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Abstract
I use a bootstrap approach to re-examine the time-varying efficiency of growth forecasts for Germany. I argue that,
given this small sample of forecasts, the bootstrap approach renders it possible to trace out with more precision than a
standard full-sample forecast-efficiency-regression model whether forecasts were efficient at any given point in time.
As an empirical application of the bootstrap approach, I present results for six-months-ahead and one-year-ahead
growth forecasts published by three German economic research institutes during the sample period 1970$-$2018. The
results illustrate that the bootstrap approach, for various configurations of the forecast-efficiency-regression model,
yields stronger evidence against forecast efficiency than a conventional full-sample model.
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1 Introduction

A common way to test for forecast efficiency is to estimate by the ordinary-least-squares (OLS)

technique the following variant of a standard Mincer and Zarnowitz (1969) regression model (Holden

and Peel 1990):

FEt+h|t = βXt + ut+h, t = 1, ...T (1)

where FEt+h|t denotes the forecast errors, defined by the difference between the forecast of a variable

made in period t and the actual value in period t + h, Xt denotes some conditioning information

that represents a forecaster’s information set at the time a forecast is published, ut+h denotes a

disturbance term, and β denotes a coefficient (or a coefficient vector) to be estimated. Forecast

efficiency with respect to the conditioning information requires that β = 0. It is common practice

among researchers to differentiate between weak and strong forecast efficiency. Weak forecast

efficiency requires that the lagged forecast error does not have predictive value for the subsequent

forecast error. Strong forecast efficiency requires that any information available to a forecaster at

the time a forecast was formed does not help to predict the subsequent forecast error.

Equation (1) sheds light on the question whether forecasts were efficient in the sample period,

t = 1, ...T , that a researcher studies. A related but somewhat different question is whether forecast

efficiency changed during the sample period being studied. Forecast efficiency could change over

time because a forecaster accumulated human capital (that is, experience), fashionable economic

theories changed, or the sample period comprises periods of a deep recession, a severe financial

crisis, or an important regime shift in economic policy. For example, Heilemann and Stekler (2013)

report that German growth forecasts became more accurate in the 1980s/1990s as compared to

the 1970s, but became less accurate again thereafter. Döpke et al. (2019) report evidence that the

Great Recession of 2008/2009 led to a change in forecasters’ loss function that reflects, in the case

of German growth forecasts, a stronger incentive to underestimate growth.

A natural approach to shed light on the potential time variation in forecast efficiency is to esti-

mate Equation (1) using the full sample of forecasts, and then to plug into the estimated model the

time-varying conditioning information. Such an approach, however, typically will yield compara-

tively wide confidence intervals in a small sample of forecasts, especially so when forecast efficiency

changed over time. Adding a panel dimension to the data may provide more precise estimates,

provided the cross-sectional dimension is sufficiently large. Another approach is to estimate a time-

varying parameter model, or a rolling-estimation window. Such relatively sophisticated approaches,

however, are often not feasible when it comes to the study of business-cycle forecasts because the

number of forecasts is small.

The German growth forecasts that I study in this research note are no exception in this regard.

For this reason, I study the efficiency of these forecasts by means of a simple bootstrap approach

that gives a fairly accurate account of the potential time variation of forecast efficiency even though

the sample of growth forecasts that I study is small.



2 Method

I implement the bootstrap approach in three steps (for a textbook introduction to bootstrap meth-

ods, see Efron and Tibshirani 1994).

1. I sample a proportion of x% training data without replacement from the data. I estimate

Equation (1) on the sampled training data.

2. I use the estimation results to predict the (1−x)% hold-out (test) data and store the predictions.

Because I sample in the first step without replacement, the fixed proportion of hold-out data

can be interpreted as quasi “out-of-sample” data.

3. I repeat the first two steps 1,000 times (increasing the number of repetitions to 10,000 leads

to qualitatively similar results).

This three-step bootstrap approach gives me, for every period of time, t = 1, ...T , a large number

of predictions of every FEt+h|t in the small sample of forecasts that I study. In this regard, it

should be noted that these predictions are made based on the hold-out data, which captures the

idea that “new” information on a predictor should not have predictive value in case forecasts are

efficient. The bootstrap approach, hence, sheds light on the question whether it would have been

possible to predict the local forecast error conditional on the forecast-efficiency model estimated

on the boostrapped data and conditional on the hold-out data. This is an important difference to

the standard approach, which uses the full sample of data to make pure in-sample predictions of

forecast errors.

I use the sampling distribution of the predicted forecast errors generated by applying the boot-

strap to compute (i) the mean prediction of FEt+h|t for every t = 1, ...T , and, (ii) the 90% and 95%

confidence intervals of the predicted FEt+h|t for every t = 1, ...T . I call the mean prediction of FEt+h|t,

t = 1, ...T , the local prediction of forecast efficiency (LPFE), and I reject local forecast efficiency when

the bootstrapped confidence intervals do not include zero. I set x = 75% in a baseline scenario, but

I also study how varying x% affects my results.

I use the R language and environment for statistical computing (R Core Team 2022) to code up

the bootstrap approach.

3 Data and Results

I study the pooled six-months-ahead (published mid-year) annual forecasts and one-year-ahead

(published at the turn of a year) annual forecasts of GDP growth published by three leading Ger-

man economic research institutes between 1970 and 2018.1 Studying the efficiency of this sample

1Behrens et al. (2019) refer to these forecasts as “q2” forecasts and “q4” forecasts. The economic research institute are
(in alphabetical order): German Institute for Economic Research (DIW Berlin), ifo Institute and Kiel Institute for the World
Economy. It should also be noted that the German statistical office has used GDP as the lead indicator for economic growth
to GDP since 1992, and GNP before. The data I study in this research consist of GDP forecasts and the corresponding
realizations throughout the entire sample period, so that this change in official statistical concepts does not affect my
results.



Table 1: Summary statistics

Forecasts Institute 1 Institute 2 Institute 3 Pool

Number of forecasts

six-months-ahead 37 42 37 116

one-year-ahead 47 44 41 132

Mean-squared-prediction error

six-months-ahead 0.81 0.51 0.76 0.68

one-year-ahead 2.11 1.57 1.15 1.63

of German growth forecasts is interesting because various facets of these forecasts have been ex-

tensively studied in a row of recent papers (e.g., Behrens et al. 2019, Foltas and Pierdzioch 2022).

The forecast error is defined as the difference between a forecast and the realized (first-release)

growth rate. The data account for German reunification. In total, I can study (after accounting for

lagged data) 116 six-months-ahead forecasts and 132 one-year-ahead forecasts. The frequency of

forecasts differs across the institutes and is not constant over time.

I report, for every research institute and the pooled data, the number of forecasts and the full-

sample mean-squared prediction error in Table 1. The mean-squared prediction error exhibits a

noticeable degree of heterogeneity across the three economic research institutes (which, however, is

not the focus of this research note).2

As for the conditioning information, I consider three cases. First, I regress the forecast error

on a constant. In this case, forecast efficiency is equivalent to the unbiasedness of forecasts, and

it requires that the constant is not significantly different from zero. Second, I regress the forecast

error on a constant and the (institute-specific) lagged forecast error. This second case, hence,

amounts to a test of weak forecast efficiency. Third, I regress the forecast error on a constant and

the short-term interest rate (the money market rate; I assume a forecast formation/publication lag

of one month). Using the short-term interest rate as conditioning information has the advantage

that information on the short-term interest rate is readily available to a forecaster, and it is not

subject to data revisions. The third case is a test of strong forecast efficiency.

I plot in Figure 1 the results for the first case. I plot in the left panels the bootstrap results,

and in the right panels for comparison purpose the full-sample OLS results. The upper row shows

the results for the six-months-ahead forecasts, and the lower row shows the results for the one-

year-ahead forecasts. The results show that the average local predicted six-months-ahead (one-

year-ahead) forecast error (LPFE) is negative (positive). The full-sample OLS confidence intervals

are wider than the bootstrapped confidence intervals.3 While I cannot reject unbiasedness of fore-

casts based on the full-sample OLS estimates, the bootstrap results show that I cannot reject

unbiasedness only for the one-year-ahead forecasts. The bootstrap results imply that the extent of

(un-)biasedness of the forecasts was stable over time.

2Döhrn and Schmidt (2011) report results for a broader panel of economic research institutes and international orga-
nizations, and for GDP and its components. They study the sample period 1991−2008 and emphasize the importance of
the length of the forecast horizon for absolute forecast accuracy, while institutional factors appear to play a minor role for
absolute forecast accuracy.

3Because the estimates are based on of a full-sample regression of the forecast error on a constant only, the estimates
(and the confidence intervals) depicted in the right-hand-side panels of Figure 1 are time invariant.



Figure 1: A constant is the conditioning variable

-1
.0

-0
.5

0
.0

0
.5

1
.0

Bootstrap (six-months-ahead)

Time

L
P
F
E

15.07.1981 28.07.1989 23.06.1998 30.06.2006 17.06.2014

-1
.0

-0
.5

0
.0

0
.5

1
.0

Full-sample OLS (six-months-ahead)

Time

L
P
F
E

15.07.1981 28.07.1989 23.06.1998 30.06.2006 17.06.2014

-1
.0

-0
.5

0
.0

0
.5

1
.0

Bootstrap (one-year-ahead)

Time

L
P
F
E

29.01.1976 08.01.1987 11.01.1996 07.12.2004 15.12.2013

-1
.0

-0
.5

0
.0

0
.5

1
.0

Full-sample OLS (one-year-ahead)

Time

L
P
F
E

29.01.1976 08.01.1987 11.01.1996 07.12.2004 15.12.2013

Bootstrap: The solid line represents the local predicted forecast error (LPFE). OLS: The solid line represents the predicted
forecast error. The gray (dark gray) areas represent the 95% (90%) confidence intervals.

I plot in Figure 2 the results for the second case. In this case, I test for weak forecast efficiency.

The full-sample OLS confidence intervals are wider than the bootstrap confidence intervals and

imply that I cannot reject weak forecast efficiency for both the six-months-ahead and the one-year-

ahead forecasts. In contrast, I find evidence against weak forecast efficiency for the six-months-

ahead forecasts when I consider the boostrap results. Taken together, the bootstrap results imply

that the six-months-ahead forecasts are neither unbiased nor weakly efficient.

I plot in Figure 3 the results of a test of strong forecast efficiency.4 The test results imply that I

cannot reject strong forecast efficiency based on the full-sample OLS estimates, while the bootstrap

results yield signs of time-varying strong forecast efficiency. The six-months-ahead forecasts were

inefficient most of the time in a strong sense until around 2007, where the local predicted forecast

error was consistently negative. The local prediction forecast error became smaller (in absolute

size) thereafter and forecasts no longer violated strong forecast efficiency. Similarly, the bootstrap

results provide evidence of time-varying strong efficiency of the one-year-ahead forecasts. The local

predicted forecast error was mainly positive before 1996 for the one-year-ahead forecasts, and

thereafter started turning negative. As a result, the bootstrap results imply that I cannot reject

4The so-called zero-lower-bound period does not affect the test results (results are not reported for reasons of space).



Figure 2: The lagged forecast error is the conditioning variable
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Bootstrap: The solid line represents the local predicted forecast error (LPFE). OLS: The solid line represents the predicted
forecast error. The gray (dark gray) areas represent the 95% (90%) confidence intervals.

strong forecast efficiency only during two intervals of time around 1976 and 1987, and between

1996 and 2009. Hence, after the Great Financial Crisis and the Great Recession the one-year-ahead

forecasts became inefficient in a strong sense, but this inefficiency differed from the inefficiency that

prevailed earlier in the sample because the local predicted forecast error was negative rather than

positive.

Besides the number of simulation runs, the proportion of bootstrapped data is the only hyper-

parameter of the bootstrap approach. It, therefore, is important to inspect how a variation in the

proportion of bootstrapped data affects the results of the forecast-efficiency tests. Decreasing the

proportion of bootstrapped data used to estimate the forecast-efficiency-regression model implies

that the dispersion of the local predictions of the forecast errors made with an increasing proportion

of hold-out data is getting larger. Hence, intuition suggests that lowering the proportion of boot-

strapped data widens the confidence interval and makes it harder to reject the null hypothesis of

local forecast efficiency. The results that I plot in Figure 4 show that this intuition is correct. The

figure plots the proportion of times that the bootstrap approach leads to a rejection of local forecast

efficiency (that is, how often the confidence interval for the predicted local forecast error does not

include zero) as a function of the proportion of bootstrapped data. I also compare the results with



Figure 3: The short-term interest rate is the conditioning variable
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Bootstrap: The solid line represents the local predicted forecast error (LPFE). OLS: The solid line represents the predicted
forecast error. The gray (dark gray) areas represent the 95% (90%) confidence intervals.

the proportion of times that the OLS approach leads to a rejection of local forecast efficiency (hori-

zontal lines). In line with intuition, the bootstrap approach leads more often to a rejection of local

forecast efficiency when the proportion of bootstrapped data increases (and, of course, when 90%

confidence bands are being used). The bootstrap approach rejects local forecast efficiency more

often than the OLS approach when the proportion of bootstrapped data is larger than roughly 55%

and 65% (depending on whether I study the six-months-ahed or one-year-ahead forecasts). These

are proportions commonly used in bootstrap simulations. When the number of forecasts available

for an empirical analysis is somewhat larger than the small number of forecasts that I study in

this research note, however, it is interesting to consider whether cross-validation techniques can be

used to choose the proportion of bootstrapped data.

4 Concluding Remarks

A classic topic in the literature on business-cycle forecasts is whether such forecasts are efficient

and whether forecast efficiency changed over time. While various techniques are available to study

time-varying forecaster behavior and time-varying forecast efficiency, I have used to this end in



Figure 4: The influence of the proportion of bootstrapped data

0.4 0.5 0.6 0.7 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Six-months-ahead forecasts

Boot fraction

P
ro

p
o

rt
io

n
 l
o

c
a

l 
F

E
 i
s
 r

e
je

c
te

d

Boot--95%

Boot--90%

OLS--95%

OLS--90%

0.4 0.5 0.6 0.7 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

One-year-ahead forecasts

Boot fraction

P
ro

p
o

rt
io

n
 l
o

c
a

l 
F

E
 i
s
 r

e
je

c
te

d

The horizontal axis shows the proportion of bootstrapped data. The vertical axis shows the percentage of times local forecast
efficiency (FE) is rejected (that is, how often a confidence interval for the LPFE does not include zero). The short-term interest
rate is the conditioning variable

this research note a simple bootstrap approach to re-examine the forecast efficiency of a small

sample of German growth forecasts. I have shown that the bootstrap approach, depending on the

proportion of data being bootstrapped, yields narrower confidence intervals for the local predicted

forecast error, leading in some cases to different conclusions regarding the time-varying (local)

forecast efficiency than a standard full-sample OLS approach. Hence, my results show that it could

be useful to add the bootstrap approach to the array of tools that empirical researchers routinely

use to study forecast efficiency.

While I have applied the bootstrap approach to study the efficiency of a small sample of German

growth forecasts, it is straightforward to apply the approach in future research to study the poten-

tially time-varying efficiency (or other potentially changing properties) of business-cycle forecasts for

other periods of time and other countries. Application of the bootstrap approach in such contexts

will not necessarily lead to fundamentally different results as compared to the results researchers

obtain by applying other standard approaches to test for forecast efficiency, but the bootstrap ap-

proach may help to sharpen evidence of forecast efficiency (or lack thereof) and, thus, deepen our

understanding of how forecast efficiency and the process of business-cycle forecasting have evolved

over time.

References

Behrens, C., Pierdzioch, C., and M. Risse (2019) “Do German Economic Research Institutes Publish

Efficient growth and Inflation Forecasts? A Bayesian analysis” Journal of Applied Statistics 47,

698−723.
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