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1 Introduction

Asset pricing theory and its link to arbitrage have been formalized by Harrison and Kreps
(1979) and Harrison and Pliska (1981, 1983). The main result in these models is that the
price process of traded securities is arbitrage free if and only if there exists some equivalent
probability measure that transforms it into a martingale, when normalized by the numeraire.
When markets are dynamically complete, there is only one such a martingale-probability
measure and any contingent claim is priced by taking the expected value of its (normalized)
payo¤ with respect to this measure. It is said priced by arbitrage. When markets are
incomplete, arbitrage bounds can be computed taking the expected value of the (normalized)
payo¤ with respect to all the measures that characterize the absence of arbitrage. The
obtained arbitrage bounds correspond to the minimum amount it costs to hedge the claim
and the maximum amount that can be borrowed against it using dynamic strategies. Each
one of the measures that characterize the absence of arbitrage can be seen as associated to a
speci�c �ctitious completion, that is to say a complete �nancial market that consists of the
initial market completed by additional nonredundant assets. Each price within the arbitrage
bounds corresponds then to the arbitrage price in a speci�c �ctitious completion and the set
of such prices is called arbitrage pricing interval. This line of research has been initiated by
El Karoui and Quenez (1995).
Utility pricing is another important approach. The price of a given risky claim, following

this approach,corresponds to the amount for which an agent whose preferences and initial
endowment are speci�ed is indi¤erent, at his optimal consumption plan, between a positive
or a negative additional marginal quantity of the claim for that unitary amount. When
markets are complete, Pliska (1986), Cox and Huang (1989, 1991), Karatzas et al. (1990)
adapted the martingale ideas presented above to problems of utility maximization. When
markets are incomplete, Karatzas et al. (1991) builds upon these last references in order to
compute a utility price for every �ctitious completion, and show that the utility price in the
initial incomplete market corresponds to the utility price in the completion which makes the
maximum expected utility as small as possible. For a given speci�cation of agent�s preferences
(utility function and initial endowment) and for a given risky claim, this approach leads to
a unique price. However, this price strongly depends on the chosen speci�cation. In order
to obtain preferences and endowments-free bounds, it is possible, for a given risky claim, to
introduce the concept of utility pricing interval (whose bounds are called utility bounds).
This interval is the set of utility prices that are obtained for some utility function in the class
of von Neumann-Morgenstern (vNM) increasing and concave utility functions and for some
initial endowment. Jouini and Kallal (1999) show that the utility bounds (utility pricing
interval) coincide with the arbitrage bounds (arbitrage pricing interval). In the next we will
call them arbitrage/utility bounds (arbitrage/utility pricing interval, AUPI).
In both arbitrage and utility pricing approaches, the �ctitious completion appears as

a very powerful tool that permits to generalize results established in a complete markets
setting to an incomplete markets framework. However, the arbitrage/utility pricing interval
is often too large to be of great interest (Cvitanic et al., 1999).
It is then necessary to introduce additional restrictions in order to derive tighter bounds.

The equilibrium pricing approach has been introduced �rst by Bizid et al. (1998) and makes
an explicit use of the market clearing conditions. In a general setting and for a given risky



claim, equilibrium bounds delimit the set of all possible equilibrium prices for the asset
under consideration for all possible distributions of agents preferences (within the class of
vNM increasing and strictly concave utility functions) and for all possible ditributions of
initial endowment across the agents. Bizid and Jouini (2005) show that this interval is
smaller than the arbitrage/utility pricing one even though they do not fully characterize it.
At this stage, a natural question arises: does the completion technique permit to char-

acterize the equilibrium pricing interval (EPI ) as the set of equilibrium prices associated to
all possible completions (that we will call �ctitious completion equilibrium pricing interval,
FCEPI )? In other words, does the set of prices that can be reached at the equilibrium for
at least one distribution of preferences/endowments and for at least one completion coincide
with the set of prices that can be reached at the equilibrium for at least one distribution of
preferences/endowments?
The question above is quite important because the FCEPI corresponds to the pricing

interval considered in Bizid et al. (1998), Jouini (2003) and Jouini and Napp (2003) and, as
shown therein, is relatively easy to determine and has many interesting properties in terms
of size and robustness.
Unfortunately, the answer is negative. The present note properly de�nes these di¤erent

concepts and provides a simple example where the set of equilibrium prices associated to all
possible vNM utility functions is strictly larger than the set of equilibrium prices associated
to all possible �ctitious completions.
The paper is organized as follows. Section 2 presents the framework and the main results.

Section 3 presents the speci�c example. Section 4 concludes. Proofs are in the Appendix.

2 The model

We consider a model with 2 dates, a �nite set of states of the world 
, endowed with a
probability P whose expectation operator is denoted by E [:]. Two random variables x and
y are anticomonotonic (denoted by x � y) if

for all (!; !0) 2 
2; x(!) > x(!0) if and only if y(!) > y(!0):

Consumption takes place at date t = 1. There are K productive assets. The kth asset
has a price pk and pays a random dividend dk(!). There are also M derivative assets and
the mth asset has a price qm and delivers a random amount fm. All prices are determined
at date 0 but transfers occur at date 1.
There are N agents with utility functions Un (:) = E [un (C)] where un : R+ n f0g ! R.

At t = 0, agent n has �n0 =
�
�k;n0

�
k=1;:::;K

shares of the productive assets, �n0 = (�
m;n
0 )m=1;:::;M

shares of the derivative assets and a random endowment wn. We have
PN

n=1 �
n
0 = (1; :::; 1);PN

n=1 �
n
0 = 0.

Assumption U. un is continuously di¤erentiable, increasing, strictly concave and satis�es
un (x) !

x!0+
�1.



We consider a new derivative asset whose payo¤s are described by f0 (in short, asset
f0). At equilibrium, which prices q0 for f0 are compatible. with the already observed prices��
pk
�
; (qm)

�
?

Let us �rst introduce the following de�nitions.
A strategy S is a vector (C; �; �) where C � 0 is a random consumption and where � (�)

are quantities of productive (derivatives) assets.
The budget constraint of the nth agent is then given by:

�n � p+ �n � q = �n0 � p+ �
n
0 � q; (1)

C = wn + �n � d+ �n � f:

where � denotes the inner product.
For a given agent n with an initial endowment (wn; �n0 ; �

n
0 ), the set A

n is the set of
strategies S satisfying the budget constraint (1).
As usual, an equilibrium and a state-price de�ator (SPD) are de�ned as follows:

De�nition 1. An equilibrium in the economy E = ((d; f) ; (un; wn; �n0 ; �
n
0 )n=1;:::;N) is de�ned

by strategies (Cn;�; �n;�; �n;�) and prices (p; q) such that, for n = 1; :::; N; (Cn; �n; �n)
maximizes Un on An,

PN

n=1 �
n = (1; :::; 1);

PN

n=1 �
n = 0 and

PN

n=1C
n = w+D where

w =
PN

n=1w
n and D =

PK

k=1 d
k:

De�nition 2. A SPD is a random variable & > 0 such that

p = E [&d] and q = E [&f ] :

We assume that the aggregate endowment w is known and that agents observe assets�
prices. However, they do not know the number of agents nor their individual characteristics
(utility functions, endowments).
For a given derivative asset, we want to characterize the prices that might emerge at

equilibrium for some con�guration of agents� preferences and some distribution of the initial
endowment across the agents.

De�nition 3. EPI(f 0), is the set of prices q0 for which there exists an integer N; utility
functions (un)n=1;:::;N satisfying (U), initial endowments (w

n; �n0 ; �
n
0 )n=1;:::;N and strate-

gies (Cn;�; �n;�; (�0;n;�; �n;�)) ; such that (Cn;�; �n;�; (�0;n;�; �n;�)) and (p; (q0; q)) de�ne

an equilibrium of the economy eE = (d; (f 0; f) ; (un; wn; �n0 ; �n0 )n=1;:::;N):

The following proposition provides a simpler characterization of the EPI.

Proposition 1 EPI(f0) is the set of prices q
0 for which there exists N , positive random

vectors (Cn)n=1;:::;N and SPDs (&n)n=1;:::;N ; such that
PN

n=1C
n = w + D, Cn � &n; and

q0 = E [&nf 0] ; for n = 1; :::; N; i.e.

EPI(f0) =
[

N>0

[

C1+:::+Cn=w+D

\

n=1;:::;N

fE [&f0] : &
n is a SPD and & � Cng :



When markets are complete and all information is available, there is only one SPD &,
and EPI(f0) = fE [&f

0]g.
In complete markets, if only some prices are observable, there is only one SPD but it

can not be determined due to information incompleteness. However, the comonotonicity
condition partially or fully compensates the lack of information on assets prices as shown by
Bizid et al. (1998), Jouini and Napp (2002) or Chazal and Jouini (2008) (see also Perrakis
and Ryan, 1984, Ritchken, 1985, Perrakis, 1986). In an incomplete markets setting, Bizid
and Jouini (2005) shows that the EPI is strictly smaller than the AUPI.
A �ctitious completion is described by J additional derivatives (fM+j)j=1;:::;J with prices

(qM+j)j=1;:::;J such that the market that consists in the K productive assets and the M + J
derivatives, is complete. The FCEPI is de�ned as follows.

De�nition 4. FCEPI(f 0), is the set of prices q0 such that there exists a �ctitious comple-
tion of the initial market such that, in this completed market, q0 is in EPI(f 0):

Proposition 2 FCEPI(f0) = [inf&2�E [&f0] ; supE&2� [&f0]] where � is the set of all SPDs
& such that & � w +D.

In a di¤usion setting, Jouini and Napp (2003) show that the FCEPI is reduced to a
unique price that corresponds to Föllmer and Schweizer (1991) price when equity prices are
increasing functions of dividends1. Recall that Föllmer and Schweizer price corresponds to
the price when there is a 0 premium for risks that are orthogonal to the already existing
market.
If the EPI coincides with the FCEPI, this would provide a simpler characterization of

the EPI and would also mean that the EPI is robust and very tight.
In general, do we have EPI(f0) = FCEPI(f0) or, equivalently,

inf
& SPD and &�w+D

E [&f0] = inf
N>0

inf
C1+:::+Cn=w+D

sup
n=1;:::;N

inf
& SPD and &�Cn

E [&f0]

for all f0?
The next section provides a negative question to this question.

3 A Speci�c example

We take j
j = 4, K = 1; M = 0, d1 = (1; 1; 1; 1); p1 = 1, w = (2:997; 2:52; 2:501; 2) and
f 0 = (1; 0; 0; 1

10
):

ForN = 2; w1 = (1:499; 1:5; 1:001; 1), w2 = (1:498; 1:02; 1:5; 1); &1 = (1:1375; 0:5025; 1:14; 1:22)
and &2 = (1:1373; 1:1415; 0:4992; 1:222); we check that wn � &n for n = 1; 2, w1 + w2 = w;
E [&1d1] = E [&2d1] = p1 and E [&1f 0] = E [&2f 0] = 0:314875:
By Proposition 1, we have �q0 = 0:314875 2 EPI(f 0).
By Proposition 2, FCEPI(f 0) = [inf E [&D] ; supE [&D]] for & such that E [&1d1] = p1

and & � w: For such a &, it is easy to check that we necessarily have 1
30
� E [&D] � 0:275

1Jouini and Napp (2003) provides theoretical justi�cations for such an assumption.



and any value within these bounds can be reached by such a &. Hence, �q0 =2 FCEPI(f 0) =
[1=30; 0:275].
Note that AUPI (f 0) is given by [inf E [�f 0] ; supE [�f 0]] for � such that E [&] = 1 hence

AUPI (f 0) = [0; 1] :
Any price q0 2 EPI(f 0) is the equilibrium price in a given economy. Since we have

w1 > w2; at least one agent satis�es C
n;�
1 > Cn;�2 which gives �n1 < �

n
2 for the associated SPD

hence q0 � 0:5.
We have then

�
1
30
; 11
40

�
= FCEPI(f 0)  EPI(f 0) � [0; 0:5]  AUPI (f 0) = [0; 1] :

4 Conclusion

Bizid and Jouini (2005) shows that the pricing interval obtained through partial equilibrium
conditions is strictly smaller than the AUPI and strictly larger than the FCEPI. However,
it was unclear if the full exploitation of the equilibrium conditions would permit to reach
a smaller pricing interval (EPI ) and whether this interval would be equal to the FCEPI.
This question is interesting because the FCEPI might be quite tight, has good convergence
properties and is robust to small perturbations on the characteristics of the economy. We
have shown that the EPI might be strictly larger than the FCEPI : the �ctitious completion
technique does not permit to scan all possible equilibrium prices while it permits to scan all
arbitrage/utility prices. Then, work remains to be done in order to analyze to which extent
the bounds of Bizid and Jouini (2005) can be reduced further.
The main conclusion of this note is that the �ctitious completion technique does not

permit to scan all possible equilibrium prices while it permits to scan all arbitrage/utility
prices.

5 Appendix

Proof of Proposition 1. If q0 2 EPI(f 0) then there existsN; (un)n=1;:::;N , (w
n; �n0 ; �

n
0 )n=1;:::;N

and (Cn;�; �n;�; (�0;n;�; �n;�)) such that ((Cn;�; �n;�; (�0;n;�; �n;�)) ; (p; (q0; q))) is an equilibrium

of eE = (d; (f 0; f) ; (un; wn; �n0 ; �n0 )n=1;:::;N): The �rst order conditions for Agent 1 utility max-
imization give �

u1
�0 �
C1;�

�
dk = �pk and

�
u1
�0 �
C1;�

�
fm = �qm

for k = 1; :::; K; m = 0; :::;M and for some Lagrange multiplier �: It su¢ces to take & =
1
�
(u1)

0
(C1;�) :

Conversely, let us assume that there exists (Cn)n=1;:::;N and SPDs (&
n)n=1;:::;N such thatPN

n=1C
n = w + D, Cn � &n, and q0 = E [&nf 0] for n = 1; :::; N: For a given n, let us

number the elements of 
 such that Cn (!i) is nondecreasing and let us de�ne the func-

tion vn such that vn(c) = &n (!1)
Cn(!1)

c
on (0; Cn (!1)] ; v

n a¢ne on [Cn (!i) ; C
n (!i+1)]

for 1 � i � j
j � 1, vn(c) = &n
�
!j
j

� Cn(!j
j)
c

on
�
Cn
�
!j
j

�
;1
�
; and v continuous. It

is immediate that v is positive, decreasing, that un(c) =
R c
1
vn(x)dx satis�es (U) and that

(un)0 (Cn) = &n. Let us take wn = Cn;� � 1
N
D; �0;n = 1

N
1K and �0;n = 0 for n = 1; :::; N:

It is immediate that
�
Cn; �0;n; (�0;n; �n)

�
satis�es the �rst order necessary and su¢cient



conditions associated to un; n = 1; :::; N; in the market ((d; p); ((q0; q) ; f0; f)) : Since we
also have, by construction,

PN

n=1C
n;� = w +D;

PN

n=1 �
n;� = (1; :::; 1),

PN

n=1 �
n;� = 0 then

((Cn;�; �n;�; (�0;n;�; �n;�)) ; (p; (q0; q))) is an equilibrium of eE = (d; (f 0; f) ; (un; wn; �n0 ; �n0 )n=1;:::;N):

Proof of Proposition 2. If q0 2 FCEPI(f0), there exists a completion for which q
0

is in the associated EPI. By proposition 1, there exists (Cn)n=1;:::;N and SPDs (&
n)n=1;:::;N ,

s.t. Cn � &n and
PN

n=1C
n = w + D. Since it is a completion, there is only one SPD.

We have then &1 = ::: = &n �
Pn

i=1C
i = w + D. Conversely, if q0 = E [&f0] for a SPD

& � w+D; let us complete our market with enough additional derivatives (fM+j)j=1;:::;J with
prices qM+j = E

�
&fM+j

�
; j = 1; :::; J . By Proposition 1, q0 2 EPI(f 0) in this completion.
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