 
largely supported across varying parameterizations. Specifically, despite slight variations—
such as a rejection of the exponential hypothesis at an 8-turn memory and minor discrepancies 
in single simulation results when initial wealth shifts from $100—the core pattern of an 
exponential wealth distribution remains robust. These findings affirm that the ensemble 
average (based on 100 simulations) reliably captures the underlying dynamics of wealth 
distribution, even as individual simulation outcomes exhibit modest variability. 

 

Other evaluation metrics support the distinct wealth distribution from the two comparative 
models. In Model A, involving prospect theory-based agents, the Gini coefficient (Figure 5, 
left), the share of wealth held by the top 1% (Figure 5, center), and the share of wealth held by 
the top 10% (Figure 5, right) all fall below the levels observed in the baseline model. In contrast, 
Model B, involving capability cues-based agents, exhibits higher levels than the baseline model 
for the Gini coefficient, top 1% wealth share, and top 10% wealth share. Higher values for the 
Gini coefficient and the wealth shares of the top 1% and top 10% indicate greater inequality. 
 
Figure 5: Evaluation Metrics up to turn 50000. 

 
 

5. Final Remarks 
 
Our findings demonstrate that the mental models adopted by agents can significantly influence 
the distribution of wealth, even in a market where transactions occur purely by chance. In the 
'Moderate Rich's Society' model (Model A), where wealthy agents are risk-averse and less 
affluent agents are risk-seeking, the resulting wealth distribution is more balanced compared 
to the baseline model. Conversely, in the 'Rise of Meritocracy' model (Model B), where agents 
mistakenly believe they are in a meritocratic society, wealth inequality is exacerbated, with 
higher Gini coefficients and larger shares of wealth concentrated among the top 1% and 10% 
of agents. 
 
These results underscore the need for policy formulation that takes into account the impact of 



agents' behavior on the overall distribution of wealth. Traditionally, income distribution 
policies have focused on direct intervention through taxation and redistribution, often 
overlooking the potential effects of changing agents' perceptions. Our findings suggest that a 
paradigm shift in policy-making is necessary. 
 
However, it is crucial to acknowledge that this analysis is based on simulations, and we cannot 
definitively claim that these results represent a steady state. Moreover, the simplifications made 
for this thought experiment limit its direct applicability to real-world scenarios. To overcome 
these limitations, further research is needed that combines analytical methods and empirical 
data. By incorporating the latest findings from behavioral economics into agent mental models 
and using up-to-date data in market modeling, future studies can achieve more realistic and 
meaningful insights. 
 
This study, which utilizes system dynamics and agent-based modeling, provides a robust 
framework for such future research. Enhancing the sophistication of these models with diverse 
behavioral insights and real-world data will enable the development of more effective and 
informed policies aimed at addressing economic inequality. 
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