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Abstract

The motivation of this note is to show how singular values affect local uniqueness. More precisely, Theorem 3.1
shows how to construct a neighborhood (a ball) of a regular equilibrium whose diameter represents an estimate of local
uniqueness, hence providing a measure of how isolated a (local) unique equilibrium can be. The result, whose
relevance in terms of comparative statics is evident, is based on reasonable and natural assumptions and hence is
applicable in many different settings, ranging from pure exchange economies to non-cooperative games.
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1 Introduction

Consider an equilibrium equation f(p,q) = 0, where p and ¢ denote the unknowns and
parameters, respectively. Local uniqueness and continuous (smooth) dependence of the
unknowns on the parameters are at the heart of comparative statics. This means that,
roughly speaking, the (locally unique) solution p changes continuously (smoothly) as
the parameter ¢, belonging to the parameter set (), varies under a continuous (smooth)
perturbation.

More precisely, at a point p belonging to the solution set of ¢, there exists a neigh-
borhood N of (p,q) such that the projection onto the second factor, pr : (p,q) — g,
restricted to N, is an homeomorphism (diffeomorphism).

This regularity property has been extensively studied in the literature in different
settings, in particular after the introduction of the differentiable viewpoint in the seminal
paper by Debreu (1970). The study of the equilibrium set £ = {(p, q)| f(p,q) = 0} and
the properties of the projection pr : E — @, (p,q) — g, allows to establish natural
connections between economic and mathematical properties: e.g., the surjectivity of pr
(existence), the cardinality of the set {pr='(q)} (uniqueness/multiplicity), the continuity
of the correspondence of pr=! (structural stability).

Under the very restrictive hypothesis of global uniqueness, i.e. when the set pr=1(q)
is a singletone set for every parameter ¢, the whole solution set E is homeomorphic
(diffeomorphic) to the parameter set.

Multiplicity, on the other hand, is deeply related to the set of singular values of the
projection. Even if this set has measure zero in () under certain assumptions, its compo-
nents of codimension-one and codimension-two can be relevant. Consider, for example,
redistribution policies, represented by continuous perturbations of the parameters. In
such an instance, it is crucial not to cross the singular set to avoid catastrophes and
undesiderable welfare effects, that can be determined by prices multiplicity. For example,
Figure 1, taken from (Dierker, 1989), shows an example of two policies sharing the same
target, but whose (different) outcomes depend on the order of use of resources.
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Figure 1: Two policies sharing the same target but with different outcomes (taken from
(Dierker, 1989)).

In his remarkable survey of regular economies, Dierker (1982) emphasises the useful-
ness of local uniqueness and continuity of equilibrium price adjustment for the purposes of
comparative statics, price computation and the study of core correspondence. Moreover,
he points out that knowledge of the singularities of the projection is rather incomplete
and much research has to be done in this direction: “A detailed study of the singularities
of pr, however, seems to require a considerable amount of mathematical sophistication.



It appears desirable that, in addition to a general, abstract, mathematical study of the
singularities of pr, some particular types of singularities be examined in their relation to
specific economic phenomena.” (Dierker, 1982).

The codimension-two components also play a key role, as highlighted in this note,
since they have an impact on the topology of the parameter set. The intuition behind
this is that they can be seen as holes in ). The consequences of this property have not,
to the best of my knowledge, been analyzed in the literature, which has traditionally
focused on the codimension-one component, the only one that can disconnect Q).

The motivation of this short note is to highlight how the singular values can affect the
size of local uniqueness. This information can be used to estimate how isolated a (local)
unique equilibrium can be. More precisely, Theorem 3.1 shows a sufficient condition
that enables to construct a neighborhood N such that the projection restricted to N is
injective. This means that local uniqueness is satisfied in V.

This result can be applied to different settings, characterized by multiplicity and
multiple roots associated to critical solutions. For example, one can appraise potential
distorsive effects (e.g. transfer paradox Balasko (1978)) of redistributive policies Garrat
and Goenka (1995) in exchange and production economies Balasko (2011). This is due to
the fact that a common geometric structure is present. The same structure, with suitable
changes, can be found, e.g., in the case of infinite economies Balasko (1997); Chichilnisky
and Zhou (1998) or non-cooperative game theory Govindan and Wilson (2001).

This paper is organized as follow. Section 2 recalls the main definitions and tools.
Section 3 is devoted to the proof of the main result.

2 Definitions

In this section the main definitions and properties are outlined for the reader’s conve-
nience. For an introduction to covering spaces, the reader is referred to Massey (1991).

The analysis is focused on the projection map pr : E — . The set () denotes
the parameter set and E is the equilibrium set, i.e. = {(p,q)| f(p,q) = 0}, where
f(p,q) = 0 represents an equilibrium condition to be satisfied by the unknowns p, given
the constraints and the primitives of the model.

Suppose that both E and () are smooth manifolds where we can measure the length of
curves and the distance between points. More precisely, given a piecewise differentiable
curve 7 : [0, 1] — E joining two points #; and Zo in F, namely 7(0) = z; and (1) = o,
we can compute the length of 4 denoted by Lg(%) and the distance

dp(Z1,22) = inf  Lg(7). (1)
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between z; and 5, where f‘jhjg denotes the set of piecewise differentiable curves with
endpoints Z; and Z,. Similarly, we can compute the length Lg(7) of a piecewise dif-
ferentiable curve 7 : [0,1] — @ joining two points z; and xs of @ and their distance
dQ (l’ 1, £L‘2) .
In this paper we assume that the following properties are satisfied:
(i) pr is smooth;

(ii) pr is proper;



(iii) pr is a length decreasing map, i.e.
Lg(¥) > Lg(pro7), V¥:10,1] — E. (2)
Consequently, by (1), pr is distance decreasing, namely

dg(Z,9) = do(pr(z),pr(y)), Vi,y € E. (3)

(iv) the ball centered at a point & € E (resp. = € Q) of radius 7 (resp. r), namely

Bi(7) =d{:& € E | dp(y,2) <7} (resp. Bi(z) ={y € Q | do(y,x) <r})is
connected.

All these are reasonable and natural assumptions. Smoothness is an approximation of
continuity under suitable topologies, properness also has a nice economic meaning: for
example, it represents the idea of scarcity and desirability. Assumption (iii) and (iv) have
a very intuitive meaning. Indeed it is expected that a projection does not increase the
length of curves and that the metrics chosen satisfy the connectedness property. As a
specific and natural example, one can take a Riemannian metric gg on @ (if @ is a subset
of some Euclidean space, gg can be the flat metric as is the case, e.g., in literature related
to the Edgeworth box) and the pull-back metric gz = pr*gg on E. Then pr is length
decreasing if we endow () and E with the length functions associated to these metrics.

In this setting, the application of the inverse function theorem (IFT) and Sard’s
theorem to pr leads to standard regularity properties enjoyed by an open and dense
subset of the parameter space, denoted by R. More precisely, it is not hard to prove
that pri,—1(r) : pr-'(R) — R is a covering map (see (Loi and Matta, 2010, Proposition
2.2)). Indeed the properness of pr is a sufficient condition to turn a surjective local
diffeomorphism into a covering map (see, e.g., (Loi and Matta, 2010, Proposition 2.3)).
We recall that a covering map between two topological spaces X and X is a continuous
surjective map such that each x € X admits a well-covered neighborhood, i.e., each x € X
has an open neighborhood U such that p~!(U) is a disjoint union of open sets in X, each
of which is mapped by p homeomorphically onto U.

The economic meaning behind the covering property is that it represents the well-
known property of smooth selection of equilibria. This is crucial for comparative statics
analysis and characterizes the regular values R of the projection. Its complement Q \ R
represents the projection of the critical equilibria. In a general equilibrium framework,
this set is a disjoint union of closed smooth manifolds: for a deep analysis, the reader
is referred to Balasko (1978, 1992, 2011) and Loi and Matta (2016). We will assume in
the sequel that the set of singular values, denoted by ¥ = UXF, is the union of closed
manifolds, possibly singular, of codimension k, with k greater or equal to 1. Hence 3!
denotes the component which disconnects the parameter set. Literature is usually focused
on Y! as the main cause of catastrophes. But Y2 affects R’s topology in a relevant way,
as we will see in Theorem 3.1 (see also Remark 3.1 below).

3 Main result

Let € R and let ', be the set of non contractible loops v : [0,1] — R, 7(0) =
7(1) = x. Notice that the image of ~ lies in a connected component K, of R containing
x. Let

m, = inf Lg,(y) >0 (4)
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be the nonnegative number which measures the length of the minimal loop of all the non
contractible closed curves in K, based at z. If no ¥ component belongs to the connected
component of @ \ X! containing z, then m, = 0. It could be said in a suggestive way
that X2 are “holes” in K, iff m, # 0.
Let us also define
d, = dg(z,X") = inf dg(z,0). (5)

oexl

The positive number d, measures the distance between x and the boundary of K, which
corresponds to X!, This distance is well-defined since X! is closed in @, being the pro-
jection of a closed set via a proper map.

The following theorem uses the information so far to construct a neighborhood N of
Z such that pr|y is injective, i.e. where one has local uniqueness.
Theorem 3.1 Let us assume assumptions (i)-(iv) above are satisfied. Let x € R and
T € pr-i(x). Let r, be the positive real number defined as

3d, if my =0
Ty =
min(mg, d;) if m, # 0.

where m, and d, are given by (4) and (5) respectively. Then pry, . is injective.
3

Proof: Denote by K, the connected component of pr~'(R) containing #. Then, being
E and @ smooth manifolds, by (Massey, 1991, Ch. 5, Lemma 2.1) i, K, > K,
is a covering map. If m, = 0 then K, is simply-connected and hence Prig, (Massey,
1991, Ch. 5, Exercise 6.1) is a diffeomorphism. Notice that by (iv) By, (z) is connected
and hence By, (x) C K,. Moreover since by (3) pr is distance decreasing one gets that
pr(By, (%)) C By, (z) C K, and hence By, (%) C K,. It follows that PTs,. o) = PT|Ba, (2)
is injective. ’

Let m, # 0. Assume, by contradiction, that ¥; and T, are two distinct points in
Brz (), rp = min(my, d;), such that pr(Z;) = pr(Z,) = z. Let [z, s, denote the set of
piecewise differentiable curves 7 : [0,1] — Br= (Z) with endpoints #; and Z5. Notice that
Tz, # 0 by assumption (iv). Then, for each 4 € T, z,, the curve

y=proy:[0,1] — K,

is a piecewise differentiable loop based on x. By (Massey, 1991, Ch. 5, Theorem 4.1)
each of these loops is non-contractible and hence by (4) one has Lq,, () > m,. It follows,
by (1) and (2), that

dp(Z1,T2) = inf L4, (3) > inf Lg,(7) = my > 7s.
Y€ 7, 2 v€ls

On the other hand, by the triangle inequality,
dE(i’l,i’Q) < dE(jl,i’) + dE<j,.i‘2) = — 4+ =2 = =Ty < Ty,
yielding the desired contradiction. U

Remark 3.1 The key idea behind the proof of the theorem is, roughly speaking, as
follows. If K, is the connected component of R containing z, the set ¥? are “holes”



inside K. If K, did not contain holes, then it would be simply connected and hence the
solution set would be singletone (global uniqueness) for every parameter in K, if one
restricts pr to the connected component K, of pr~'(R) containing #. On the other hand,
if K, contains holes then m, # 0, namely one has to be careful with the non-contractible
loops by taking the ball centered at Z of radius min(d,, m,).

Remark 3.2 The example of continuous perturbations provided in the Introduction
highlights the role played by the codimension-one component of the singular values in
determining ”catastrophes”, in a smooth selection setting. The main idea of the paper
is to explain how the codimension-two component affects the size of local uniqueness. In
particular, a variation (discrete or continuous) of the parameter affects d, and m,, and
hence this size: therefore, the main result, by estimating the loneliness of the equilib-
rium, can also provide a clue to the magnitude of potential effects caused by a shift in
the equilibrium price brought about by a change in parameters.

Remark 3.3 The diameter of the ball %= (Z) represents a sufficient condition that ensures
injectivity but it is does not maximize the size of the ball (if m, # 0). It can be seen
as an estimate of local uniqueness and a measure of how isolated is a local equilibrium,
providing us with a possible answer to the question raised in the title of this note.
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