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Abstract
Generalized method of moments (GMM) estimation of a dynamic panel data model often relies on transforming the

data. This note provides a necessary and sufficient condition on the instruments for two-step GMM based on

differencing to be equivalent to two-step GMM based on forward orthogonal deviations. The same condition is

necessary and sufficient for system GMM, based on differencing, to be equal to system GMM using forward

orthogonal deviations.

I am grateful to an anonymous referee for suggestions that improved the paper.

Citation: Robert F. Phillips, (2020) ''The equivalence of two-step first difference and forward orthogonal deviations GMM'', Economics

Bulletin, Volume 40, Issue 4, pages 2865-2871

Contact: Robert F. Phillips - rphil@gwu.edu.

Submitted: August 10, 2020.   Published: October 23, 2020.

 

   



1 Introduction

Schmidt et al. (1992) and Arellano and Bover (1995) showed that, under certain conditions,
generalized method of moments (GMM) estimation of a panel data model is invariant to
transformation. Specifically, the same GMM estimator can be obtained using two different
transformations of the data, both of which remove fixed effects. They identified using all
available instruments as sufficient for invariance to transformation conclusions.

Phillips (2019), however, showed that using all available instruments is unnecessary and
provided a sufficient and necessary instruments condition assuring the same GMM estimate
can be calculated two ways. The importance of having a necessary and sufficient condition is
that it tells us not just when two different transformations lead to the same GMM estimator,
it also tells us when two different transformations cannot lead to the same estimator. If two
different transformations do not lead to the same GMM estimator, it becomes worthwhile to
ask which transformation produces the estimator with better sampling properties (see, e.g.,
Hayakawa, 2009; Phillips, 2020). Moreover, Phillips (2020) demonstrated that even when
the instruments condition is satisfied and, therefore, two different transformations lead to the
same estimate, the transformations are not necessarily the same in terms of computational
efficiency. One transformation can produce a computational algorithm that is orders of
magnitude faster than the algorithm based on the other transformation (Phillips, 2020).

However, Phillips (2019) did not cover GMM estimation when optimal weighting is used in
the presence of conditional heteroskedasticity. This note extends the numerical equivalency
result in Phillips (2019) to GMM when optimal weighting is used. It also extends the
equivalency result to system GMM estimation of dynamic panel data models. The results
provided here and in Phillips (2019) indicate that the necessary and sufficient instruments
condition for the numerical equivalency of different transformations applies to a broad range
of cases.

2 Numerically equivalent transformations

Consider the model
yi = X iβ + ιTηi + vi, i = 1, . . . , n. (1)

Here X i is a T×K matrix of observations on the explanatory variables for the ith individual,
vi is a vector of errors, ηi is a scalar unobserved fixed effect, and ιT is a T ×1 vector of ones.

When lags of the dependent variable appear in X i, the parameters in β are often es-
timated by applying two-step GMM after the data are transformed. The transformation
removes the fixed effect ηi. LetK be the R×T transformation matrix that satisfiesKιT = 0.

In order to write the formula for a two-step GMM estimator, let β̂ denote an initial
estimator of β and set ei = yi −X iβ̂. Moreover, let ỹi = Kyi, X̃ i = KX i, and ẽi = Kei

(i = 1, . . . , n). Next, let zit be a kt × 1 vector of instruments (t = 1, . . . , R), and let Zi be a



R×
∑R

t=1
kt block-diagonal matrix given by

Zi =




z′

i1 0 · · · 0

0 z′

i2 · · · 0
...

...
. . .

...
0 0 · · · z′

iR


 . (2)

Then the two-step GMM estimator of β, based on the transformation matrix K, is

β̂K =


∑

i

X̃
′

iZi

(
∑

i

Z ′

iẽiẽ
′

iZi

)
−1∑

i

Z ′

iX̃ i



−1

×
∑

i

X̃
′

iZi

(
∑

i

Z ′

iẽiẽ
′

iZi

)
−1∑

i

Z ′

iỹi. (3)

Given a suitable restriction on the instruments, the estimator β̂K can be written another
way provided K is such that KK ′ is positive definite. Specifically, set F = UK, where U

is the upper-triangular Cholesky factorization of (KK ′)−1. Next, let ÿi = Fyi, Ẍ i = FX i,
and ëi = Fei (i = 1, . . . , n). Finally, define

β̂F =


∑

i

Ẍ
′

iZi

(
∑

i

Z ′

iëië
′

iZi

)
−1∑

i

Z ′

iẌ i



−1

×
∑

i

Ẍ
′

iZi

(
∑

i

Z ′

iëië
′

iZi

)
−1∑

i

Z ′

iÿi. (4)

The estimators β̂K and β̂F are defined if the inverses in expressions (3) and (4) exist.
This fact imposes a restriction on the number of instruments. Specifically, we must have∑R

t=1
kt ≤ n. To see this, consider the

∑R

t=1
kt×

∑R

t=1
kt matrix

∑
i Z

′

iëië
′

iZi in (4). We have∑
i Z

′

iëië
′

iZi = W ′W for W ′ =
(
Z ′

1ë1 Z ′

2ë2 . . . Z ′

nën

)
. Moreover, rank(W ′W ) =

rank (W ) (see, e.g., Greene, 2012, p. 986). The dimension of the matrix W is n×
∑R

t=1
kt.

Therefore, n ≥
∑R

t=1
kt is necessary for the inverse (

∑
i Z

′

iëië
′

iZi)
−1

to exist.

Assuming the estimators β̂K and β̂F are defined, Theorem 1 provides a condition on the

instruments that is necessary and sufficient for β̂F = β̂K .

Theorem 1. A necessary and sufficient condition for β̂F = β̂K is

C1: every entry in zis is a linear combination of entries in zit (s = 1, . . . , t, t = 1, . . . , R).

Proofs are provided in the appendix.
The estimator given by (3) uses an asymptotically optimal weighing matrix in the sense

that the GMM estimator based on this weighting matrix is efficient among all those estima-
tors that exploit the moment restrictions E (Z ′

iẽi) = 0 (see Arellano, 2003, pp. 190–191).



Similarly, the estimator defined by (4) is asymptotically efficient among those GMM estima-
tors that rely on the moment restrictions E (Z ′

iëi) = 0. Moreover, the two sets of moment
restrictions — E (Z ′

iẽi) = 0 and E (Z ′

iëi) = 0 — imply one another if Condition C1 is
satisfied.1

An important special case of Theorem 1 is a first-differenced panel data model. In this
case, K = D, where

D =




−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1


 . (5)

Premultiplying through (1) by D gives the first-difference model

ỹi = X̃ iβ + ṽi, i = 1, . . . , n, (6)

where the tth entry in ỹi is the first difference yi,t+1 − yit (t = 1, . . . , T − 1), and the entries

in X̃ i and ṽi are similarly differenced.
Given K = D, the appropriate F is the forward orthogonal deviations transformation

matrix

F = diag (c1, c2, . . . , cT−1)

×




1 −
1

T−1
−

1

T−1
· · · −

1

T−1
−

1

T−1
−

1

T−1

0 1 −
1

T−2
· · · −

1

T−2
−

1

T−2
−

1

T−2

...
...

...
...

...
...

0 0 0 · · · 1 −
1

2
−

1

2

0 0 0 · · · 0 1 −1




, (7)

with c2t = (T − t)/(T − t+ 1) (t = 1, . . . , T − 1) (see Arellano, 2003, p. 17). Premultiplying
through (1) by F gives

ÿi = Ẍ iβ + v̈i, i = 1, . . . , n. (8)

The tth entry of ÿi is

ÿit = ct

[
yit −

1

T − t
(yi,t+1 + · · · yiT )

]
, t = 1, . . . , T − 1.

The entries in Ẍ i and v̈i are similarly transformed. Thus, the forward orthogonal deviations
transformation removes from each variable the within average of future values of the variable.

Arellano (2003, p. 153) indicates that two-step GMM applied to (8) is equivalent to

1To see this, note that there exists a nonsingular matrix C satisfying CZ ′

i
= Z ′

i
U if, and only if,

Condition C1 is satisfied (see Lemma A.1 in the appendix). Moreover, E
(
Z ′

i
ẽi
)
= 0 implies CE

(
Z ′

i
ẽi
)
= 0.

But CE
(
Z ′

i
ẽi
)
= E

(
Z ′

i
UKei

)
= E

(
Z ′

i
Fei

)
= E

(
Z ′

i
ëi
)
. Hence, E

(
Z ′

i
ẽi
)
= 0 implies E

(
Z ′

i
ëi
)
= 0.

Conversely, E
(
Z ′

i
ëi
)
= 0 implies C−1

E
(
Z ′

i
ëi
)
= 0. But E

(
Z ′

i
ëi
)
= CE

(
Z ′

i
ẽi
)
. Hence, E

(
Z ′

i
ëi
)
= 0

implies C−1CE
(
Z ′

i
ẽi
)
= E

(
Z ′

i
ẽi
)
= 0.



two-step GMM applied to (6) provided all available instrumental variables are used. If the
instrumental variables are predetermined variables and all available instruments are used,
this choice of instrumental variables satisfies the instruments condition in C1. This case is
important, but using all available instrumental variables is not necessary for condition C1
to be satisfied. For example, only some of the predetermined variables can be used provided
the instrumental variables used each period are also used in later periods. Or, suppose some
of the regressors are strictly exogenous, and only strictly exogenous variables are used as
instrumental variables. Using only strictly exogenous variables as instrumental variables
will satisfy condition C1 provided the instrumental variables used in period s are also used
in period t, for each t ≥ s. In both of these examples the instrumental variables used each
period is a subset — possibly a proper subset but not necessarily a proper subset — of the
instrumental variables used in every later period. Phillips (2019) shows that cases like these
satisfy C1.

Moreover, if, and only if, Condition C1 is satisfied, there is more than one way to calculate
a system GMM estimator. To see this, let yi = (yi1, . . . , yiT )

′, and let X i denote a T ×K
matrix with (yi,t−1,x

′

it) in its tth row (t = 1, . . . , T ). Next set y+

i = (y′

i, (I
∗yi)

′)′ and
X+

i = (X ′

i, (I
∗X i)

′)′, where I∗ is a (T−1)×T matrix obtained by deleting the first row of a
T -dimensional identity matrix. The well-known system GMM estimator studied by Arellano
and Bover (1995) and Blundell and Bond (1998) relies on differencing the observations in
the first T rows in y+

i and X+

i . Specifically, it uses the transformed data ỹ+

i = K+y+

i and

X̃
+

i = K+X+

i (i = 1, . . . , n), where

K+ =

(
D 0

0 I

)
,

and I is a T − 1 dimensional identity matrix. Moreover, set

Z+

i =

(
Z1i 0

0 Z2i

)

(i = 1, . . . , n). The system GMM estimator is

β̂K+ =


∑

i

X̃
+′

i Z+

i

(
∑

i

Z+′

i ẽ+

i ẽ
+′

i Z+

i

)
−1∑

i

Z+′

i X̃
+

i




−1

×
∑

i

X̃
+′

i Z+

i

(
∑

i

Z
+
′

i ẽ+

i ẽ
+′

i Z+

i

)
−1∑

i

Z+′

i ỹ+

i ,

where ẽ+

i = ỹ+

i − X̃
+

i β̂ (i = 1, . . . , n) and β̂ is an initial estimator of β.
The same system GMM estimator can be constructed using forward orthogonal deviations

if, and only if, C1 is satisfied. To see this, let

F+ =

(
F 0

0 I

)
,



where F is given by Eq. (7). Also, let ÿ+

i = F+y+

i and Ẍ
+

i = F+X+

i (i = 1, . . . , n). Then
define

β̂F+ =


∑

i

Ẍ
+′

i Z+

i

(
∑

i

Z+′

i ë+

i ë
+′

i Z+

i

)
−1∑

i

Z+′

i Ẍ
+

i



−1

×
∑

i

Ẍ
+′

i Z+

i

(
∑

i

Z
+
′

i ë+

i ë
+′

i Z+

i

)
−1∑

i

Z+′

i ÿ+

i ,

where ë+

i = ÿ+

i − Ẍ
+

i β̂ (i = 1, . . . , n).
We can now state Theorem 2.

Theorem 2. Suppose Z1i is block-diagonal, with 1 × kt instrument vector z′

it in its tth

diagonal block (t = 1, . . . , T − 1), and β̂K+ and β̂F+ use the same initial estimator β̂. Then

β̂F+ = β̂K+ if, and only if, C1 is satisfied.

The result in Theorem 2 holds more generally. In particular, D can be replaced in the
definition of K+ with another transformation matrix K, provided KK ′ is positive definite
and provided F in F+ is given by F = UK, where U is the upper-triangular Cholesky
factorization of (KK ′)−1.

Moreover, the conclusion of the theorem does not depend on how Z2i is specified.

3 Concluding remarks

The results provided in this note tell us when two different transformations lead to the same
two-step GMM estimators and system estimators. The results also tell us when they do not.
The note focused on the equivalence of the first-difference and forward orthogonal deviations
transformations. Similar results for one-step GMM based on forward orthogonal deviations
and differencing were provided in Phillips (2019); see, for example, Example 1 in Phillips
(2019).

There is, however, a difference in the practical import of the results provided in Phillips
(2019) and those provided here. Specifically, one-step GMM based on forward orthogonal
deviations provides significant computational advantages compared to one-step GMM based
on differencing (Phillips, 2020). But we have no reason to expect a similar computational
advantage for two-step GMM based on forward orthogonal deviations. This is because
the weighting matrix for GMM based on forward orthogonal deviations is block-diagonal
when only one step is used, and the block-diagonal weighting matrix is why one-step GMM
estimates based on forward orthogonal deviations can often be computed much faster than
one-step GMM estimates based on first-differences (see Phillips, 2020). But the weighting
matrix is not block-diagonal for two-step GMM based on forward orthogonal deviations.

Appendix: Proofs

The proof of Theorem 1 relies on the following corollary to Theorem 1 in Phillips (2019).



Lemma A.1. Suppose KK ′ is positive definite. Let U be the upper-triangular Cholesky
factorization of (KK ′)−1, and let Zi be defined as in (2). Then there is a nonsingular
matrix C satisfying CZ ′

i = Z ′

iU if, and only if, C1 is satisfied.

Proof : Let Φ = KΩK ′, with Ω a positive definite matrix. For the upper-triangular
Cholesky factorization of Φ−1, say U ∗, there is a nonsingular matrix C satisfying CZ ′

i =
Z ′

iU
∗ if, and only if, C1 is satisfied (Phillips, 2019, Theorem 1). Set Ω = I. Then U ∗ = U ,

and the conclusion of Lemma A.1 follows.

A.1. Theorem 1 proof

By Lemma A.1 there is a nonsingular matrix C such that CZ ′

i = Z ′

iU if, and only if, C1 is
met. This fact and F = UK imply

∑

i

Ẍ
′

iZi

(
∑

i

Z ′

iëië
′

iZi

)
−1∑

i

Z ′

iẌ i =
∑

i

X̃
′

iU
′Zi

(
∑

i

Z ′

iUẽiẽ
′

iU
′Zi

)
−1∑

i

Z ′

iUX̃ i

=
∑

i

X̃
′

iZiC
′

(
∑

i

CZ ′

iẽiẽ
′

iZiC
′

)
−1∑

i

CZ ′

iX̃ i

=
∑

i

X̃
′

iZi

(
∑

i

Z ′

iẽiẽ
′

iZi

)
−1∑

i

Z ′

iX̃ i (9)

if, and only if, C1 is satisfied. By similar reasoning, we get

∑

i

Ẍ
′

iZi

(
∑

i

Z ′

iëië
′

iZi

)
−1∑

i

Z ′

iÿi =
∑

i

X̃
′

iZi

(
n∑

i

Z ′

iẽiẽ
′

iZi

)
−1 n∑

i

Z ′

iỹi, (10)

if, and only if, C1 is satisfied.

A.2. Theorem 2 proof

By Lemma A.1, C1 is necessary and sufficient for the existence of a nonsingular matrix C

satisfying CZ ′

1i = Z ′

1iU . Let

C+ =

(
C 0

0 I

)

and

U+ =

(
U 0

0 I

)
.



Then C+ is nonsingular and C+Z+′

i = Z+′

i U+ if, and only if, C1 is met. This fact and
F+ = U+K+ gives

∑

i

Ẍ
+′

i Z+

i
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i

Z+′

i ë+

i ë
+′

i Z+

i

)
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=
∑
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i

and
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i

Ẍ
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i

(
∑

i
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i ë+

i ë
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i Z+

i

)
−1∑

i

Z+′

i ÿ+

i

=
∑

i

X̃
+′

i Z+

i

(
∑

i

Z+′

i ẽ+

i ẽ
+′

i Z+

i

)
−1∑

i

Z+′

i ỹ+

i

by derivations similar to those establishing Eq.s (9) and (10).
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