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Abstract
In this paper we propose a generalization of the Mas-Colell and Razin two-sector migration and growth model,

introducing distinct population growth rates for the industrial and agricultural sectors. We show that the proposed

generalized model has an unique economically feasible stable steady-state for the distribution of the labor force

between the sectors, as well as for the per capita capital of the economy. Besides, we obtain the signal of the impact

of marginal changes in the intersectoral differential population growth rate in the steady-state values of the endogenous

variables implied by the model, ceteris paribus. In particular, we show that an increase in the intersectoral differential

population growth rate, which happens when the population growth rate of the industrial sector inscreases in relation to

the agricultural sector, causes an increase in the proportion of the total labor force employed in the industrial sector,

and in the per capita capital of the economy at the steady-state, provided the population growth rate at the agricultural

sector is higher than a certain critical value.
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1 Introduction

The second half of the XX century was pivotal in the theory of economic growth.
The seminal works of Harrod (1939) and Domar (1946) were the starting-point for many
neoclassical economic growth models, which were focused on trying to solve the main
problem of the Harrod-Domar model, i.e., finding a stable growth path with full employ-
ment (Hahn and Matthews, 1964). One of the first works to succeed on doing that was
done by Solow (1956). Accepting all the assumptions of the Harrod-Domar model but
that of fixed proportions, Solow (1956) built a one-sector model of long-run growth in a
neoclassical framework, where he proved that Harrod and Domar could have achieved a
stable equilibrium with no unemployment if they had abandoned the fixed proportions
assumption. Solow’s work was accompanied by Swan (1956), and their model came to be
known as the Solow-Swan model, a landmark in the neoclassical economic growth theory
(Solow, 1956; Swan, 1956; Barro and Sala-i Martin, 2004).

Afterwards, Shinkai (1960) developed a two-sector growth model that could express
either the unstable equilibrium of the Harrod-Domar model or the stable equilibrium of
the Solow-Swan model, depending on the capital-labor ratio considered (Shinkai, 1960).
Thereafter, Uzawa (1961) developed a neoclassical version of Shinkai’s model featuring
each sector producing one type of good, for both consumption and investment purposes.
Under the hypothesis that the consumption-goods sector is more capital intensive than
the investment-goods sector, as proposed by Shinkai (1960), Uzawa (1961) showed the
uniqueness and stability of the per capita capital steady-state (Uzawa, 1961). Uzawa’s
two-sector model had a great repercussion by the time, and the importance of the relative
intersectoral capital-intensity in the uniqueness and stability of the equilibrium of the
model was later analysed by Solow (1961), who identified that in fact the assumption
that guarantees the stability of the equilibrium path is the one that says that wages only
consumes and rentals only saves (Solow, 1961). Solow’s critical analysis made Uzawa
revisit his model, changing assumptions and including the propensity to save as a new
parameter. In this way, the model proposed by Uzawa (1963) is indeed a generalized
two-sector version of the one-sector Solow-Swan model (Solow, 1961; Uzawa, 1963). This
was noticed by Inada (1963), for whom “Solow’s one-sector model is a special case of the
generalized Uzawa model” (Inada, 1963, p. 126).

According to Jorgenson (1961), models from the traditional growth theory, like the
ones mentioned above, were developed mainly for advanced economies, while the goals of a
theory of development is to discuss matters concerning the so called backward economies.
On this matter, Jorgenson (1967) presented a theory of development of a dual economy -
consisting of an advanced (industrial) sector, and a backward (agricultural) sector - using
a classical and a neoclassical approach under the same framework. The main differences
between these two approaches “are in assumptions made about the technology of the
agricultural sector and about conditions governing the supply of labour” (Jorgenson,
1967, p. 308). Although they have different implications, Jorgenson (1967) noted that in
both approaches the industrial sector plays a critical role, with the industrial output and
labor dominating the economy at the end of the development process (Jorgenson, 1967).
Dixit (1970), analyzing the main differences between these two approaches, pointed out
that their differences are less noteworthy than Jorgenson claimed, and that both end up
producing patterns of growth very much alike (Dixit, 1970). Afterwards, Mas-Colell and
Razin (1973) proposed a two-sector neoclassical growth model with slow labor migration



between them1, and showed that the growth patterns exhibited by the Jorgenson’s model,
such as “a decreasing rate of migration from rural to urban sector; a stage of accelerated
accumulation of capital; etc.” (Mas-Colell and Razin, 1973, p. 72), could be explained by
their proposed model. More recently, Christiaans (2017) proposed a modification of this
Mas-Colell and Razin model in order to study the implications of a population decline in
the regional migration.

The objective of this paper is to generalize the Mas-Colell and Razin model of
intersectoral migration and growth (Mas-Colell and Razin, 1973), in order to deal with
distinct intersectoral population growth rates, hypothesis that reflects better the available
empirical data. For instance, if we use urban and rural regions as proxies to the industrial
and agricultural sectors, respectively, data shows that while the fertility in these two
regions are consistently declining (Lerch, 2019), in some cases rural regions show a higher
fertility and organic growth rates of their population than the urban regions where the
industrial sector tends to be located (Kulu, 2013; Castiglioni, 2020; Iwasaki and Kumo,
2020), while on other cases the opposite is happening, with the population in urban
areas growing faster than in rural areas, as in Germany between the years 2007 and
2013 (Christiaans, 2017; Milbert, 2015), and in the United States in the last two decades
(Johnson, 2022). In addition, we shall analyze the impact that changes in the intersectoral
differential population growth rate have in the industrial and agricultural sectors at the
steady-state, ceteris paribus.

This paper is structured as follows: after this introduction, in section 2 we present
the proposed generalized model; in section 3 we compute the steady-state implied by the
model, as a function of its parameters, and prove its uniqueness and stability; in section
4 we determine the long run effects of changes in the intersectoral differential population
growth rate; and finally, in section 5 we close with the conclusions of the present work,
also presenting perspectives for future research. Proofs of all propositions and corollaries
presented throughout the paper are left to the appendix.

2 The model with distinct sectoral population

growth rates

The model proposed by Mas-Colell and Razin (1973) describes a two-sector economy
composed by an industrial sector I, and an agricultural sector A, where there is a perfect
and instantaneous mobility of capital, but an imperfect and slow migration of labor
between sectors. Defining ρ as the fraction of the labor force employed in the industrial
sector at time t > 0, assuming full employment of labor2, and Cobb-Douglas production
functions in both sectors, the per capita outputs in sectors I, yI , and A, yA, are given by:

yI = ρk
β
I , yA = (1− ρ)kα

A, (1)

where α, β ∈ (0, 1), and kI , kA are the per capita capital used in each sector. Supposing
capital full employment, and defining k > 0 as the availability of per capita capital in the
whole economy at t > 0, the following identity must be satisfied at all times:

ρkI + (1− ρ)kA = k. (2)

1In this model it is considered that the population growth rate in both sectors are the same.
2For simplicity, it is assumed that the labor force of the economy is equal to the total population.



2.1 Instantaneous equilibrium in capital and labor markets

At any time t > 0, the economy is characterized by a given distribution of labor
force between sectors, ρ, and a given quantity of available per capita capital, k. While
the capital market is in equilibrium between sectors at all times, due to the perfect
and instantaneous mobility of capital, this is not necessarily the case in the labor market.
Although the labor market inside each sector is always in equilibrium, it is not necessarily
in equilibrium between sectors, since the migration of labor is not instantaneous. But it
eventually reaches such equilibrium in the long run, as workers slowly migrate from one
sector to another, equalizing the wage rates.

Starting with the analysis of the capital market, consider the agricultural good,
that is completely consumed, as the numéraire of the economy, and p as the price of the
industrial good, which can be consumed or invested. Then, equalization of the marginal
productivity of capital between sectors gives the equilibrium in the capital market:

pβk
β−1
I = αkα−1

A . (3)

The equilibrium between supply and demand in the industrial good market is given
by:

(s+ δ)y = pyI , (4)

where:
y = pyI + yA (5)

is the per capita income in the whole economy, s ∈ (0, 1) is the fraction of income spent
in industrial goods for investment purposes, and δ ∈ (0, 1) is the fraction of the income
that is being spent in the industrial good for consumption purposes. Note that the total
proportion of income that is spent in industrial goods is given by (s + δ) ∈ (0, 1), while
[1− (s+ δ)] ∈ (0, 1) is the proportion of the income spent in the agricultural good3.

Considering the equations above, Mas-Colell and Razin (1973) show that the equi-
librium in the capital market at any instant of time t > 0, is given by:

kI = θ
k

ρ
, kA = (1− θ)

k

(1− ρ)
, (6)

where θ is defined as:

θ =
β(s+ δ)

β(s+ δ) + α(1− s− δ)
∈ (0, 1). (7)

As for the labor market, assuming perfect competition in each sector, the equilib-
rium wage rates at the industrial, wI , and agricultural, wA, sectors are given, at any time,
by:

wI = p(1− β)kβ
I , wA = (1− α)kα

A, (8)

which may instantaneously differ by the reasons stated above.

Remark: Equations (1)-(8) are the same derived by Mas-Colell and Razin (1973) in their
original model, and stay valid in this work. The differences of the extension proposed
here, in relation to the original model, start to appear below, in the dynamics of the
model.

3We must have s+ δ < 1 in order to guarantee that the agricultural sector remains always active, i.e.,
that 1− (s+ δ) > 0.



2.2 Dynamics of the model

For the dynamics of the economy’s per capita capital, k, we propose that the organic
population growth rates in the industrial and agricultural sectors are given by nI and nA,
respectively, which may be different. This implies that:

k̇

k
= λθβ

(ρ

k

)1−β

− [ρ nI + (1− ρ)nA] , k(0) = k0 (9)

where:
λ =

s

s+ δ
∈ (0, 1) (10)

is defined as the fraction of the total industrial output that is invested to create new
capital goods, and k0 > 0 is the initial level prescribed for the per capita capital. Note
that, since ρ ∈ (0, 1), a weighted average of the population growth rates in both sectors
is present in the RHS of the differential equation in (9), what slows down the increase of
k. Besides, if we make nI = nA = n in (9), this weighted average reduces to n, and we
recover the dynamics for k of the original model (Mas-Colell and Razin, 1973).

The introduction of specific population growth rates for each sector also impacts
the dynamics of the proportion of the total labor force in the industrial sector, ρ, which
now is given by:

ρ̇

ρ
= m+ (1− ρ)(nI − nA),

where m = M
LI

is the relative migration rate into the industrial sector, M is the cor-
responding rate of migration (workers per period of time), and LI > 0 is the current
population in the industrial sector. As in the original model, we consider that workers
migrate to the sector paying the highest wage rate, such that:

m = γ (w − 1) = σ
(1− ρ)

ρ
− γ, (11)

where w is the relative wage rate between sectors, defined as w = wI

wA
, γ > 0 is a parameter

giving the velocity of this migration, and σ is defined as:

σ = γ
(1− β)

β

α

(1− α)

θ

(1− θ)
> 0. (12)

Then, closing the model, the dynamics for ρ is given by the following initial value problem:

ρ̇

ρ
= σ

(1− ρ)

ρ
− γ + (1− ρ)(nI − nA), ρ(0) = ρ0, (13)

where ρ0 ∈ (0, 1) is the initial proportion of the labor force in the industrial sector. While
in the original model the direction of migration depends only on the proportion of the
total labor force occupied in agriculture, 1− ρ, here it also depends on the intersectoral
differential population growth rate, nI − nA, and on the other parameters of the model,
as can be seen in equation (13). When nI > nA (nI < nA), the term (1 − ρ)(nI − nA),
not present in the original model, adds a positive (negative) effect in the increase of ρ.
If nI = nA = n, this effect disappears, and equation (13) reduces to the dynamics of the
original model presented in Mas-Colell and Razin (1973).



Remark: The system given by equations (9) and (13) gives k(t) and ρ(t) for all
t ≥ 0. Then, with this information in hand, it is possible to obtain the corresponding
instantaneous equilibrium values for all quantities derived in section 2.1: kI(t), kA(t)
[equation (6)], yI(t), yA(t) [equation (1)], p [equation (3)], y(t) [equation (5)], and wI(t),
wA(t) [equation (8)].

3 Steady-state of the model

Before proceeding in obtaining the steady states of the model, we summarize its
dynamics below:

k̇

k
= λθβ

(

k

ρ

)β−1

− [nIρ+ nA(1− ρ)], k(0) = k0 > 0 (14)

ρ̇

ρ
= σ

(1− ρ)

ρ
− γ + (1− ρ)(nI − nA), ρ(0) = ρ0 > 0 (15)

where θ ∈ (0, 1) is given by (7), λ ∈ (0, 1) is given by (10), and σ > 0 is given by (12). The
proofs of all propositions and corollaries presented below can be found in the appendix.

Proposition 1 (steady state for ρ): The only feasible and stable steady-state for the
proportion of the total labor force employed in the industrial sector, 0 < ρ∞ < 1, implied
by the model (14)-(15) is given by:

ρ∞ =











1

2∆n

[

−(σ + γ −∆n) +
√

(σ + γ −∆n)2 + 4∆nσ
]

, if ∆n 6= 0

σ

σ + γ
, if ∆n = 0

(16)

where we have defined ∆n = nI − nA as the intersectoral differential population growth
rate.

Remark: Note that ρ∞ = ρ∞(∆n) is a continuous function at ∆n = 0 (see the proof of
Proposition 1 in the appendix).

Proposition 2 (steady state for k): The only economically feasible and stable steady-
state for the per capita capital, k∞ > 0, implied by the model (14)-(15) is given by:

k∞ =























ρ∞

(

λθβ

nA + ρ∞∆n

)

1

1−β

= ρ∞

(

λθβ

ρ∞nI + (1− ρ∞)nA

)

1

1−β

, if ∆n 6= 0

σ

σ + γ

(

λθβ

n

)

1

1−β

, if ∆n = 0

(17)

where ∆n = nI − nA, and ρ∞ is given by (16).

Remark: When ∆n 6= 0, case introduced by the proposed model, the total labor force
employed in the industrial sector at the steady-state, ρ∞, depends only on the intersec-
toral differential population growth rate ∆n, while the per capita capital in the long run,
k∞, depends on both ∆n and the population growth rate at the agricultural sector, nA.



Remark: To guarantee that k∞ is a real number, the following condition must be verified:

nA + ρ∞∆n > 0.

Besides, if this inequality is indeed satisfied, the model may also admit negative popula-
tion growth rates.

Remark: If nI = nA = n (∆n = 0), Propositions 1 and 2 give the same steady state
(k∞, ρ∞) of the original model presented in Mas-Colell and Razin (1973).

4 Long run effects of changes in ∆n

So far we have shown that considering distinct population growth rates between
sectors in the Mas-Collel & Razin model of intersectoral migration and growth generates
a stable and unique economically plausible steady-state (k∞, ρ∞). In the propositions
below we derive the impact that marginal changes in the intersectoral differential pop-
ulation growth rate, ∆n, have in the steady-state values of the endogenous variables of
the model, ceteris paribus.

Proposition 3 (effect on ρ∞): If the intersectoral differential population growth rate,
∆n = nI−nA, increases, the proportion of the total labor force employed in the industrial
sector at the steady state, ρ∞, also increases, and vice-versa. More accurately:

∂ρ∞

∂∆n
=















ρ∞(1− ρ∞)

(2ρ∞ − 1)∆n+ σ + γ
> 0, if ∆n 6= 0

γσ

(σ + γ)3
> 0, if ∆n = 0

(18)

where 0 < ρ∞ < 1 for ∆n 6= 0 is given by (16).

Corollary 1 (effect on w∞ and m∞): An increase in ∆n always decreases the relative
wage rate w∞, and the relative migration rate m∞ at the steady state, that is:

∂m∞

∂∆n
= γ

∂w∞

∂∆n
< 0.

Remark: If the migration of workers between sectors are slow, i.e. if γ ∈ (0, 1), then:

∂w∞

∂∆n
<

∂m∞

∂∆n
< 0,

i.e. a given increase in ∆n causes a more intense decrease in the relative wage rate than
in the relative migration rate at the steady state. Otherwise, if the migration is faster,
γ > 1, then we have that:

∂m∞

∂∆n
<

∂w∞

∂∆n
< 0,

and in this case a given increase in ∆n causes a more intense decrease in the relative
migration rate than in the relative wage rate in the long run.



Proposition 4 (effect on kI
∞
): If the intersectoral differential population growth rate,

∆n = nI −nA, increases, then the per capita capital in the industrial sector at the steady
state, kI

∞
, decreases, i.e.:

∂kI
∞

∂∆n
< 0.

Remark: Since k∞ = 1
θ
kI
∞
ρ∞, by the two propositions above it is not clear what happens

with k∞ as ∆n increases, since in this case kI
∞

decreases while ρ∞ increases.

Corollary 2 (effect on wI
∞
): An increase in ∆n always decreases the wage rate in the

industrial sector, that is:
∂wI

∞

∂∆n
< 0.

Proposition 5 (effect on kA
∞

in a neighborhood of ∆n = 0): In a neighborhood of
∆n = 0 we have that there is n̄A > 0 such that:

∂kA
∞

∂∆n
R 0 ⇔ nA R n̄A. (19)

where:

n̄A =
σ

1− β
=

γ

1− α

(

s+ δ

1− (s+ δ)

)

> 0. (20)

Remark: The fact that Proposition 5, as well as some results below, are valid only in
a neighborhood of ∆n = 0 is not very restrictive, since realistic values of ∆n are usually
small, i.e., |∆n| << 1.

Corollary 3 (effect on wA
∞

in a neighborhood of ∆n = 0): In a neighborhood of
∆n = 0 we have that:

∂wA
∞

∂∆n
R 0 ⇔ nA R n̄A.

Remark: By Corollaries 1 and 2, both the relative wage rate w∞ = wI
∞

wA
∞

, and the wage

rate in the industrial sector, wI
∞
, always decrease when ∆n increases. Then, in the sce-

nario where wA
∞

also decreases (that happens when nA < n̄A), by Corollary 3 wI
∞

must
decrease faster than wA

∞
as ∆n increases.

Proposition 6 (effect on k∞ in a neighborhood of ∆n = 0): In a neighborhood of
∆n = 0 we have that there is ñA > 0 such that:

∂k∞

∂∆n
R 0 ⇔ nA R ñA. (21)

where:

ñA =

(

σ

1− β

)

σ + γ

γ
= n̄A

[

1 +
1− α

1− β

(

s+ δ

1− (s+ δ)

)]

> n̄A. (22)

Proposition 7 (effect on yI
∞

in a neighborhood of ∆n = 0): In a neighborhood of
∆n = 0 we have that there is n̂A > 0 such that:

∂yI
∞

∂∆n
R 0 ⇔ nA R n̂A. (23)



where:
n̂A = βñA. (24)

Proposition 8 (sensitivity of yA
∞

to ∆n in a neighborhood of ∆n = 0): In a
neighborhood of ∆n = 0 we have that:

∂yA
∞

∂∆n
< 0. (25)

Proposition 9 (effect on p∞ in a neighborhood of ∆n = 0): In a neighborhood of
∆n = 0 we have that there is n̄A > 0 such that:

nA > n̄A ⇒
∂p∞

∂∆n
< 0, (26)

where n̄A is defined in Proposition 5.

Remark: As for the stady-state per capita output of the economy as a whole, y∞ =
yI
∞
+ p∞yA

∞
, it was not possible to obtain a general condition to determine the signal of

∂y∞
∂∆n

, even in a neighborhood of ∆n = 0.

Remark: It is important to note that the present model does not consider technological
progress, which certainly is another fundamental factor that affects the endogenous vari-
ables of the model in the long run, in addition to the population dynamics considered here.

In Table 1 below we summarize all the results obtained in this section, while in Fig-
ures 1-3 we illustrate our main results for the behavior of the two fundamental endogenous
variables of the model at the steady-state – the proportion of the total labor force em-
ployed in the industrial sector (ρ∞), and the per capita capital of the whole economy (k∞)
– as functions of the intersectoral differential population growth rate (∆n = nI − nA).
The theoretical values of the parameters considered in these figures are the following:
α = 0.3, β = 0.4, s = 0.15, δ = 0.6, and γ = 0.001. All of them but gamma were based
on the original work of Mas-Colell and Razin (1973). This set of parametes implies that
λ = 0.2, θ = 0.8, σ ≈ 0.0026, n̄A ≈ 0.0043, ñA ≈ 0.0153, and n̂A ≈ 0.0061. Finally,
we note that the values chosen for the parameter nA in Figures 2 and 3 below are also
theoretical, aiming to show the properties of the model.

In Figure 1 we plot ρ∞(∆n), which is given by (16). Note that ρ∞(∆n) is always
an increasing function, what illustrates the result of Proposition 3, i.e. the larger the
population growth rate in the industrial sector is (nI) in relation to the agricultural
sector (nA), the larger is the proportion of the total labor force employed in the industrial
sector (ρ∞). Compared with the original model (∆n = 0), the proposed model implies
in a higher ρ∞ if nI > nA, and in a lower ρ∞ if nI < nA.

In Figure 2 we plot k∞(∆n), given by equation (17), for the case where nA = 0.1 >

ñA, since by Table 1 the behavior of this function in a neighborhood of ∆n = 0 also
depends on nA. On the left graph in this figure, we can see that k∞(∆n) has a maximum
for some ∆n∗ > 0; and in the graph on the right we identify a neighborhood of the origin
that guarantee that k∞(∆n) is an increasing function, as stated in Proposition 6, and in
Table 1 for this case. Then, for a high value of nA, nA > ñA, the proposed model implies
in a higher k∞ if nI > nA, provided ∆n << 1, and in a lower k∞ if nI < nA, when



Table 1: Impact of a marginal increase in ∆n in steady-state

Variable at the steady-state Signal of the impact Additional Condition

ρ∞ +
m∞ −
wI

∞
−

wA
∞
(*) + (−) nA > n̄A (nA < n̄A)

w∞ −
kI
∞

−
kA
∞
(*) + (−) nA > n̄A (nA < n̄A)

k∞(*) + (−) nA > ñA (nA < ñA)
yI
∞
(*) + (−) nA > n̂A (nA < n̂A)

yA
∞
(*) −

p∞(*) − nA > n̄A

y∞ ?

(*) Valid in a neighborhood of ∆n = 0.

Figure 1: Proportion of the total labor force employed in the industrial sector at the
steady-state (ρ∞) as a function of the intersectoral differential population growth rate
(∆n = nI − nA).

Figure 2: Per capita capital at the steady-state (k∞) as a function of the intersectoral
differential population growth rate (∆n = nI − nA), considering nA = 0.1 > ñA.



compared with the original model (∆n = 0). However, if nI >> nA, the new per capita

capital may be lower than in the case when nI = nA.
Finally, in Figure 3 we plot k∞(∆n) for the case where nA = 0.01 < ñA. On the

left graph in this figure, we can see that k∞(∆n) has a maximum for some ∆n∗ < 0;
and in the graph on the right we identify a neighborhood of the origin that guarantee
that k∞(∆n) is a decreasing function, illustrating the other scenario of Proposition 6. In
this case, for a low value of nA, nA < ñA, the proposed model implies in a lower k∞ if
nI > nA, and in a higher k∞ if nI < nA, provided |∆n| << 1, when compared with the
original model (∆n = 0). However, if nI << nA, the new per capita capital may be lower
than in the case when nI = nA.

Figure 3: Per capita capital at the steady-state (k∞) as a function of the intersectoral
differential population growth rate (∆n = nI − nA), considering nA = 0.01 < ñA.

5 Conclusions

In this work we generalized the Mas-Colell and Razin two-sector migration and
growth model, introducing two population growth rates, one for each sector. This allowed
us to determine a new dynamic for the aggregate population growth, and to study its
impact in the steady-state values of all the endogenous variables of the proposed model.

Firstly, we have proved that the proposed model has an unique and economically
feasible stable steady-state for the proportion of the total labor force employed in the
industrial sector (ρ∞), as well as for the per capita capital of the economy (k∞). Since all
the others endogenous variables of the model – wages, per capita capital, and per capita

outputs in each sector, per capita aggregate output, migration rate into the industrial
sector, and the price of the industrial good – depend on ρ∞ and k∞, they too converge
to a unique stable-steady state in the long run. Besides, if we consider equal population
growth rates in both sectors, the results of the original model are recovered.

Secondly, we obtained the signal of the impact of marginal changes in the differential
intersectoral population growth rate in the steady-state values of all the endogenous
variables implied by the model, ceteris paribus. This result is summarized in the Table 1 of
Section 4, and illustrated graphically for the variables ρ∞(∆n) and k∞(∆n) in a particular
case. Specially, we show that an increase in the intersectoral differential population



growth rate (what happens when the rate of the industrial sector increases in relation to
the rate of the agricultural sector) causes an increase in the proportion of the total labor
force employed in the industrial sector and in the per capita capital of the economy at
the steady-state, provided the population growth rate at the agricultural sector is higher
than a certain critical value.

Future research may consider the introduction of different production functions,
logistic population growth, imperfect capital mobility between the sectors, and techno-
logical progress into the model. Moreover, future works may compare the theoretical
results obtained here with empirical data.

Appendix - Omitted proofs

Proof of Proposition 1: The steady-states for ρ are obtained setting the right hand
side of equation (15) to zero, that is:

ρ̇ = 0 ⇔ p(ρ) = ∆nρ2 + (σ + γ −∆n)ρ− σ = 0. (27)

On one hand, if ∆n = 0, then (27) implies that ρ∞ = σ
σ+γ

= α(1−β)θ
(1−α)β(1−θ)+α(1−β)θ

.Besides,

this equilibrium is stable since ρ̇ ≷ 0 ⇔ p(ρ) ≶ 0, and σ, γ > 0.
On the other hand, if ∆n 6= 0,then (27) implies two values for ρ∞:

ρ1,2
∞

=
1

2∆n

[

−(σ + γ −∆n)±
√

(σ + γ −∆n)2 + 4σ∆n
]

, (28)

where ρ1
∞

(ρ2
∞
) is the equilibrium associated with the positive (negative) square root.

We begin considering ∆n > 0. In this case, Descartes’ Theorem (Gandolfo, 2010)
implies that the polynomial p(ρ) given by (27) has a positive and a negative real root,
and by inspection is easy to see that ρ1

∞
> 0, and ρ2

∞
< 0. Moreover, since p(ρ) is a

convex parabola, and ρ̇ ≷ 0 ⇔ p(ρ) ≶ 0, we have that ρ1
∞

> 0 is stable, and ρ2
∞

< 0 is
unstable. Clearly, ρ2

∞
is economically unfeasible, and can be discarded. Then, in order

to show that the positive root ρ1
∞

is indeed economically feasible, it remains to be shown
that it is also smaller than the unity. We do that considering two subcases. If ∆n = σ+γ,

(28) implies that ρ1
∞

=
√

σ
σ+γ

< 1, since σ, γ > 0. If ∆n 6= σ + γ, then we will show that

ρ1
∞

< 1 by contradiction. Considering ρ1
∞

≥ 1, and using (28), we get:
√

(σ + γ −∆n)2 + 4σ∆n ≥ σ + γ +∆n

⇒(σ + γ −∆n)2 + 4σ∆n ≥ (σ + γ +∆n)2

⇒4σ∆n ≥ 4σ∆n+ 4γ∆n

⇒γ ≤ 0

what cannot happen, since γ > 0 by hypothesis. So, in this subcase ρ1
∞

< 1, i.e., if
∆n > 0, then 0 < ρ1

∞
< 1.

Now, if we consider ∆n < 0, Descartes’ Theorem implies that the polynomial p(ρ)
has two positives real roots, such that 0 < ρ1

∞
< ρ2

∞
. Since in this case p(ρ) is a concave

parabola, ρ1
∞

is a stable equilibrium, while ρ2
∞

is an unstable equilibrium. In the following
we will show that ρ1

∞
< 1, and that ρ2

∞
> 1, concluding that also in this case the root ρ1

∞

is the unique economically feasible stable equilibrium. First consider, by contradiction,
that ρ1

∞
≥ 1. Then, (28) implies that:

√

(σ + γ −∆n)2 + 4σ∆n ≤ σ + γ +∆n.



If ∆n = −(σ + γ), then this inequality implies that (σ + γ)γ ≤ 0, what cannot happen,
since σ, γ > 0. If ∆n < −(σ + γ), then we get that a square root is equal to a negative
number, what is impossible. Finally, if −(σ + γ) < ∆n < 0, the inequality above implies
that γ ≤ 0, what is an absurd. Therefore, we conclude that indeed 0 < ρ1

∞
< 1.

Now, suppose that ρ2
∞

≤ 1. In this case, (28) implies that:

√

(σ + γ −∆n)2 + 4σ∆n ≤ −(σ + γ +∆n).

Clearly, if we consider −(σ + γ) ≤ ∆n < 0 in the above inequality we would get an
absurd. Finally, if ∆n < −(σ + γ), then the inequality above would imply that γ ≤ 0,
what is impossible. Therefore, we conclude that ρ2

∞
> 1, what completes the proof of the

proposition �

Proof of Proposition 2: From (14) we have that:

k̇ = 0 ⇔ kq(k, ρ) = k

[

λθβ
(

k

ρ

)β−1

− (nA + ρ∆n)

]

= 0, (29)

and then the model presents two steady states for the per capita capital: k1
∞

= 0, and:

k2
∞

= ρ∞

(

λθβ

nA + ρ∞∆n

)

1

1−β

> 0.

Since k̇ ≷ 0 ⇔ kq(k, ρ) ≷ 0, this implies that k̇ > 0 ⇔ 0 = k1
∞

< k < k2
∞
. Moreover,

k̇ < 0 if k > k2
∞

or if k < k1
∞
. Summing up all this information, we conclude that

the trivial equilibrium k1
∞

= 0 is unstable, while the non trivial one, k2
∞

> 0, is stable.
Therefore, considering ρ∞ given by (16), we get the desired result �

Proof of Proposition 3: Considering ρ = ρ∞(∆n) in the polynomial in (27), and
deriving it implicitly we get:

ρ2
∞
+ 2∆nρ∞

∂ρ∞

∂∆n
− ρ∞ + (σ + γ −∆n)ρ∞ − σ = 0,

and this implies that:
∂ρ∞

∂∆n
=

ρ∞(1− ρ∞)

2∆nρ∞ + σ + γ −∆n
. (30)

Regardless of the value of ∆n, the numerator of the right hand side of (30) is positive,
since 0 < ρ∞ < 1. If ∆n 6= 0, we can plug (16) in the denominator of (30) and obtain
that:

2∆nρ∞ + σ + γ −∆n =
√

(σ + γ −∆n)2 + 4σ∆n > 0.

Now, if ∆n = 0, again using (16) we get:

∂ρ∞

∂∆n
=

γσ

(σ + γ)3
> 0,

since σ, γ > 0, and the result follows �



Proof of Corollary 1: Considering (11) at the steady state we have that w∞ = σ
γ
(ρ−1

∞
−

1). Besides:
∂m∞

∂∆n
= γ

∂w∞

∂∆n
= −

σ

ρ2
∞

∂ρ∞

∂∆n
< 0,

where we have applied Proposition 3 �

Proof of Proposition 4: From (6) at the steady state, and (17) we have that:

kI
∞

= θ
k∞

ρ∞
= θ

(

λθβ

nA + ρ∞∆n

)

1

1−β

.

Then, computing the partial derivative in relation to ∆n we obtain:

∂kI
∞

∂∆n
= −

(

1

1− β

)

kI
∞
ρ∞

nA + ρ∞∆n
= −

(

1

1− β

)

kI
∞
ρ∞

(1− ρ∞)nA + ρ∞nI

,

which is clearly negative, since ρ∞, β ∈ (0, 1), and kI
∞

> 0 �

Proof of Corollary 2: Applying Proposition 4 in wI given by (8) at the steady state
proves the result �

Proof of Proposition 5: Noting from (6) at the steady state that kA
∞

= (1 − θ) k∞
1−ρ∞

,

and that k∞ = 1
θ
kI
∞
ρ∞, we can write kA

∞
as:

kA
∞

=
(1− θ)

θ

ρ∞

1− ρ∞
kI
∞
.

Taking the partial derivative in relation to ∆n we get:

∂kA
∞

∂∆n
=

1− θ

θ

1

(1− ρ∞)2

[

kI
∞

∂ρ∞

∂∆n
+ ρ∞(1− ρ∞)

∂kI
∞

∂∆n

]

=
1− θ

θ

1

(1− ρ∞)2

[

kI
∞
ρ∞(1− ρ∞)

(2ρ∞ − 1)∆n+ σ + γ
−

kI
∞
ρ2
∞
(1− ρ∞)

(1− β)(nA + ρ∞∆n)

]

=
1− θ

θ

kI
∞
ρ∞

(1− ρ∞)

[

1
√

(σ + γ −∆n)2 + 4σ∆n
−

ρ∞

(1− β)[(1− ρ∞)nA + ρ∞nI ]

]

.

Then, since 1−θ
θ

kI
∞
ρ∞

(1−ρ∞)
> 0, we must have that:

∂kA
∞

∂∆n
R 0 ⇔

(1− β)[(1− ρ∞)nA + ρ∞nI ]
√

(σ + γ −∆n)2 + 4σ∆n
R ρ∞.

Therefore, considering ∆n = 0, ρ∞ given by (16) at ∆n = 0, the definitions of σ and

θ, given by (7) and (12), respectively, and the continuity of ∂kA
∞

∂∆n
at ∆n = 0, we get the

desired result �.

Proof of Corollary 3: Applying Proposition 5 in wA given by (8) at the steady state
proves the result �



Proof of Proposition 6: Taking the partial derivative of k∞ = 1
θ
kI
∞
ρ∞ in relation to

∆n we get that:

∂k∞

∂∆n
=

1

θ

[

kI
∞

∂ρ∞

∂∆n
+ ρ∞

∂kI
∞

∂∆n

]

=
1

θ

[

kI
∞
ρ∞(1− ρ∞)

(2ρ∞ − 1)∆n+ σ + γ
−

kI
∞
ρ2
∞

(1− β)(nA + ρ∞∆n)

]

=
1

θ
kI
∞
ρ∞

[

1− ρ∞
√

(σ + γ −∆n)2 + 4σ∆n
−

ρ∞

(1− β)[(1− ρ∞)nA + ρ∞nI ]

]

,

and since 1
θ
kI
∞
ρ∞ > 0, we get:

∂k∞

∂∆n
R 0 ⇔

(1− β)[(1− ρ∞)nA + ρ∞nI ]
√

(σ + γ −∆n)2 + 4σ∆n
R

ρ∞

1− ρ∞
.

Then, considering ∆n = 0, ρ∞ given by (16) at ∆n = 0, and the definitions of σ and θ,
by the continuity of ∂k∞

∂∆n
at ∆n = 0 we get the result �

Proof of Proposition 7: Recalling that yI
∞

= ρ∞(kI
∞
)β, and computing its partial

derivative in respect to ∆n, we obtain:

∂yI
∞

∂∆n
= ρ∞(kI

∞
)β

[

1− ρ∞
√

(σ + γ −∆n)2 + 4σ∆n
−

β

(1− β)

ρ∞

[nA + ρ∞∆n]

]

,

and since ρ∞(kI
∞
)β > 0, we get that:

∂yI
∞

∂∆n
R 0 ⇔

(1− β)

β

[(1− ρ∞)nA + ρ∞nI ]
√

(σ + γ −∆n)2 + 4σ∆n
R

ρ∞

1− ρ∞
.

Then, considering ∆n = 0, ρ∞ given by (16) at ∆n = 0, and the definitions of σ and θ

in the condition above, by the continuity of ∂yI
∞

∂∆n
at ∆n = 0 we get the result �

Proof of Proposition 8: Since yA
∞

= (1 − ρ∞)(kA
∞
)α, we must have ∂yA

∞

∂∆n
< 0 if 0 <

nA ≤ n̄A by Propositions 2 and 5. For the case nA > n̄A, taking the partial derivative of
yA
∞

in respect to ∆n we get:

∂yA
∞

∂∆n
= (1− ρ∞)(kA

∞
)α

[

α(1− ρ∞)2 − ρ∞
√

(σ + γ −∆n)2 + 4σ∆n
−

α

(1− β)

ρ∞(1− ρ∞)2

[nA + ρ∞∆n]

]

,

what implies that:

∂yA
∞

∂∆n
R 0 ⇔

α(1− ρ∞)2 − ρ∞
√

(σ + γ −∆n)2 + 4σ∆n
R

α

(1− β)

ρ∞(1− ρ∞)2

[(1− ρ∞)nA + ρ∞nI ]
.

Replacing ∆n = 0, and ρ∞ = σ
σ+γ

in this expression we get:

∂yA
∞

∂∆n
R 0 ⇔ αγ2 − σ(σ + γ) R

αγ2σ

(1− β)nA

.



But since nA > n̄A = σ
1−β

, we have that αγ2σ

(1−β)nA
< αγ2, and then it is always true that:

αγ2 − σ(σ + γ) <
αγ2σ

(1− β)nA

< αγ2.

Then, if nA > n̄A, we also have ∂yA
∞

∂∆n
< 0. Finally, considering the continuity of ∂yA

∞

∂∆n
at

∆n = 0, the proposition is proved �

Proof of Proposition 9: Simply apply propositions 4 and 5 in the expression (3), and
the result follows �
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