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1. Introduction 

The best-known and most widely investigated generalization of the Gini coefficient of 

income inequality, involving a single-parameter extension of the measure, is due to 

Donaldson and Weymark (1980), and related studies by—among others—Kakwani (1980), 

Yitzhaki (1983) and Chakravarty (1988). As is well-known, the Gini coefficient is derived 

from a weighting of incomes based on the Borda rank-order system, and the generalization of 

Gini just referred to essentially relies on raising the income-weights to higher powers: the 

power index is the single parameter by means of which the Gini coefficient is generalized to a 

class of measures whose ‗distribution-sensitivity‘ is an increasing function of the chosen 
value for the parameter.  

In the present note, we shall consider an alternative generalization of the Gini coefficient 

which is based on a parametric variation of the Borda weighting system that relies on the 

transformation of rank-orders into corresponding Fibonacci-like sequences of different 

orders. The resulting class of extended Ginis is found to consist of inequality measures which 

are functions of the various ‗metallic ratios‘ of number theory—the universal constants 

known as the ‗golden ratio‘  , the ‗silver ratio‘  , and a succession of other ‗metallic 
ratios‘. These statements are admittedly cryptic, but should become clearer as we proceed. 

2. The Gini Coefficient 

In everything that follows, we shall derive inequality indices in terms of the ‗Atkinson-Kolm-

Sen‘ (Atkinson, 1970; Kolm, 1969; Sen, 1973) approach involving the use of an ‗equally 
distributed equivalent (ede)‘ income. But first, some preliminary formalities. The basic unit 
of consideration is an income distribution, which is a non-decreasingly ordered n-vector of 

individual incomes ),...,,...( 1 ni xxxx in which ix  is the income of the i th poorest individual 

in a community of n individuals, and 



n

i

ixn
1

)/1()(x is the mean income. A social welfare 

function )(xW is taken to be a weighted sum of individual incomes in the vector x, with the 

weights supposed to reflect the evaluator‘s assessment of the social worth of the incomes in 
the given distribution. We shall confine attention to weakly egalitarian social welfare 

functions, namely those for which the income-weights employed are non-increasing: 





n

i

ii xwW
1

)(x ,                                                                                                                      (1)   

where iw  is the weight placed on the ith poorest person‘s income, and, for all ,,kj  
kj ww   

whenever  
kj xx  . A system of weights which corresponds to this requirement is the Borda 

rank-order system, in which .,...,1)1( niinwi   The social welfare function with this 

weighting system will be called GW : 
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Let 
G̂  be the equally distributed equivalent income (ede), namely, that level of income 

which, when equally distributed, yields the same welfare level as the actual distribution under 

review.  In the Atkinson-Kolm-Sen welfare-based approach to inequality measurement, an 



 

inequality measure I can be written as the proportionate deviation of the ede income from the 

mean income: ./ˆ1 I   Given (2), it can be easily verified that for the welfare function

GW ,   
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corresponding to the welfare function GW  can then be written as  
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But then 
G

I  in Equation (3) is, precisely, the familiar Gini inequality coefficient G .  

Notice that, in deriving the Gini index, we have employed a particular transformation of the 

elements of the set },...,,...,1{ niM n  : the transformation employed is the rank-order 

transformation ,r where, for all inirMi n  1)(: . The question immediately arises: are 

there alternative transformations one can consider, which lead to sequences different from the 

rank-order sequence? Can such sequences be parametrically varied in some straightforward 

way, thus facilitating the possibility of a parametric extension of the Gini coefficient of 

inequality? This question is addressed in the subsequent sections of the paper.  

3. Metallic Sequences 

Given the set of the first n natural numbers },...,,...,1{ niM n  , consider, for all ,...,2,1,0k  

the mapping k
f  on nM  such that )],1(),1(max[)2(,1)1( kkkk

kffff  and for all 

).2()1()(:}2,1{  ifikfifMi
kkk

n
 For illustrative purposes, pegging n at 5, Table 

1 details the values of the function )(if
k  for 5,4,3,2,1i , and for four specified values of 

.9,2,1,0: kk  

Table 1: )(if
k  for 5,4,3,2,1i , for four specified values of .9,2,1,0: kk  

i  1 2 3 4 5 

)(0
if  1 1 1 1 1 

)(1
if  1 1 2 3 5 

)(2
if  1 2 5 12 29 

)(9
if  1 9 82 747 6805 

 

Notice from Table 1 that the set of numbers )}({ 1
if  is just the well-known Fibonacci 

sequence of numbers, the first two of which are 1 and 1 respectively, and any subsequent 

number is the sum of the preceding two Fibonacci numbers. The set of numbers )}({ 2
if  is 

just the well-known Pell sequence of numbers, the first two of which are 1 and 2 respectively, 

and any subsequent number is the sum of twice the preceding number and the one preceding 

that;…, and so on, down the line. As n goes to infinity, the nth Fibonacci number converges 

on a number which is proportional to the nth power of the so-called golden ratio 

;618.12/]51[  the nth Pell number converges on a number which is proportional to 

the nth power of the so-called silver ratio 4142.221  ; and for other sequences we 



 

have corresponding asymptotic convergences on other ‗metallic‘ ratios, which are 
distinguished irrational mathematical constants. Hence the reference to the k

f  functions as 

generating a class of ‗metallic‘ sequences, in each sequence of which numbers are derived 
from their immediately preceding numbers by the sort of recursive relations earlier defined.  

To proceed further, it helps to reverse the order of the sequences portrayed in Table 1, as is 

done in Table 2.  

Table 2: )1( inf
k   for 5,4,3,2,1i , for four specified values of .9,2,1,0: kk  

i  1 2 3 4 5 

)1(0
inf   1 1 1 1 1 

)1(1
inf   5 3 2 1 1 

)1(2
inf   29 12 5 2 1 

)1(9
inf   6805 747 82 9 1 

    

Next, for all k  and i, let us define the quantities 
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For the moment, let us just concentrate on 0k . Then it is easy to see, using Table 2 as a 

spot reference, that ,1)5(,2)4(,3)3(,4)2(,5)1( 00000  SSSSS  and 

543210 S ; or, in general, ,,...,1,1)(0
niiniS   and 
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. Now, given an ordered n-vector of incomes  

),...,,...( 1 ni xxxx , let us define a social welfare function kW  of order k ,...)2,1,0( k  such 

that it is a weighted sum of income levels, with the weight 
k

iw  on the ith poorest person‘s 

income being 
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)1()( .,...,1 ni   Returning to 0k , and noting that 

,,...,1,1)(0
niiniS   it is immediate that the social welfare function 0W  is identical to 

the social welfare function GW  defined in Equation (2). Consequently, the Atkinson-Kolm-

Sen inequality measure associated with the welfare function 0W , call it 
0

I , must be identical 

to the the inequality measure—which is just the Gini coefficient—associated with the welfare 

function GW . That is to say, 

.0 GI                                                                                                                                      (4) 

How does the weighting function change as we move to higher orders of k in the sequence of 

welfare functions kW ? To see what is involved, consider, for each ,...2,1,0k , the 

normalized set of weights 
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kkk
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,...,1),(/)( . For purposes of illustration, 

these weights are derived from Table 2 in Table 3. 

 



 

In Figures 1(a)-1(d), we plot the normalized weights k

i  for 9,2,1,0k . Figure 1(a) suggests 

that the normalized weighting function is linear for 0k : the welfare function 0W , as we 

have seen, leads to the Gini coefficient of inequality. Figures 1(b)-1(d) indicate that for 1k , 

the normalized weighting function is strictly convex; and as k increases, the weighting curve 

becomes more and more convex. As can be seen from Figure 1(d), drawn for k = 9, the curve 

already converges on the classical Rawlsian L-shaped curve, that is, on a weighting structure 

of (1,0,0,…,0), where all the weight is on the lowest income.  

Table 3: The normalized sets of weights 
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It is clear that as k increases, the inequality measure 
k

I  becomes more and more distribution-

sensitive. In particular, and as we shall see later, the Gini coefficient—this is a well known 

feature of the measure—is not transfer-sensitive: it does not distinguish between transfers at 

the lower and upper ends of a distribution. Such sensitivity—on an increasing scale—is a 

feature of the class of inequality indices 
k

I  for values of k exceeding 0. As in the case of the 

Donaldson-Weymark (1980) generalization of Gini, so too in the present generalization, it is 

the distribution-sensitivity of the inequality measure that is being parameterized by the 

relevant extensions.  

 

 

 

 

 



 

Figure 1: The Graphs of the Normalized Weighting functions )(ik [ 9,2,1,0k ] 

corresponding to the Numbers in Table 3  

Figure 1(a): )(0
i                                                      Figure 1(b): )(1

i            

 

Figure 1(c): )(2
i                                                      Figure 1(d): )(9

i            

  

 

Note: The figures have been generated employing the ChartGo software: https://www.chartgo.com/modify.do .  

In what follows, we consider in slightly greater detail the inequality measure 
1

I  which, for 

obvious reasons, will be called the Fibonacci measure of inequality. 

 

4. The Fibonacci Inequality Coefficient 

A preliminary remark: in what follows, we shall be employing certain basic and well-known 

facts about the Fibonacci and Pell number sequences. The reader unfamiliar with this 

literature is referred to the very helpful text by Koshy (2001).  

Given an ordered n-vector of incomes ),...,,...( 1 ni xxxx , the welfare function (.)1
W  can be 

written as:  

https://www.chartgo.com/modify.do
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Note that  )1(1
jnf   is the thjn )1(   Fibonacci number )1( jnF  , so 

)1(
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

is the sum of the first  )1( in   Fibonacci numbers: 

)1(...)2()1( inFFF  , which is just ,1)3(  inF  a consequence that follows from 

the well known fact that the sum of the first p Fibonacci numbers ))(...)1(( pFF  is 

1)2( pF . Equation (5) can therefore be written as 
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The equally distributed equivalent income—call it F̂ --is given by: 
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But noting that  
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we can re-write Equation (7) as: 
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F  . The inequality index corresponding to the 

welfare function 1W  is now given by 
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Yet another well-known fact about the Fibonacci sequence is that the ratio of two consecutive 

Fibonacci numbers )(iF  and )1( iF  converges asymptotically on the ‗golden ratio‘ 
2/]51[  , which is the positive root of the quadratic equation 012  xx , and can be 

approximated by 1.618; further, in what is known as Binet‘s Formula, the ith term of the 

Fibonacci sequence, )(iF , can be shown to be equal to the quantity 5/])1([ ii    

which, for ‗large‘ values of i  can be approximated to 5/i . Employing this 

approximation, and making the appropriate substitutions in Equation (8) yields the following 

asymptotic expression for the Fibonacci inequality measure: 
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The expression for F in (9) is yet another example of the ubiquitous presence of the golden 

ratio in the affairs of the world! 



 

By way of an addendum to this section, I state, without deriving, an expression for the 

inequality index corresponding to the welfare function kW  for 2k  , which I shall call the 

‗Pell Index‘, P. [A derivation of this result is available on request.]  
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5. The Lorenz Curve and the Fibonacci Curve 

The Lorenz curve is typically defined as the curve obtained by plotting, for each cumulated 

share p of the population arranged from poorest to richest, the corresponding income share 

)( pq  of the poorest pth fraction of the population. However, it can also be defined in terms 

of a simple transformation, as the curve obtained by plotting )( pqp   against p for all 

]1,0[p . Given an ordered income n-vector ),...,,...( 1 ni xxxx
 
with mean  , the typical 

ordinate of the Lorenz curve is given by:  

ninxnini
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Letting )(iF stand for the ith Fibonacci number, we now define the Fibonacci curve as one 

whose typical ordinate is given by: 

niniinFni ii ,...,1,0),/;()1()/;(  xx LF .                                                                (12) 

The coordinates of the Fibonacci curve are then the set of points 

)0,1(;...;)1(,/();...;)(,/1();0,0{( 1 iinFninFn LL  }. 

By way of a simple numerical example, consider a situation in which 5n  and 

)50,40,30,20,10(x . The Lorenz curve for this distribution is defined by the points (0,0); 

(.2,.133); (.4,.2); (.6,.4), (.8,.133); (1,0). From (11), (12) and the coordinates of the Lorenz 

curve for the distribution )50,40,30,20,10(x , and noting that 

3)4(,2)3(,1)2()1(  FFFF  and 5)5( F , the Fibonacci curve for the distribution x 

in our example can be seen to be given by the points (0,0); (.2,.6667); (.4,.6); (.6,.4); 

(.8,.133); (1,0). A typical Fibonacci curve would be an inverted U-curve, commencing at 

(0,0), initially rising, peaking, then declining, and terminating at (1,0). The Fibonacci curve 

for the distribution )50,40,30,20,10(x  can be drawn as a step function or as a piece-wise 

linear function, and the latter representation is provided in Figure 2. Notice that the area 

under the Fibonacci curve is just the value of the Fibonacci index of inequality F.  

Finally, for all distributions x,y,  x will be said to Lorenz-dominate y, written yx L ,  if and 

only if the Lorenz curve for x lies somewhere below the Lorenz curve for y, and nowhere 

above it. Similarly, for all distributions x,y,  x will be said to Fibonacci-dominate y, written 

yx F ,  if and only if the Fibonacci curve for x lies somewhere below the Fibonacci curve 

for y, and nowhere above it. Since any point on a Fibonacci curve is just a positive multiple 

of the corresponding point on the Lorenz curve, it follows that for all distributions x,y, 



 

yx L  will hold if and only if yx F  holds. Whenever these dominance relations hold for 

any x vis-à-vis any y, we can assert that there is unambiguously less inequality in x than in y. 

Figure 2: A ‘piece-wise’ linear Fibonacci curve for the 5-distribution (10,20,30,40,50) 

 

Note: The graph has been generated employing the GoChart software: https://www.chartgo.com/modify.do .  

 

6. Some Properties of the Fibonacci Index 

The commonly invoked axioms for inequality measures are well-enough known not to 

require elaborate treatment. The basic axioms are those of symmetry (the requirement that the 

measure does not depend on the personal identities of income-recipients); scale-invariance 

(the requirement that the measure be mean-independent); replication-invariance (the 

requirement that the measure be invariant with respect to population replications); and, most 

fundamentally, the Pigou-Dalton transfer axiom (the requirement that, other things equal, a 

rank-preserving progressive transfer of income should cause inequality to decline). The Gini 

coefficient of inequality satisfies all four of these axioms as does the Fibonacci index.   

To see that F  satisfies the symmetry axiom, note that it is constructed from an ordered 

income distribution; since the ordering according to income levels is independent of the 

personal identities of the income-recipients, the resulting index is also invariant with respect 

to any permutation of incomes across individuals. 

If all incomes in a distribution x are uniformly scaled up or down by any positive scalar  , 

then one can see from Equation (9) that 
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x  = )(xF , that is, 

F  satisfies scale-invariance. 

Further, as noted in the preceding section, a typical ordinate of the Fibonacci curve is a 

positive multiple of the corresponding ordinate of the Lorenz curve: 

https://www.chartgo.com/modify.do


 

.,...,1,0),/;()1()/;( niniinFni ii  xx LF  It is well known that the Lorenz curve 

remains unchanged with any k-fold replication of the underlying income distribution, and 

therefore this must be true for the Fibonacci curve as well; and since the Fibonacci index is 

just the area under the Fibonacci curve, F   is a replication-invariant inequality measure. 

That F  satisfies the Pigou-Dalton transfer axiom is evident from the fact that the income-

weights in the underlying welfare function (.)1
W  unlike G , decline with income.  

Finally, ,F unlike G , is transfer-sensitive, that is, it satisfies the property that, other things 

equal, the reduction in inequality following on a progressive rank-preserving transfer is 

greater the lower down the income distribution the transfer occurs. There are two ways of 

giving expression to this requirement, as discussed by Foster (1985), and captured in the 

following two axioms. 

Tansfer-Sensitivity-1 (TS-1) requires that, other things equal, the reduction in inequality from 

a progressive transfer of a fixed amount of income between two persons a fixed number of 

incomes apart should be greater the poorer the pair of individuals involved in the transfer. 

Tansfer-Sensitivity-2 (TS-2) requires the same outcome for pairs of individuals a fixed income 

apart. 

For our purposes, I shall combine these two properties into a single property of Transfer-

Sensitivity which is weaker than either of TS-1 or TS-2: 

Transfer-Sensitivity (TS) requires that, other things equal, the reduction in inequality from a 

progressive transfer of a fixed amount of income between two persons who are both a fixed 

number of incomes and a fixed income apart should be greater the poorer the pair of 

individuals involved in the transfer. 

That the Fibonacci index satisfies the TS axiom is evident from the fact that the income-

weighting function of the underlying welfare function (.)1
W  is not only declining but also 

strictly convex. [A more elaborate demonstration of the transfer-sensitivity proposition is 

available from the author on request.] 

The class of ‗metallic‘ inequality indices }{ k
I  becomes more and more distributionally 

sensitive as k increases; and in this regard, the }{ k
I  series mimics the S-Gini series of 

Donaldson and Weymark (1980). The principal point of departure of F from G is that the 

former, unlike the latter, satisfies the property of Transfer-Sensitivity. It should be admitted 

here that the Fibonacci index, and other higher-order ‗metallic‘ indices, are not the only 

‗rank-order-based‘ inequality measures that satisfy transfer-sensitivity: this is true also of 

measures such as the Bonferroni (1930) and De Vergottini (1940) indices. That is to say, a 

measure such as the Fibonacci index has properties shared with other measures: it is an 

addition to an existing stock, rather than a unique replacement of other extant measures. 

7. Concluding Observations 

This note has been concerned to provide an alternative extension to the by now standard 

extension of the Gini coefficient in terms of the single-parameter ‗S-Ginis‘ of Donaldson and 
Weymark (1980), Kakwani (1980), Yitzhaki (1983), Chakravarty (1988) and others. (See 

also Chameni, 2006, on the class of ‗  Ginis‘.) The Gini coefficient is constructed from the 
Borda rank-order weighting system in which the weight on the income of the ith poorest 



 

person in an n-person non-decreasingly ordered income vector is given by ).1()( inir 
While the S-Gini generalization relies on transforming Gini‘s )(ir  income-weights via a 

power function, the route to generalization explored in the present note is via the ‗metallic‘ 
number sequences of Fibonacci, Pell, and similar sequences generated by a generalized 

recursive relationship between each number in the sequence and its two immediately 

preceding numbers. In the specific case of the Fibonacci index, the Borda rank-order weight 

)(ir  is replaced by the Fibonacci number corresponding to ).(ir  The effect of the 

generalization, as in the case of the S-Gini generalization, is to produce a family of inequality 

indices of increasing levels of distribution-sensitivity, ranging from the Gini-coefficient, 

which is not transfer-sensitive, to a Rawlsian measure which ranks distributions solely 

according to the income share of the poorest individual. A special, transfer-sensitive member 

of this family of indices, based on an income-weighting scheme inspired by the Fibonacci 

sequence, has been derived, and called the Fibonacci index.  

Finally, it is as well to clarify that no claim is advanced as to any special virtues that may be 

possessed by the ‗metallic sequence generalization‘ proposed in this note in relation to other 
available generalizations. Indeed, it is even possible that the Fibonacci and other ‗higher-
order‘ measures reflect degrees of inequality-aversion that may not appeal to all practitioners.  

What has been proposed, as stated earlier, is in the spirit of introducing a new member to a 

club, as eligible for entry, but by no means as deserving preferential treatment. In the end, 

this note is of interest, perhaps, primarily in the way of a curiosum featuring the ‗golden 
ratio‘ (and other ‗metallic‘ ratios) as playing a part in the measurement of inequality, as in so 
many other aspects of the worlds of both nature and artefact.   
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