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Abstract
This paper proposes a semi-parametric estimate of risk premium using the Flexible Fourier From with a small number
of low-frequency components. We provide an application to the forecast error decomposition based on the uncovered
interest rate parity (UIP). Limited support is found for the omitted-variable explanation of the UIP puzzle.
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Section 1. Introduction

The Flexible Fourier Form of Gallant (1981) has been applied to account for structural
breaks, parameter instability and nonlinearity, see Becker et al. (2004), Enders and Lee
(2012), Enders and Holt (2012), Enders and Li (2015) and Enders and Li (2018) for instance.
This paper makes a contribution to the literature by proposing a simple Fourier estimate of
risk premium, in an attempt to verify Fama (1984)’s hypothesis that the uncovered interest
rate parity (UIP) puzzle can be explained by the omission of risk premium in the regression-
based test for UIP.

Using Fourier form or trigonometric functions is motivated by the smoothness of risk
premium. For instance, consider a structural model of risk premium in the foreign exchange
market
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where θt denotes the risk premium, u′ is the first order derivative of utility function, ct is
consumption, pt is domestic currency price of consumption good, St is spot exchange rate
defined as the domestic currency price of one unit of foreign currency, and Ωt is informa-
tion set. Equation (1) is basically the first order condition of a generalized Lucas (1978)
intertemporal asset pricing model, see Mark (1985) for its derivation.

For our purpose, it suffices to note that the smoothness of risk premium stems from
consumption smoothing ct ≈ ct+1, sticky price pt ≈ pt+1, and time-invariant utility function
in (1). In the extreme case where price and consumption are fixed, covariance in the numer-
ator becomes a constant of zero. Even if there may be heterogeneity in personal utility and
information set, the central limit theorem is able to add another layer of smoothness at the
aggregate level.

Restrictive assumptions such as the form of utility function are required1 in order to
obtain a parametric or “structural form” estimate of risk premium based on (1). For the
sake of robustness and computational easiness, this paper advocates a semiparametric or
“reduced-form” estimate of risk premium by applying the Fourier form to the Fama regression
forecast error with the UIP imposed.

The economic literature on risk premium is vast, see Arnould and Nichols (1983), Mehra
and Prescott (1988), and Hess and Kamara (2005) for discussion about risk premium of wage,
equity, and interest rate. The proposed methodology can be applied to those topics provided
that the risk premium is smooth. Other approaches of estimating the risk premium can be
found in Linton and Perron (2003) and Collot and Hemauer (2021). This paper distinguishes
itself by using the Flexible Fourier Form.

1For instance, the Constant Relative Risk Aversion (CRRA) utility function is commonly used.



Section 2. Flexible Fourier Form

Let ut = θt+et be a time series consisting of risk premium θt and idiosyncratic error et. This
paper considers approximating unobserved θt with its Flexible Fourier Form (FFF)

ut = FFFt + êt (2)

FFFt = µ+

p
∑

k=1

αk cos(2πkt/n) +

p
∑

k=1

βk sin(2πkt/n) (3)

where k is index for frequency, p is the number of frequencies, and n is sample size. When
p = 0, the risk premium is assumed to be constant. With rising p we can allow for an
increasingly complex pattern in risk premium. When p = n/2, the Fourier approximation is
perfect for any absolutely integrable function, see Gallant (1981) for details. In light of the
parsimony principle, this paper chooses the maximum value of p = 4. The coefficients αk

and βk are obtained by regressing ut onto sin and cos regressors. By construction, the FFF
is a data-driven and endogenous approach of estimating the unknown risk premium. The
Fourier series is able to yield a global approximation as long as the risk premium is bounded,
and FFF works especially well when the risk premium is smooth.

We use simulation to illustrate in Figure 1 the performance of FFF approximation. The
data are generated using a linear combination of Logistic Smooth Transition Autoregressive
(LSTAR) models

yt =
m
∑

j=1

dj(1 + exp(−γj(t− λjn)))
−1, (t = 1, . . . , n) (4)

where λ determines the location of transition, and γ controls the smoothness of transition.
For instance, in panel A we set m = 2, d1 = 0.2, γ1 = −0.15, λ1 = 0.25, d2 = 0.3, γ2 = 0.05,
λ2 = 0.7, n = 200. In each panel the solid line represents yt series; the dot line is the fitted
value after using two frequencies and regressing yt onto cos(2πt/n), sin(2πt/n), cos(4πt/n),
and sin(4πt/n); the dash line is the fitted value with cos(6πt/n) and sin(6πt/n) being added.



Figure 1: FFF Approximation of Smooth Functions

Panel A

Y1 Two Frequencies Three Frequencies

0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Panel C

Y3 Two Frequencies Three Frequencies

0 50 100 150 200

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Panel B

Y2 Two Frequencies Three Frequencies

0 50 100 150 200

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Panel D

Y4 Two Frequencies Three Frequencies

0 50 100 150 200

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Figure 1 clearly shows that the FFF is able to approximate a smooth target reasonably
well, and more frequencies improve the fit. In panel D, for instance, the adjusted R squared
changes from 0.81 to 0.91 after the third frequency is included in the FFF.

Section 3. Fourier Estimate of Risk Premium

Let IDt denote the home minus foreign nominal interest rate differential, and ∆st+1 =
log St+1 − log St be the one-period change in log spot exchange rate defined as US dollars
per one foreign currency. We are interested in the Fama regression

∆st+1 = β0 + β1IDt + ut (5)

and testing the UIP hypothesis
H0 : β1 = 1. (6)

Fama (1984) hypothesizes that the error term ut in (5) includes risk premium, which can
be correlated with the interest differential and result in a biased estimate of β̂1. That is the
omitted-variable explanation of the UIP puzzle—the historical data tend to reject (6) even
if it is true. It is challenging to empirically verify Fama’s theory since the risk premium is



not directly observed. Nevertheless, this paper provides a solution by looking at (5) from
a different angle—we impose the UIP condition β1 = 1 and treat (5) as a forecast error
decomposition of the change in log exchange rate

∆st+1 = IDt + ut (7)

ut = θt + et (8)

where β0 is absorbed in θt. Decomposition (7) states that the interest differential IDt is the
part of exchange rate movement explained by the UIP, whereas ut is the unexplained part or
forecast error. Moreover, (8) divides the composite forecast error ut into the risk premium θt
and an idiosyncratic error term et. Now it is straightforward to obtain the Fourier estimate
of risk premium: first, ut is computed as ut = ∆st+1 − IDt; then the FFF given by (2) and
(3) is applied to ut.

Section 4. Application

Monthly series are downloaded from FRED Economic Data, and the sample is from January
1974 to December 2020. To minimize the effect of government intervention, the nomi-
nal interest rates are 3-month Interbank Rates (percent per annum) in Australia, Canada,
Switzerland, UK, and US. The spot exchange rates are US dollars per one foreign currency.

To duplicate the stylized fact reported in the literature2, Figure 2 plots β̂1 in the Fama
regression (5) after regressing 3-month change in log exchange rate onto the interest differ-
ential. Each window contains 60 or 5-year observations and every time we move the window
forward by one observation. We see in all panels of Figure 2 the UIP hypothesis (6) is
violated most of the time3. Note that the zero lower bound after 2008 adds volatility to β̂1

thanks to the diminishing variation of the regressor in the Fama regression (5).

2For instance, see Li et al. (2012), Lothian (2016), Ismailov and Rossi (2018) and Kumar (2019) for recent
discussion about the UIP puzzle.

3β1 = 1 is denoted by a horizontal line in Figure 2.



Figure 2: Time-Varying Beta1
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Figure 3 plots the composite forecast error ut = ∆st+1− IDt, and the Fourier estimate of
the risk premium using four frequencies p = 4 in (3). We find evidences for synchronization
in the risk premium. For instance, there is a trough in the early 1980s followed by a peak
around the early 1990s.



Figure 3: Forecast Error and Fourier Risk Premium
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For robustness check, Figure 4 compares the Fourier risk premium to the risk premium
estimated by applying the Hodrick–Prescott (HP) filter to ut with the default tuning pa-
rameter for monthly data λ = 144000. The key message from Figure 4 is that the Fourier
estimate of risk premium is largely consistent with the HP estimate: the magnitudes of the
peak and trough are similar, and more importantly, locations of turning points match well.



Figure 4: FFF and HP Risk Premia
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Panel B: Canada
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Panel D: UK
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After risk premium is estimated by the Fourier approximation and HP filter, it is straight-
forward to verify the omitted-variable explanation of UIP puzzle—we only need to compare
the covariance between the estimated risk premium and interest differential to zero (to
explain β̂1 < 1), and the negative variance of interest differential (to explain β̂1 < 0). Equiv-
alently, we can run the following auxiliary regression using the Fourier and HP estimates of
the risk premium as dependent variables:

θ̂j,t = φ0 + φ1IDt + ηt (j = FFF, HP) (9)

where φ1 =
cov(θ̂j,t,IDt)

var(IDt)
. It follows that the slope coefficient φ1 is negative if the covariance in

the numerator is negative; while φ1 is less than −1 if the covariance is less than the negative
variance of IDt. Figure 5 plots φ̂1 using the same rolling windows as Figure 2. We find that
a majority of φ̂1 are negative, supporting Fama’s explanation of β̂1 < 1. Nevertheless, the
evidence for Fama’s explanation of β̂1 < 0 is not as strong as the explanation for β̂1 < 1 (see
Panel B, Canada, in particular).



Figure 5: Verifying Fama’s Hypothesis
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Section 5. Conclusion

The main contribution of this study is advocating a semi-parametric approach of estimating
the risk premium based on the Flexible Fourier Form. The proposed methodology can be
applied provided that the risk premium is smooth. We use the estimated risk premium
to directly test the theory of Fama (1984) that the omission of risk premium can explain
the uncovered interest parity puzzle. The covariance between the interest differential and
the estimated risk premium is found to be mostly negative, which explains why the Fama
beta coefficient is usually less than unity. However, there is less compelling evidence of the
covariance being less than the negative variance of interest differential, which is needed to
explain why the Fama coefficient is sometimes negative.
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