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Abstract
The Braess paradox persists if drivers play mixed strategies. In equilibria in mixed strategies, traffic flows are almost

the same as in equilibria in pure strategies.
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1. Introduction

In principle, additional road connections can reduce traffic flows and travel times if drivers
follow specific instructions which route to take. However, an additional road may increase
or not all affect travel times if it is left to the drivers what route to take. This intriguing
possibility was demonstrated by Braess (1968)1 and became known as Braess paradox. Once
it was pointed out, the phenomenon has gained ample attention among experts in traffic
planning, operations research, economics and game theory as well as by computer scientists
concerned with the flow and routing of information in computer networks. It was also
reported in the popular press after some actual occurrences.

The present note deals with the case of random choices and addresses the question
whether such choices would undo the Braess paradox. The basic model is like Braess’s orig-
inal example, but with 6000 rather than 6 drivers. It turns out that the Braess paradox
persists if drivers play mixed strategies. Moreover, in each equilibrium in mixed strategies,
traffic flows are almost the same as in the corresponding equilibrium in pure strategies.

2. Basic Model

Every hour, N = 6000 car drivers go from A to D. A car driver wants to get from A to D as
fast as possible. Travel time is measured in minutes. A driver’s utility is given by u(t) = −t
if it takes the driver t minutes to go from A to D. Therefore, the driver’s objective is to
minimize t. A driver has the choice between several routes. The driver’s travel time depends
on the chosen route and the choices of all others. The drivers play a strategic game where
each driver chooses a route from A to D and driver i’s payoff is −ti where ti is i’s travel time.

2.1. Originally, a driver has the choice between two routes, ABD and ACD, as depicted in
Figure 1, with the following travel times:

• It takes tAB = 1

100
· x minutes to go from A to B

if x cars per hour use road AB.
• It takes tBD = 50 + 1

1000
· x minutes to go from B to D

if x cars per hour use road BD.
• It takes tAC = 50 + 1

1000
· x minutes to go from A to C

if x cars per hour use road AC.
• It takes tCD = 1

100
· x minutes to go from C to D

if x cars per hour use road CD.
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Let xABD be the number of drivers who choose route ABD each hour and xACD the
number of drivers who choose route ACD each hour. Note that for each of the two routes,
the travel time 1

100
· x+ 50 + 1

1000
· x is increasing in x.

1Braess et al. (2005) is an English translation of the original paper.



Suppose that xABD ̸= xACD, w.l.o.g. xABD > xACD. Then xABD > 3000 > xACD, hence
xABD > xACD + 2. If a driver switches from ABD to ACD, then xACD + 1 cars use the
latter route and the driver is better off than before the switch. Therefore, (xABD, xACD)
with xABD > xACD cannot be an equilibrium outcome. Similarly for xABD < xACD. We
have shown that a Nash equilibrium in pure strategies requires xABD = xACD = 3000.

xABD = xACD = 3000 is a Nash equilibrium outcome, indeed. For suppose that one driver
deviates, say switches from ABD to ACD. Then there are 3001 cars on route ACD and the
driver is worse off. The equilibrium travel time is 1

100
·3000+50+ 1

1000
·3000 = 30+50+3 = 83.

2.2. Suppose that a new one-way road from B to C opens as depicted in Figure 2, so that
now a driver can choose between three routes to go from A to D: ABD, ACD and ABCD.

• It takes tBC = 10 + 1

1000
· x minutes to go from B to C

if x cars per hour use road BC.

Let xABCD be the number of drivers who choose
route ABCD each hour.
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First, there exists a Nash equilibrium in pure strategies with xABD = xACD = xABCD = 2000.
Namely, if xABD = xACD = xABCD = 2000, then

4000 cars use road AB,
4000 cars use road CD,
2000 cars use road BD,
2000 cars use road AC,
2000 cars use road BC.

The travel times are
tABD = tACD = 1

100
· 4000 + 50 + 1

1000
· 2000 = 40 + 50 + 2 = 92 and

tABCD = 1

100
· 4000 + 10 + 1

1000
· 2000 + 1

100
· 4000 = 40 + 10 + 2 + 40 = 92.

By the argument given in 2.1, nobody wants to switch between ABD and ACD. If a
driver switches from ABD to ABCD, then the traffic on AB remains the same. But there
is one more car using BC and CD. If a driver switches from ACD to ABCD, the effect is
analogous. Similarly for reverse switches. This shows the claim.

Second, it follows immediately from mutually best responses, that in equilibrium, travel
times for two routes differ at most by 2/100 + 1/1000.

2.3. Suppose that the one-way road from B to C is replaced by a two-way road as in Figure
3, so that travel both from B to C and from C to B is possible. Then a driver can choose
between four routes to go from A to D: ABD, ACD, ABCD, and ACBD.



• Like before, it takes tBC = 10 + 1

1000
· x minutes to go

from B to C if x cars per hour go from B to C.
• It takes tCB = 1

1000
· x minutes to go from C to B if x

cars per hour go from C to B.
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Figure 3
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Let xACBD be the number of drivers who choose route ACBD each hour. It turns out
that there exists a Nash equilibrium with xABD = xACD = xABCD = 2000, xACBD = 0.
Namely, we know from 2.2 that there are no beneficial switches between routes ABD, ACD
and ABCD if xABD = xACD = xABCD = 2000. It remains to be shown that nobody wants to
switch to route ACBD. A switching driver has to take roads AC and BD, with total travel
time exceeding 100. The driver would be worse off and, therefore, does not want to switch.

3. Mixed Strategies

In this section, drivers may choose routes randomly, that is play mixed strategies. Each
driver’s objective is to minimize her expected travel time.

3.1. Let us start with the original road network. Recall that for each of the two routes ABD
and ACD, the travel time is 1

100
·x+50+ 1

1000
·x when x cars use the route. Hence we obtain

the expected travel time, if x is replaced by the expected number of cars. We find that each
driver randomizing 50:50 constitutes a Nash equilibrium in mixed strategies, with expected
travel time 83.

For suppose that N − 1 drivers play the 50:50 strategy. Without the remaining player,
the expected number of cars on each of the routes ABD and ACD is 1

2
(N − 1). If the

remaining player chooses one of the routes, then the expected number of cars on that route
is 1

2
(N − 1) + 1. Hence this driver is indifferent between the two routes and randomizing

50:50 is a best response. In that equilibrium, the expected number of cars for each route is
1

2
N = 3000 and, consequently, the expected travel time is 83.

Next we are going to show that there is a unique completely mixed Nash equilibrium.
Let pi ∈ (0, 1) be the probability that driver i chooses route ABD. Consider two drivers i
and j. Let Ei denote the expected number of cars taking route ABD, not counting i, and
Ej denote the expected number of cars taking route ABD, not counting j. Moreover, let Eij

denote the expected number of cars taking route ABD, not counting i and j.



Since pi ∈ (0, 1) is a best response for i, driver i is indifferent between the two routes,
which is the case if and only if Ei =

1

2
· (N − 1). Similarly, Ej =

1

2
· (N − 1) has to hold. But

Ei = pj + Eij and Ej = pi + Eij. Hence Ei = Ej implies pi = pj. Since i and j were chosen
arbitrarily, all drivers randomize the same way. That is, there exists p ∈ (0, 1) such that
each driver chooses route ABD with probability p. Then for any driver i, Ei = p · (N − 1)
holds and Ei =

1

2
· (N − 1) implies p = 1/2.

There also exist partially mixed equilibria where the expected travel volume on each
route is 3000. Furthermore, there exist Nash equilibria where the expected travel volume is
not the same for both routes. Let again pi denote the probability that driver i chooses route
ABD. Let Ei denote again the expected number of cars taking route ABD, not counting i.
Suppose that 151 drivers choose pi = p = 1

100
, 2998 drivers choose pi = 1 and 2851 drivers

choose pi = 0.
For a randomizing player, Ei = 150p+ 2998 = 2999.5 = 1

2
· (N − 1).

For a player choosing ABD, Ei = 151p+ 2997 = 2998.51 < 1

2
· (N − 1).

For a player choosing ACD, Ei = 151p+ 2998 = 2999.51 > 1

2
· (N − 1).

Hence each driver plays a best response against the joint strategy of the others. The expected
number of cars taking route ABD is 2999.51 whereas the expected number of cars taking
route ACD is 2851 + 151 · (1− p) = 2851 + 151 · 0.99 = 3000.49.

This example shows that in some Nash equilibrium, xABD, the expected travel volume on
route ABD can be different from xACD, the expected travel volume on route ACD. However,
the difference is rather small: |xABD − xACD| ≤ 2 in any Nash equilibrium. This follows
from the fact that xABD ∈ [2999, 3001] and xACD ∈ [2999, 3001] in any Nash equilibrium.
For instance, suppose that xABD > 3001. Then for every driver i, Ei > 3000 and pi = 0 is
i’s unique best response against the joint strategy of the other players. Thus a joint strategy
yielding xABD > 3001 is not a fixed point of the best response correspondence. Hence it is
not a Nash equilibrium.

3.2. Next let us reconsider the road system after road BC has been added. We are going to
show that at every Nash equilibrium, xABD, xACD ∈ (1998, 2003) and xABCD ∈ (1996, 2002).
To begin with, it follows by the previous argument that in any Nash equilibrium,

xABD, xACD ∈ [(6000− xABCD)/2− 1, (6000− xABCD)/2 + 1] (1)

when routes ABD, ACD and ABCD are available. Further, the inequalities
10 + 1

1000
(xABCD + 1) + 1

100
(xABCD + xACD + 1) ≥ 50 + 1

1000
xABD,

10 + 1

1000
xABCD + 1

100
(xABCD + xACD) ≤ 50 + 1

1000
(xABD + 1)

have to hold in equilibrium, to rule out beneficial switches from ABD to ABCD or vice versa.
It follows that

10+ 1

1000
xABCD+ 1

100
xABCD+ 1

100
xACD ∈ [50+ 1

1000
xABD− 1

1000
− 1

100
, 50+ 1

1000
xABD+ 1

1000
]

or 1

1000
xABCD + 1

100
xABCD + 1

100
xACD ∈ [40 + 1

1000
xABD − 1

1000
− 1

100
, 40 + 1

1000
xABD + 1

1000
] or

11 · xABCD + 10 · xACD ∈ [40000 + xABD − 11, 40000 + xABD + 1]. (2)

First, (1) and (2) imply
11 · xABCD + 10 · [(6000− xABCD)/2− 1] ≤ 40000 + [(6000− xABCD)/2 + 1] + 1 or



6.5 · xABCD + 30000− 10 ≤ 43000 + 2 or 6.5 · xABCD ≤ 13000 + 12, hence
xABCD < 2000 + 2.
Second, (1) and (2) imply

11 · xABCD + 10 · [(6000− xABCD)/2 + 1] ≥ 40000 + [(6000− xABCD)/2− 1]− 11 or
6.5 · xABCD + 30000 + 10 ≥ 43000− 12 or 6.5 · xABCD ≥ 13000− 22, hence

xABCD > 2000− 4. To summarize,

xABCD ∈ (1996, 2002) (3)

has to hold in every Nash equilibrium. (1) and (3) imply

xABD, xACD ∈ (1998, 2003). (4)

3.3. Finally, suppose that all roads AB, AC, BD, CD, BC and CB exist and tCB ≥ 0 where
t stands for expected travel time. Then in every Nash equilibrium, xACBD = 0; that is, road
CB is not used. For suppose xACBD > 0. Then tACBD ≥ tAC + tBD, tABD = tAB + tBD and
tACD = tAC+tCD. A driver chooses route ACBD only if switching to route ABD or route ACD
does not shorten the expected travel time. A switch to ABD increases the expected travel
time on route ABD by 1/100. If the switch is not beneficial, then tABD + 1/100 ≥ tACBD.
Hence tAB+tBD+1/100 ≥ tAC+tBD and tAB > tAC−1/100 > 49. It follows that xAB > 4900.
By the same token, xCD > 4900. Consequently, xAC < 1100 and xBD < 1100. It follows that
xBC > 3800 and tCB < 1100. Therefore, tABCD = tAB + tBC + tCD ≥ 49 + 13.8 + 49 = 111.8
whereas tACBD = tAC + tCB + tBD < 51.1 + 1.1 + 51.1 = 103.3. This implies that taking
route ABCD with positive probability cannot be part of a best response for any player —
which contradicts the fact more than 3800 players make such a choice so that xBC > 3800
obtains.

4. Conclusion

Introduction of mixed strategies causes only slight changes in expected equilibrium travel
times so that, by and large, the Braess paradox remains intact. In any Nash equilibrium
(in pure or mixed strategies), the expected travel times are close to 83 minutes when the
original road system is in place. After addition of road BC, the expected equilibrium travel
times are close to 92 minutes. Further addition of the fast road CB has no effect: That road
is never used.
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