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Abstract

The implementation of the EU ETS in 2005 led to the establishment of a price that enables manufacturers to realize
the impact of their activities on the environment clean. There are no items in this day, since the creation of the
European carbon market, which has focused on the analysis of volatility transmission between different investment
horizons. The purpose of this paper is to fill this gap in the literature. we analyze the volatility of the price of carbon
quota (EUA), by studying linear and nonlinear causal relationships of wavelet components between the different
volatilities that we captured at different time scales. we initially conducted the decomposition of the EUA price
volatility at different time-frequency interval using a wavelet approach. Our study will be to examine whether the
volatility is transmitted from the high-frequency structure of the carbon price in the low frequency. Our results show
an intra-structural dependance in carbon price volatility. We detect instability in the volatility of carbon and observe
the existence of a bidirectional relationship from high frequency traders to low frequency traders. Our study showed
that high-frequency shocks yields carbon price can have a significant impact beyond their Fontiers and touch the low
frequency structure associated with long-term traders
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1 Introduction

Just after the Kyoto protocol in 1995, a large platform containing the European carbon
market quota was implemented to fight against the emission of greenhouse gas emissions.
The balance between supply fixed carbon quota and flexible demand gave birth to a car-
bon price.

The purpose of this article is to analyze the structure of the quota carbon price by
studying the causal relationship between different returns and volatilities captured at
different time scales. We investigate whether a relationship exists between the different
frequency bands of the carbon price quota containing the behavior of different players
in the market. We investigate if there is a transfer of volatility between the bands from
agent activity as they speculate in the short, medium, and long term.

The study conducted by Nsouadi et al (2013) has shown that stakeholders agents
on the carbon market do not have the same behavior. Based on these results, we want
to contribute to the work on the determinants of the carbon price made by Mansanet-
Bataller et al. (2007) and Alberola et al. (2008) checking if there are interactions between
the bands containing the behavior of different agents to determine the CO2 price.

So far; no research articles have focused on the return and volatility transmission be-
tween the different frequency of bands of the CO2 price. This paper aims to fill this gap in
the literature. We analyze the causal relationships and the nature (linear, and non-linear)
between different trading frequencies.

In this study, we use the wavelet methodology to investigate the dependence structure
of EUA (European Union Allowance) at different time scales. The wavelet multiscale
decomposition allows simultaneous analysis in the time and frequency domain.

The powerful wavelet analysis approach is model-free and it also helps us uncover
interactions that the other econometric model cannot easily provide. Multiscale wavelet
decomposition could become a valuable means of exploring and forecasting the complex
dynamics of economic time series, as it allows for temporal and frequency analysis at the
same time.

The wavelet analysis has been applied in several areas of economics. Davidson et
al.(1997) have applied wavelet to find semi-parametric regression for study commodity
price behavior. Connor and Rossiter (2005) are precursors for estimating price correla-
tions based on scale decomposition of time series using wavelets on commodity markets.
Recently, Naccache, T (2011) has used wavelets to study the correlation between oil prices
and economic activity.

The "palette" of causality tests include the linear Granger test (Granger,1969) which
assumes a parametric, linear model for the conditional mean, and, Hiemstra and Jones
(1994) which proposed a causality-in-probability test for nonlinear dynamic relationships
which is applied to the residuals of vector autoregressions and it is based on the condi-
tional correlation integrals of lead-lag vectors of the variables.

Our study shows the existence in some cases of a bidirectional causal relationship between
the frequency bands while it is sometimes unidirectional depending on whether the rela-
tionship is linear or not.



The remainder of the paper is organized as follows: in sections 2 and 3, we present the
wavelet analysis and the data description. In sections 4 and 5, we analyze the wavelet de-
composition of EUA price and we test causality by frequency bands. Section 6 concludes
with some policy implications that discuss the relevance of our approach for markets pol-

icy.

2 Wavelet Analysis

Transitional series analysis of different lengths requires the use of temporal atoms whose
supports are of varying sizes. The wavelet transform is the best tool to decompose sig-
nals by a family of translated and dilated wavelets. The study of economic data through
wavelet is therefore to decompose the time series into components associated with differ-
ent scales of resolution. A wavelet ¢ € L?(R) is a function with zero mean:

/@Zz(t)dt —0. (1)

It is normalized to ||t ||= 1, and centered in the neighborhood of ¢ = 0. A family of
time-frequency atoms is obtained by dilating the wavelet 1) by a factor s, and the u by
translating:

1 t—u
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These atoms are Standard 1: |[1), s ||= 1. However, any function f(¢) € L*(R) can be
represented by the wavelet series expansion as follows:

f(t) = Z Uj.ngﬁj.k(t) + Zw]'.klﬁj.k(t) 4+ ...+ ij'.kiﬂj.k(t) + ...+ Zw]kwjk(t) (3)

Where the coefficients v, = >p @5 f(t) and wjp = X1 ¥, f(t) are respectively coeffi-
cients and scale wavelet coefficients and ¢;i, ¥, are scaling functions and wavelets that
meet the following conditions:

JOin(t)Pjn(t)dt = O g
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;% is the Kronecker coefficient (Kronecker delta). The scaling function, also known

as the "father wavelet', is presented as follows:
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The wavelet function, also called "mother wavelet" is defined as follows:
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Equation @ depends on two parameters, the scale (or frequency) and time. The
scale or dilation factor j controls the length of the wavelet, while the translation or lo-
cation parameter or location k indicates the portion of each non-zero vector wavelet basis.

Where k ranges from 1 to the number of coefficients in the specified level and J is the
number of multiresolution levels, (scales).

The multiresolution analysis (Mallat, 1989) of a signal f(¢) into orthogonal components
at different resolutions or scales can be defined as:

f(t) = S;(t) + Dj(t) + Dja(t) + ... 4+ Di(?) (7)
Each coefficient sets s; , d; , dj_1, ... dy is called a crystal, where coefficients from
level j = 1. .. J are associated with scale [2771 27].

Here, we apply the maximum overlap discrete wavelet transform (MODWT) as it allows
us to explore any sample size, align the coefficients with the original data and calculate the
wavelet variance and covariance effectively at different scales. Like the discrete wavelet
transform (DWT), MODWT produces a set of time-dependent wavelet and scaling co-
efficients with basis vectors associated with a location ¢ and scale j=[27"1 27] for each
decomposition level j = 1,... Jy. However, the MODWT is nonorthogonal and has a high
level of redundancy, retaining downsampled values at each level of the decomposition that
would be discarded by the DWT.

The coefficients S, (smooth) represent the smooth behaviour of the signal at the
coarse scale 27 (trend). The coefficients d; . , (details) coefficients represent deviations
from the trend; d;,d;_1.,...,d1.r capture the deviations from the coarsest to finest scale.
Smooth and detail component coefficients, S;; and d;, are found by integrating over
time, dt,

Sik = / Gjxf(t)dt (8)

Dj,= /@/)j.kf(t)dt (9)

To capture data, the wavelet basis function is stretched (or compressed) in accordance

with the scale parameter. To extract frequency information, we have a wide window of
information on the performance of movements of low frequencies and a narrow window of
information yields high frequency movements.
For more details, note that the scaling function integrates to 1 and is designed to recon-
struct the smooth parts and low frequency signal, while the wavelet function integrates
to 0 and it allows to write parts and detailed high frequency signal. Thus, by applying
an analysis of several resolutions broken level j, we can obtain a complete reconstruction
of the signal partitioned into a set of j frequency components, so that each element cor-
responds to a specific range of frequencies.

3 Data description

Our study focused on daily data from ECX[Y| for the period from 24 March 2008 until
19 October 2012 or 1010 comments on the future price of quota carbon (EUA) (Figure

'European Climate Exchange : www.theice.com/emissions.jhtml



in Appendix). To study the different relationships that can exist between different
investment horizons, we will link the meter to various risk factors. To do this calculation
return is, therefore, necessary to take into account sudden changes in our price. The
return performance of prices P; at t and t — 1, is defined as follows:

R, = Ln(P]:tl) (10)

Where P, is the closing level on day t. The volatility of EUA is defined as the absolute
value of the returns V; = |R; | as defined in Jensen and Whitcher (2000) and Gencay and
al (2002). The table || presents the descriptive statistics for the return and volatility of
carbon price.

Table I: Descriptive Statistics: Weekly Returns and volatility of EUA

Return of EUA Volatility of EUA

Mean -0.000597 0.0191
Median 0.000000 0.0139
Maximum 0.245247 0.245247
Minimum -0.116029 0.00000
Std.Dev 0.027118 0.019244
Skewness 0.563177 2.972282
Kurtosis 10.90372 2.972282
Jarque-Bera 2679.631 2.972282
Probability 0.000000 0.000000
Sum -0.602567 19.27881
Sum Sq.Dev 0.741293 0.373296
Observations 1009 1009

Considering descriptive statistics, we obtained positive coefficients of asymmetry of
return distributions and volatility, indicating that the increases in the market price of
carbon quota are more likely than decreases. It is the presence of leptokurticity (the
distribution of returns has a value of kurtosis higher than 3) in our return series while we
observe the presence of platykurtic distributions in the volatility series. There is thus a
rejection of the normality assumption by the Jarque-Bera test and find ourselves in the
same conditions to financial data.

4 Wavelet decomposition of EUA price

In this section, we investigate the effect of different levels of relationships that may exist
between different investment horizons. We offer a comprehensive study of carbon al-
lowance prices dynamics across and within all scales both for returns and volatility via



the multiscale decomposition methodology. This study is based on discrete wavelet trans-
form (DWT), in particular, the manual overlap discrete wavelet transforms (MODWT) in
multi-resolution analysis (MRA). If we consider a time series X with an arbitrary sample
size N, the j level wavelet (1;) and scaling (V;) are defined as:

Li1—1 _

VVjﬂf = Z hj,lXt—lmodN (11)
1=0

B Li—1

V},t = Z gj,lXt—lmodN (12)

1=0
Where h]l = ] t are the wavelet filters MODWT, and g;; = 9%t filters scales.
the MRA prov1des an additive decomposition through MODW'T Wthh is as follows:

X=> D;+85j (13)
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According to equation (13), at a scale of j, we obtain a set of coefficient D;, each with
the same number of samples (N) as in the original signal (X). These coefficients capture
the detail at each scale local fluctuations throughout a time series. The set of values S,
smooth or provided the overall trend of the original signal.

Adding D; to Sjo for j = 1,2,3, ..., jo gives an approximation more accurate to the
original signal. This additive form of reconstruction allows us to validate each of these
subsets (D;, S;,) separately and add validation to generate a single overall deduction.

Each scale corresponds to a frequency interval and it is associated with a range of time
horizons that span from several days to one yea]ﬂ To sum up, the EUA returns series are
decomposed at scale level j = 7, therefore containing up to yearly frequencies, while the
volatility series are analyzed up to the 7 = 4 scale, which is associated with a frequency
range of [0.8; 1.6] weeks [

Using daily data on the first level represents the dynamics of the 1-2 day period, as
demonstrated by Benhmad (2012,2013), the second scale represents the dynamics of the
2-4 day period, while the scales and 3,4,5,6 represent dynamic 4 to 8, 8 to 16, 16 to 32,
32 to 64 daily periods. This representation shows the time scale interpretation of wavelet
multiresolution analysis; each time scale corresponds to a specific dealing frequency of a
category of traders at the carbon market.

2For instance, the detail Dy is associated with a frequency range of 48 days [0.8;1.6] weeks, while
D, with approximately one month. Scale level j = 7 corresponds to a cycle length between 2.1 and 4.3
quarters, or equally between a semester and a yearly variation. Thereafter the notation D; corresponds
to the MODWT details, to enhance readability

3Also in economic terms it is reasonable to investigate causality relationships for the returns from
daily to yearly frequencies, whereas up to monthly variations for the volatility. In real-world applications,
quarterly or yearly volatility is not interesting for the economic analysis of high-frequency (daily) EUA
series, nor traded in EUA markets, as opposed to daily, weekly and monthly volatility. On the contrary,
the causality analysis of the returns up to yearly variations can be very useful in detecting EUA market
linkages with macroeconomic fundamentals and in producing multi-step ahead return or price forecasts



Table[[T] describes the wavelet scales according to appropriate time horizons, providing
an overview of the relationship between frequency bands and time scales for time series.

Table II: Multiresolution analysis on different levels of scales

Time horizons
Wavelet scales frequency days

D, 1-2 days
D, 2-4 days
Dg 4-8 days
Dy 8-16 days
Dy 16-32 days
Dg 32-64 days
Dy 64-128 days
Az >128 days

The wavelet decomposition allows us to locate the presence of a trader behavior with
different time horizons. The different scales include fundamentalists (low frequency) that
trade on longer time horizons, short-term traders (high frequency), and finally court-
termites which the market in the medium term (average frequency). Each class trader
can have a homogeneous behavior, but it is the combination of these classes in all levels
that generates the time series overall. Therefore, the underlying dynamics are heteroge-
neous due to the interaction of all trader classes at different time scales.

Figure 1: Carbon Price Returns
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Figure [2] below presents the wavelet decomposition plot of carbon price returns.



Figure 2: Carbon Price returns wavelet decomposition
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Figure 3: Carbon Price Volatility
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Figure {4] presents the wavelet decomposition plot of carbon price volatility.



Figure 4: Carbon Price Volatility wavelet decomposition
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Observation of figures I}, [2, [3, [4] present the MODWT wavelet approximation and de-
tails estimated from the Daubechies class, for the returns and volatility series of EUA.
To distill information from the wavelet components, it is crucial to recall that nonzero
wavelet coefficients correspond to activity in a particular range of frequencies over time.
Consequently, when the details are rapidly changing, this implies that its corresponding
frequency interval contains important information about the original process.

These levels can be represented as follows:

- EUA returns series show that for all periods, there are significant differences in high-
and low-scale dynamics. All components display a cyclical pattern with fairly high oscil-
lation amplitude. Fundamentally, there is notable "activity" on high scales at all levels.

- The increased variability is particularly evident in the series of volatility in the price
of carbon quota, which is associated with oscillations of 2-4 days period, but also in the
second scale, third and fourth, corresponding to oscillations with a period of the order 3,4,
which represent dynamic 4 to 8, 8 to 16 daily periods respectively. Thus, we observe a
strong fluctuation of the volatility of each scale, which refers to a large speculative activity
on different investment horizons.

The question we ask is to know if there is a transmission of volatility between the
different levels (high, medium, and low) of the EUA price. For example, for EUA return
(Figure 6 in Appendix), the first three finest scales (i.e., Dy, Dy, D3) mostly affect the dy-
namics appearing in the raw data (S), while for EUA volatility (Figure[4) all scales seem
to contribute to the raw series variability. Similarly, the detail Dy of the EUA volatility
(Figured)) in all periods dominates the aggregate raw series oscillation amplitude, whereas
other frequency components embed lower information. It should be noted that an impact
at low frequency (long-term component), could lead to an answer for a short period of



the high-frequency band.

5 Causality testing by frequency band

In this section, we study the causal relationships between different EUA returns and
volatilities price captured at different frequency bands by using linear Granger causality
and the nonlinear causality of Hiemstra and Jones (1994). The linear Granger causality
test works best when the true causal relationship is linear but loses a lot of power when
this is no longer the case. To overcome this drawback, Hiemstra and Jones (1994) pro-
posed a causality-in-probability test for nonlinear dynamic relationships which is applied
to the residuals of vector autoregressions and is based on the conditional correlation in-
tegrals of lead-lag vectors of the variables.

In this article, Granger causality and Hiemstra and Jones test are employed on the
original and the disaggregated wavelet components to investigate the linear and nonlinear
dynamic linkages at various scales. These tests can detect the nature and direction of
causality explored for each scale component of the return and volatility series that we
compare against the causalities results of the aggregate series.

The results of the frequency-domain test for the aggregate series can be comparatively
analyzed against those of up to the a4 scale of the wavelet transform for the return and
volatility series.

Our results of the causality tests between EUA returns and volatility price decom-
posed into seven and four frequency bands respectively are reported in Tables [[I]] and [[V]
We consistently choose the lag that gave the most significant resultE|

The causality tests (see Tables and on returns and volatility of carbon al-
lowance prices show that, in many cases, nonlinear causality tests give different results
than the standard Granger non-causality test.

4The program used in this exercise, E-views, always tests for the null-hypothesis that variable z does
not Granger-cause variable y. E-views will thus calculate the F-statistic of the regression under the null
hypothesis that as; = az2 = * * * = ag; = 0 and provides the probability that the null hypothesis is
accepted. For probability values lower than 0.05(5%),we consider the Null hypothesis rejected and hence
consider that variable z does Granger cause variable y.



Causality tests results between difference frequency bands of EUA of the EU ETS.
2 lags considered. The black color denote statistically significance at 5% level.

EUA return price

Frequency Bands

Tests D1 D2 D3 D4 D5 DG D7 A7

D,

D,

D3

Dg

Dy

Aq

Linear 0.0106 0.9301 0.9891 0.9810 0.9984 0.9980 0.9968
Nonlinear 0.06399 0.02536 0.02825 0.00247 0.007770.40701 0.17302

Linear 0.0211 0.1642 0.2170 0.8051 0.9711 0.9842 0.9998
Nonlinear 0.00119 0.22789 0.00291 0.00442 0.22937 0.45350 0.30473

Linear 0.9982 0.0246 0.0362 0.3698 0.9928 0.9732 0.9822
Nonlinear 0.00515 0.01926 0.00043 0.00386 0.00327 0.13930 0.36616

Linear 0.9998 0.9654 0.0020 0.0002 0.0138 0.1720 0.9631
Nonlinear 0.00219 0.00515 0.00638 0.00004 0.00194 0.36452 0.34597

Linear 0.9998 0.9967 0.9743 0.1163 0.0387 0.0288 0.6419
Nonlinear 0.00249 0.01258 0.04092 0.00292 0.05249 0.270570.01558

Linear 0.9995 0.9989 0.9985 0.8292 0.0036 1.E-15 5.E-07
Nonlinear 0.027390.01139 0.01676 0.00012 0.05664 0.47988 0.37756

Linear 0.9990 0.9974 0.9987 0.8367 0.2773 3.E-05 6.E-20
Nonlinear 0.20928 0.39866 0.27169 0.26937 0.06115 0.00084 0.00061

Linear 0.9983 0.9971 0.9975 0.9347 0.7350 0.7966 0.0733
Nonlinear 0.04560 0.46128 0.02643 0.00458 0.14301 0.001210.21917

Table

[IT: Tests of linear and nonlinear return causality (P-values)

Causality tests results between difference frequency bands of EUA of the EU ETS.
2 lags considered. The black color denote statistically significance at 5% level.

EUA volatility price Frequency Bands
Tests D, Dy Ds Dy Ay
Dy
Linear 0.0003 0.6264 0.5916 0.9975
Nonlinear 0.09882 0.11363 0.03820 0.39452
Do
Linear 1.E-05 0.0825 0.1358 0.9288
Nonlinear 0.00452 0.43886 0.11060 0.39884
Ds
Linear 0.9778 0.0620 0.0324 0.6813
Nonlinear 0.07825 0.01305 0.07716 0.10913
Dy
Linear 0.9935 0.9550 2.E-06 0.3232
Nonlinear 0.09074 0.21799 0.30146 0.03658
Ay
Linear 0.9999 0.9973 0.9582 0.6601
Nonlinear 0.00469 0.00737 0.06259 0.00791

Table IV: Tests of linear and nonlinear Volatility causality (P-values)



We observe an instability of causality test in the different frequency bands.
On the return series, the linear test of Granger causality reveals a bi-directional relation-
ship between D; which corresponds to the trading behavior of intraday traders or noise
traders, and Ds,; it is nonexistent between D; and other bands D3, Dy, D5, Dg, D7, and
A7.
The nonlinear causality test, however, reveals a bidirectional relationship between D; and
other bands D3, D4, D5, and D-.

We observe a unidirectional causality in the linear and nonlinear cases from D3 and
D,. While it is bidirectional in the nonlinear case between D3 and Dy, D5, Dg and it is
unidirectional from A, to Ds.

The nonlinear causality reveals a bidirectional relationship between D4 and bands Ds,
Dg, then it is unidirectional in the linear case from D, to Ds, Dg. However, the bands
D5, Dg and D7 reveal a linear bidirectional relationship, it is against unidirectional from
Ds to A7 in the nonlinear case.

We see an unstable causality and different nature between the different bands’ returns.

For bands of volatility, we observe a bi-dimensional linear (in both directions) transfer
of volatility between Dy and D,, whereas it is absent between bands D3 , Dy, Ay. We also
observe a linear unidirectional transfer of volatility between bands from D3 to Dy and Dy
and also from Dy to Ds.

The nonlinear causality reveals a unidirectional relationship from D; to Dy from Dy
to A4, and then from A4 to Dy, Dy and Dy.

In summary, the study detects an instability transfer of volatility between different
frequency bands.

6 Conclusion

The aim of the paper was two-fold: first to test for the existence of causal relationships
among the different EUA prices returns and volatilities captured at different time scales,
and then the nature of causality (linear and nonlinear) was investigated on different time
scales of the return and volatility series by using the wavelet-based approach.

This study attempted to probe into the micro-foundations of across-scale heterogene-
ity in the return and variability pattern, based on trader behavior with different time
horizons and information flow across time scales. The trading pattern of fundamentalists
is reflected at the highest approximation wavelet scale, while at lower scales short-term
traders and market makers operate. Each trader class may possess a homogeneous be-
havior, but the aggregate underlying market dynamics are heterogeneous due to the in-
teraction of all trader classes at different time scales. In such a market, a low-frequency
shock infiltrates through all scales, while a high-frequency shock runs out quickly and
might have no impact whatsoever in the long-run dynamics.

The propagation properties of this heterogeneous-driven behavior were investigated,
the causality structure from low-to high frequency was identified, and the implications
for the flow of information across time scales in the European carbon market (EU ETS)
were inferred.



Our study shows the existence in some cases of a bidirectional causal relationship be-
tween the frequency bands while it is sometimes unidirectional depending on whether the
relationship is linear or not. We observed that the behavior of agents on short-term have
an impact on the medium and long term and vice versa. There is a transfer of volatility
and return between the different frequency bands of the carbon price quota. We prove
that high-frequency shocks could have an impact outside their boundaries and reach the
long-term traders and vice versa low and medium-frequency shocks could also have an
impact outside their boundaries and reach the short and medium-term traders.

The different agents involved in the carbon market must integrate into the determi-
nants of the price of quota carbon this analysis. They also take into account these results
according to their investment horizon.

7 Appendix

Figure 5: Price Carbon
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Figure 6: Price Carbon Return
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