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Abstract
Prior studies propose a way to express the Gini index of income inequality as a function of the ratio of mean to median
household income under the assumption that individual income follows the lognormal distribution. This allows for easy
and precise construction of annual US income inequality indices at different levels of geography. In this paper, we are
the first to express the Atkinson index in a similar manner. We also contribute to the literature by expressing both
indices under the assumption that individual income follows the Pareto distribution. We merge these indices into an
individual level dataset consisting of the 2001-2012 annual editions of the U.S. Behavioral Risk Factor Surveillance
System at the state and county level. In an application, we find preliminary evidence that greater income inequality
negatively affects overall self-reported health.
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1. Introduction and Background 

Prior studies propose a way to express the Gini index of income inequality as a function 
of the ratio of mean to median household income under the assumption that individual income 
follows the lognormal distribution (Aitchison and Brown, 1957; Crow and Shimizu, 1987). This 
approach allows for easy and precise calculation of such annual US income inequality measures 
at different levels of geography. In this paper, we are the first to express the Atkinson index in 
the same manner. We also contribute to the literature by expressing both indices under the 
assumption that individual income follows the Pareto distribution.1  

The absolute income hypothesis (AIH) suggests that increasing income improves health 
outcomes. The AIH is well-established and supported by prior literature (Bechtel et al., 2012; 
Lorgelly and Lindley, 2008). The notion that everyone’s health in society is reduced when there 
is more income inequality is known as the income inequality hypothesis (IIH) (Subramanian and 
Kawachi, 2004; Lynch et al., 2004; Wilkinson and Pickett, 2006; Gravelle and Sutton, 2009). 
Kaplan et al. (1996) and Kennedy et al. (1996) suggest that under-investment in human and 
social capital such as education and medical care caused by inequality is a potential mechanism 
behind the significant relationship between greater inequality and worse health outcomes. 
Kawachi and Kennedy (1997) also argue that lower inequality promotes social integration that is 
closely associated with individual well-being. 

The ideal dataset to test the IIH would be an individual level dataset containing 
information about income and health measured frequently over time and space, as well as 
geographic identifiers. However, no such dataset exists and no annual income inequality 
measures at different levels of geography are available in the United States. The US Census 
provides the American Community Survey (ACS) 1-year and 5-year estimates of the state- and 
county-level Gini index only after 2010. 2, 3 

Mellor and Milyo (2002) use data from the 1995-1999 Current Population Survey (CPS) 
to calculate annual inequality measures at different levels of geography and investigate the effect 
of income inequality on individual health status. However, concurrent work published in the 
same year, Blakely et al. (2002), criticizes Mellor and Milyo (2002) for their use of the CPS for 
income inequality analysis. Blakely et al. (2002) argue that CPS data are not precise enough to 
calculate inequality measures at local (i.e. sub-state) levels of geography and goes on to suggest 
that decennial Census data would produce more precise income inequality measures due to larger 
sample sizes.  

The literature has subsequently focused on the use of individual income data from the 
decennial Census to construct regional income inequality measures. Employing 1990 decennial 
Census data or 2000 decennial Census data or both, Blakely et al. (2002) and Lopez (2004) show 
support for the IIH, whereas Chang and Christakis (2005) and Chen and Crawford (2012) find no 

                                                           
1 The earliest references regarding modeling the distribution of income are Pareto (1896) and Gibrat (1931) who 
proposed the Pareto distribution and the lognormal distribution respectively. 
2 Please refer to https://data.census.gov/cedsci/table?q=income%20inequality&tid=ACSDT1Y2019.B19083. 
3 Meanwhile, our suggested methodology, which will be explained in detail in the next section, enables us to 
construct both the Gini index and the Atkinson index going as far back as 1991. This is critical in that recent 
literature (such as Piketty et al., 2017) find that US income inequality strikingly increased during the period 
including the 1990s and 2000s. 

https://data.census.gov/cedsci/table?q=income%20inequality&tid=ACSDT1Y2019.B19083


effects or mixed effects of inequality on health status and health behaviors. However, a general 
limitation associated with all of these studies using decennial Census data is the inability to 
estimate time varying effects of inequality. This is due to the fact that Census data is only 
produced every ten years.4 In summary, use of either the CPS or the decennial Census has 
serious limitations in that they do not allow for the construction of income inequality measures 
from a dataset with a large sample size that measures income frequently over time (Kopczuk et 
al., 2010). 

Alternatively, Kelly (2000) and Brush (2007) apply a new methodology derived by 
Aitchison and Brown (1957) and Crow and Shimizu (1987) to construct the annual Gini index as 
a function of the ratio of mean to median household income under the assumption that US 
individual income follows the lognormal distribution. Kelly (2000) and Brush (2007) compute 
annual mean and median household income at both the state and county level using various 
Federal data sources and then plug them into the derived equation. Both papers examine the 
relationship between income inequality and crime rather than health. 

In this paper we apply the same methodology that Kelly (2000) and Brush (2007) used to 
address the issues raised by using either the CPS or the decennial Census to estimate the effect of 
income inequality on health. Furthermore, we contribute to the income inequality literature by 
applying this methodology to express the Atkinson index, an alternative measure of income 
inequality, as a function of the ratio of mean to median household income. This is because 
Kennedy et al. (1996), Weich et al. (2002) and Laporte (2002) suggest that the estimated effect 
of income inequality on health differs with respect to the choice of income inequality measure. 
Finally, we also contribute to the literature by deriving both the Gini and Atkinson index under 
the alternate assumption that individual income follows the Pareto distribution. This is 
significant in that prior studies such as Piketty (2013) and Sommeiller and Price (2016) model 
the distribution of US income using the Pareto distribution. 

We construct an individual level dataset by combining the 2001-2012 annual editions of 
the U.S. Behavioral Risk Factor Surveillance System (BRFSS) at the state and county level with 
annual regional inequality measures computed by our suggested methodologies. In an 
application, we find preliminary evidence that greater income inequality negatively affects self-
reported overall health in the United States. 

2. Methods 

2.1 Review of the Gini Index under the Lognormal Income Distribution Assumption 

Equation (1) describes the Gini index (Sen, 1973), the most commonly used measure of 
income inequality in the literature: 

                                                           
4 Alternative approaches to calculating an annual inequality measure include using individual tax filing data from 
the Internal Revenue Service (IRS) or income data from the ACS. IRS data provide large sample sizes and annual 
data but access to the data is limited and censored below a threshold level of income. The ACS provides both state 
and sub-state geographic identifiers via Public Use Microdata Areas (PUMAs). However, the ACS has not provided 
income data every year. In addition, use of PUMAs as a measure of sub-state geography creates challenges as the 
PUMA definitions can change over time, unlike other measures of sub-state geography such as counties. 
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Here �௜ represents the income of individual (or household) i and n represents the total number of 
individuals (or households) being considered. The Gini index varies from 0 (complete income 
equality) to 1 (complete income inequality). Crow and Shimizu (1987) show that the Gini index 
can be derived as a function of mean and median household income, under the assumption that 
individual income is log-normally distributed. This version of the Gini index is represented by 
equation (2): 

ܩ = ʹΦቌ√ln (�̅�̈)ቍ − ͳ (2) 

Here Φሺ. ሻ is the cumulative density function of standard normal distribution. �̅ and �̈ are mean 
and median household income, respectively, of all the households living in the reference group.  

2.2 Our Derivation of the Atkinson Index under the Lognormal Income Distribution Assumption 

The Atkinson (1970) index measures the social utility that can be gained by total 

redistribution from current income distribution to equality. The Atkinson index ranges from 0 

(complete equality) to 1 (complete inequality). It is given as: 
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Here ε is the "inequality aversion parameter." The higher the value of ߝ is, the higher level of the 
society’s aversion toward inequality, and the more gain by redistribution from inequality to 
equality. In practice, ߝ values of 0.5, 1, or 2 are used commonly (Lorgelly and Lindley, 2008; 
Bechtel et al., 2012). Under the lognormal income distribution assumption such that: �௜~lnܰሺߤ, �ଶሻ, the Atkinson index can be expressed as (Lubrano, 2013):  

 � = ͳ − ݁−ଵଶ�మ� (4) 

For individual household income that follows lognormal distribution, the mean and 

median household income are �̅ = ݁�+భమ�మ and �̈ = ݁�. So we solve for �ଶ:  

 �ଶ = ʹ ln (�̅�̈) 

 

(5) 



Plugging equation (5) into equation (4), we can derive the Atkinson index under 
lognormal income distribution as: 

 � = ͳ − (�̈�̅)� (6) 

 

2.3 Our Derivation of the Gini Index and Atkinson Index under the Pareto Income Distribution 

Assumption 

Assume individual household income, �௜, follows the Pareto distribution within the 

reference group such that: �௜~���݁݋ݐ ሺ�௠, ሻ. Here �௠ߙ > Ͳ denotes the minimum possible 

value of �௜. The positive parameter ߙ is the Pareto index when the Pareto distribution is used to 

model the distribution of wealth. Under the Pareto income distribution assumption, the Gini 

index and the Atkinson index can be expressed as equation (7) and equation (8) respectively 

(Lubrano, 2013):  

ܩ = ͳʹߙ − ͳ (7) 

� = ͳ − ሺߙ − ͳሻߙ ଵଵ−�ߙ]ߙ + ߝ − ͳ] ଵଵ−� (8) 

 

Sung et al. (2020) solve the Pareto index, ߙ, as a function of mean and median household 
income such that: 5 

ߙ = lnʹlnʹ +ܹሺ�ሻ ,   ܹሺ�ሻ ≈ � − �ଶ + ͵ʹ �ଷ − 8͵ �ସ + ͳʹͷʹͶ �ହ,   � = − lnʹʹ ∗ �̈�̅ (9) 

Here ܹሺ�ሻ is the Lambert W function expressed as a Taylor series that can be approximated 
using the Lagrange inversion theorem. Plugging equation (9) into equations (7) and (8), we can 
derive the Gini index and Atkinson index (2 ,1 ,0.5=ߝ) under Pareto income distribution 
assumption as: 

ܩ = lnʹ +ܹሺ�ሻlnʹ −ܹሺ�ሻ  (10) 

                                                           
5 Sung et al. (2020) derive the Yitzhaki index of relative deprivation as a function of mean and median household 
income under the assumption that US individual income follows the lognormal or Pareto distribution. 
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Thus, we can calculate the Gini index and Atkinson index for any time period and level 
of geography for which we have mean and median household income, regardless of the 
availability of individual income data, under either the lognormal or Pareto income distribution 
assumption. 6 

2.4 Calculation of Annual Regional Mean and Median Household Income 

In order to implement this methodology, we compute annual mean and median household 
income at both the state and county level using various Federal data sources following Sung et 
al. (2020), a study focusing on relative deprivation rather than income inequality. We obtain 
regional median household income data from the Census Small Area Income and Poverty 
Estimate. We calculate regional mean household income by multiplying regional mean personal 
income from the Bureau of Economic Analysis by regional mean household size from the ACS.7  

The BRFSS provides both individual income data and health data. However, there are 
two reasons that we use external aggregate annual income data via the Federal sources to 
calculate regional mean and median household income. First, the accuracy of these external 
estimates of income is arguably stronger than estimates of income derived from a smaller 
individual survey such as the BRFSS or the CPS, especially at sub-state levels of geography such 
as county. Second, the ability to do both state and sub-state level analysis is important when 
estimating the impact of income inequality, as the literature has debated the appropriate level of 
geography to determine an individual’s reference group. In particular, we do not believe the 
BRFSS and the CPS provide a sufficient number of observations to credibly calculate the Gini 
index or the Atkinson index at the county level. For example, in 2007, Camp county in Texas has 
only 6 individuals sampled in the BRFSS. It is very difficult to believe that the index calculated 
using such a small sample size could represent income inequality of the whole population in a 
county.8 This trade-off between accurate income estimates and the frequency of such estimates is 
why some papers in the literature use Decennial Census data (strong on accuracy, weak on 
frequency) and others use survey data such as the CPS (weaker on accuracy, stronger on 
frequency). Our approach using annual aggregate income and household size data from external 

                                                           
6 As an extension, we derive in the appendix Gini indices as a function of socioeconomic subgroup mean and 
median household incomes under a mixture of lognormal distributions or a mixture of Pareto distributions. 
7 We use a linear interpolation to approximate mean household size in the years that the ACS data is not available. 
8 Besides that, the BRFSS income data are reported in ranges and are right truncated: less than US$ 10,000, 10,000-
14,999, 15,000-19,999, 20,000-24,999, 25,000-34,999, 35,000-49,999, 50,000-74,999, and 75,000 or above. 
Therefore, mean household income calculated using BRFSS income data is underestimated. 



Federal sources allows us to have the “best of both worlds” in terms of annual calculation of the 
index and with accurate income data. 

2.5 Econometric Model 

Using the annual Gini index and Atkinson Index at different levels of geography calculated 
by our suggested methodologies, we examine the effect of income inequality on individuals’ 
overall health by estimating linear models specified as in equation (12) below:  

௜௦௧ܪ  = ߙ + ௦௧ܫଵߚ + ܺ௜௦௧ߚଶ + ଷ�௦௧ߚ + ௦ߜ + ௧ߣ +  ௜௦௧ (12)ߝ

where ܪ௜௦௧ represents the self-reported overall health of person i in region (state or county) s at 
time t. We estimate linear probability models (LPMs) for two binary outcomes: reporting 
“excellent” health or not, and reporting “fair or poor” health or not.9 Our primary independent 
variable of interest is denoted by ܫ௦௧. It represents the Gini index and the Atkinson index for 
region s at time t.    

We also include a vector of demographic characteristics denoted by ܺ௜௦௧. It consists of 
logarithmic group average household income stratified by age, gender and education in each 
state- or county-year (Ruhm, 2005),10 age dummies, race dummies, education dummies, a gender 
dummy, a marital status dummy, and an indicator for respondents participating via cell phone 
only.11 The regional unemployment rate in region s at time t is denoted by �௦௧. In addition, ߜ௦ controls for regional fixed effects and ߣ௧ controls for year-month fixed effects. Finally, ߝ௜௦௧  is 
the idiosyncratic error term. We cluster heteroskedasticity-robust standard errors at the state or 
county level, respectively, according to the level of reference groups.  

3. Results 

Table I presents our estimated effect of income inequality on individuals’ self-reported 
health status. Overall the results, regardless of income distribution assumption, suggest that 
income inequality negatively affects self-reported health with the highest degree of statistical 
significance coming from counties, in terms of our geographic measures. The coefficients imply 
that a one standard deviation increase in the state income inequality measures reduces the 
probability of reporting excellent health by 1.96 to 2.00 percent.12 A one standard deviation 
increase in the county income inequality measures reduces the probability of reporting excellent 

                                                           
9 In the county-level analysis incorporating 2,342 county fixed effects with 144 year-month fixed effects, use of an 
LPM significantly reduces the computational burden relative to a nonlinear model such as probit or logit. As a 
robustness check, we compare the results from LPM and nonlinear models at the state level and they are very 
similar. The results using nonlinear models at the state level are available upon request.   
10 Ruhm (2005) conducts state-level analysis alone using the BRFSS, while we conduct both state and county level 
analysis. 
11 This “cell phone only” indicator has been available in the BRFSS since 2011, indicating whether the respondent 
exclusively use their cell phone to participate. Individuals who only use their cell phone could have different 
characteristics than others in the survey (Barbaresco et al., 2015; Courtemanche et al., 2018). 
12 For example, the estimated coefficient of the Gini index in column (1) is -0.147, implying that a one standard 
deviation increase in the state Gini index reduces the probability of reporting excellent health by 0.408 percentage 
points or 1.98 percent relative to the 20.65 percent average probability of reporting excellent health. 



health by 1.58 to 1.67 percent, and increases the probability of reporting fair or poor health by 
2.08 to 2.33 percent.  

 

Table I. Effect of Income Inequality Indices on Health Outcomes 

 Lognormal  Pareto 
 "Excellent"  "Fair or Poor"  "Excellent"  "Fair or Poor"  

Explanatory 

Variables 

State County State County State County State County 

(1) (2) (3) (4) (5) (6) (7) (8) 

Gini  -0.147* 
(0.084) 

-0.066* 
(0.034) 

0.100 
(0.080) 

0.070*** 
(0.027) 

-0.111* 

(0.065) 
-0.051* 
(0.026) 

0.073 
(0.060) 

0.054*** 
(0.021) 

Percent Change a -1.98% -1.61% 1.69% 2.23% -2.00% -1.67% 1.66% 2.25% 

Atkinson (ε=0.5) -0.142 
(0.088) 

-0.065* 
(0.035) 

0.087 
(0.078) 

0.072*** 
(0.028) 

-0.104 
(0.067) 

-0.047* 
(0.027) 

0.060 
(0.058) 

0.053** 
(0.021) 

Percent Change a -2.00% -1.61% 1.54% 2.33% -2.00% -1.59% 1.45% 2.29% 

Atkinson (ε=1) -0.101* 
(0.059) 

-0.046* 
(0.024) 

0.067 
(0.055) 

0.049*** 
(0.019) 

-0.127* 
(0.071) 

-0.057** 
(0.029) 

0.090 
(0.069) 

0.059*** 
(0.02) 

Percent Change a -1.99% -1.63% 1.66% 2.28% -1.96% -1.64% 1.75% 2.14% 

Atkinson (ε=2) -0.097* 
(0.052) 

-0.044** 
(0.022) 

0.072 
(0.053) 

0.044*** 
(0.017) 

-0.094* 
(0.055) 

-0.043* 
(0.022) 

0.062 
(0.051) 

0.046*** 
(0.018) 

Percent Change a -1.92% -1.58% 1.80% 2.08% -2.00% -1.66% 1.67% 2.23% 
Robust standard errors clustered at the state or county level are in parentheses (*** p<0.01, ** p<0.05, * p<0.1).  
a. Percent changes from a one standard deviation change in the respective index. 

 

Table II reports our estimated effects of logarithmic group average income on self-
reported health, which strongly support the absolute income hypothesis that higher absolute 
income promotes health, thus being consistent with previous literature. It is worth noting that 
these estimated effects are completely robust across specifications using different inequality 
measures (i.e., Gini, Atkinson) and income distribution assumptions (i.e., Lognormal, Pareto), 
which is in line with prior literature suggesting that absolute income effects are not sensitive to 
various inequality measures (Lorgelly and Lindley, 2008). 

 

Table II. Effect of Logarithmic Group Average Income on Health Outcomes 

 "Excellent"  "Fair or Poor"  

Explanatory Variable 

State County State County 

(1) (2) (3) (4) 

Ln (Group Average Income) 0.049*** 
(0.009) 

0.036***  
(0.002) 

-0.080*** 

(0.006) 
-0.061*** 

(0.002) 
Robust standard errors clustered at the state or county level are in parentheses (*** p<0.01, ** p<0.05, * p<0.1).  

 

 

 



4. Discussion 

In this paper we extend the income inequality literature by expressing both the Gini and 
Atkinson index as a function of the ratio of the mean to median household income. We also 
model individual income as following either the lognormal or Pareto distribution when using 
each index. This approach produces precise annual Gini and Atkinson indices at different levels 
of geography, thus solving the sample size problem in the literature by incorporating externally 
calculated inequality measures. In an application, we find preliminary evidence that greater 
income inequality negatively affects overall self-reported health in the United States. 

Interest within the academic literature and the popular press on the consequences of 
income inequality has exploded in recent years. This is no doubt driven by the dramatic widening 
of the income distribution in both the United States as well as many other developed countries 
over the past 30 years (Piketty et al., 2017; Piketty and Saez, 2003; Boustan et al., 2013). In light 
of this, we believe our suggested approach will be of help to those interested in investigating the 
effect of increases in income inequality across a variety of research fields.      

One potential limitation of our work is that estimating the effect of income inequality on 
health is challenging because the causal relationship might also run from health to inequality. 
However, our application focuses on a period in the U.S. with tremendous changes in economic 
conditions (including the economic boom from 2002 to 2006 and the Great Recession from 2006 
to 2009), which one may argue could exogenously affect income inequality. We believe, 
therefore, such exogenous changes in inequality might reduce this concern to some degree. 
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Appendix: Derivation for Mixture Gini Indices (Lognormal, Pareto)  

In this appendix, we first briefly review the Gini index from a mixture of lognormal distribution 
done by prior studies. We then extend this work by expressing the lognormal mixture Gini index 
as a function of subgroup mean and median household incomes. Following that, we derive a 
mixture Gini index from Pareto distribution that can be expressed as a function of subgroup 
mean and median household incomes. Due to the limitation on data availability, we do not have 
data on mean and median household incomes of socioeconomic subgroups at the state- or 
county-level from reliable Federal data sources for an application of our derived mixture Gini 
indices. Future studies can apply our mixture Gini indices if such aggregate income data become 
available.   

A1. Review and extension of Gini Index from a mixture of lognormal distributions 

Prior studies have derived the Gini index from a mixture of lognormal distributions as follows 
(Young, 2011; Modalsli, 2015): 

ܩ  �̅�௝�̅௜݌௜݌∑∑=
௝=ଵ ( 

 ʹΦ( ߤ௜ − ௝ߤ + Ͳ.ͷ�௜
ଶ + Ͳ.ͷ�௝ଶ√�௜ଶ + �௝ଶ ) ) 

 �
௜=ଵ − ͳ 

 

(A1) 

where ܯ is the total number of socioeconomic subgroups, and ݅ and ݆ denote subgroups (rather 

than individuals). �̅௜ is the mean household income of subgroup ݅, and �~lnܰሺߤ௜ , �௜ଶሻ in every 

subgroup ݅.   
We extend equation (A1) to a function of subgroup mean to median household incomes as 
equation (A2): 

 

ܩ �̅�௝�̅௜݌௜݌∑∑=
௝=ଵ ( 

   ʹΦ( 
  ln ቆ�̅௜�̅௝�ఫ̈ଶ ቇ√ʹ ln (�̅௜�̅௝�ప̈�ఫ̈)) 

  
) 
   �

௜=ଵ − ͳ 

 

(A2) 

where �̅௝ is the mean household income of subgroup ݆, and �ప̈ (�ఫ̈) is the median household 

income of subgroup ݅ (݆). 
A2. Our derivation of Gini Index from a Mixture of Pareto distributions 

We derive the Gini index following a mixture of Pareto distribution and express it as a function 
of subgroup mean and median household incomes. 

For household income that follows Pareto distribution �~���݁݋ݐ ሺ�௠,  ,݅ ௜ሻ in each subgroupߙ
we have the probability density function and cumulative density function as 



௜݂ሺ�ሻ = ௜�௠�೔��೔+ଵߙ ௜ሺ�ሻܨ       ,  = ͳ − (�௠� )�೔ 
Therefore, the probability density function of the total population with ܯ subgroups is: 

݂ሺ�ሻ ௜݌∑= ௜݂ሺ�ሻ ௜݌∑= �௜�௠�೔��೔+ଵߙ
௜=ଵ

�
௜=ଵ  

Following that, the cumulative density function of the total population with ܯ subgroups: 

ሺ�ሻܨ = ∫ ݂ሺݑሻ݀ݑ�
�� = ∫ ௜݌∑ ௜݂ሺݑሻ�

௜=ଵ �ݑ݀
�� �௜݌∑=

௜=ଵ ∫ ௜݂ሺݑሻ݀ݑ�
�� �௜ሺ�ሻܨ௜݌∑=

௜=ଵ  

We have known the Lorenz Curve under the Pareto distribution in each subgroup ݅ is: ܮ௜ሺܨ௜ሻ = ͳ − ሺͳ − −௜ሻଵܨ ଵ�೔ 
The Lorenz Curve under a mixture of Pareto distributions in the total population with ܯ 
subgroups can be expressed as a weighted mean as well (Sarabia et al., 2005): 

ሻܨሺܮ ௜ሻܨ௜ሺܮ௜݌∑= ௜݌∑= ቆͳ − (ͳ − −௜ሺ�ሻ)ଵܨ ଵ�೔ቇ�
௜=ଵ

�
௜=ଵ  

Therefore, we can calculate the Gini index under a mixture of Pareto distributions as: 

ܩ                        = ͳ − ʹ∫ ሺଵܮ
଴                              ܨሻ݀ܨ

= ͳ − ∫௜݌∑ʹ ቆͳ − (ͳ − −ሻ)ଵݑ௜ሺܨ ଵ�೔ቇଵ
଴

�
௜=ଵ ݀ �ሻݑ௝ሺܨ௝݌∑)

௜=ଵ )
= ͳ − �௝݌௜݌∑∑ʹ

௝=ଵ
�
௜=ଵ ∫ ቆͳ − (ͳ − −ሻ)ଵݑ௜ሺܨ ଵ�೔ቇଵ

଴ ሻݑ௝ሺܨ݀
= ͳ − �௝݌௜݌∑∑ʹ

௝=ଵ
�
௜=ଵ ∫ (ͳ − ቀ�௠ݑ ቁ�೔−ଵ)݀ (ͳ − ቀ�݉ݑ ቁ݆ߙ)∞

��= ͳ − �௝݌௜݌∑∑ʹ
௝=ଵ

�
௜=ଵ ∫ (ቀ�௠ݑ ቁ�೔−ଵ) ݀ (ቀ�݉ݑ ቁ݆ߙ)∞

��= ͳ − �௝݌௜݌∑∑ʹ
௝=ଵ

�
௜=ଵ �௠�೔−ଵ�௠�ೕ ∫ ∞ೕ�−ݑଵ−�೔݀ݑ

��= ͳ − �௝݌௜݌∑∑ʹ
௝=ଵ

�
௜=ଵ �௠�೔−ଵ�௠�ೕሺ−ߙ௝ሻ∫ ∞ݑ೔−�ೕ݀�−ݑ

��  



Solving the above equation, we obtain: 

ܩ  = ͳ − �௝݌௜݌∑∑ʹ
௝=ଵ

�
௜=ଵ

௜ͳߙ − ௜ߙ −  ௝ߙ
 

(A3) 

We rename ݅ as ݆ and ݆ as ݅ for symmetry and we get: 

ܩ  = ͳ − �௝݌௜݌∑∑ʹ
௝=ଵ

�
௜=ଵ

௝ͳߙ − ௜ߙ −  ௝ߙ
 

(A4) 

Averaging equation (A3) and (A4), we finish the derivation and obtain the Gini index under a 
mixture of Pareto distributions as: 

ܩ  = ͳ �௝݌௜݌∑∑−
௝=ଵ

�
௜=ଵ

௜ߙ + ௝ͳߙ − ௜ߙ −  ௝ߙ
 

(A5) 

where for each subgroup ݅(݆), ߙ௜ = lnʹlnʹ +ܹሺ�௜ሻ ,   ܹሺ�௜ሻ ≈ �௜ − �௜ଶ + ͵ʹ �௜ଷ − 8͵ �௜ସ + ͳʹͷʹͶ �௜ହ,   �௜ = − lnʹʹ ∗ �̈௜�̅௜ 
 

 

 


