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Abstract
This paper employs a dynamic stochastic general equilibrium (DSGE) method to systematically compare Shimer's and
Hagedorn–Manovskii's calibration approaches to the analysis of the Shimer puzzle. The findings indicate that adopting
an appropriate calibration strategy may help with solving two aspects of the Shimer puzzle by generating more
accurate standard errors for unemployment and elasticity of the v–u ratio with respect to productivity. However, there
still remains a tendency to fail to generate an accurate standard deviation for vacancy, which is the unsolvable aspect
of the Shimer puzzle.
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1. Introduction 
In labour market analysis, the Mortensen–Pissarides (MP) search model (Mortensen and Pissarides 
1994) is recognized as a canonical model offering a fundamental understanding of the movements 

of major labour market variables, such as unemployment (u), job vacancy (v), the vacancy–
unemployment ratio or v–u ratio (θ) and productivity (p). In 2005, an influential article by Robert 

Shimer was published in American Economic Review where the author questioned empirical 
validity of this canonical model. Shimer argued that the MP model failed to generate empirical 

evidence in line with the observed cyclical movements of the key labour market variables. This 
constructive criticism has come to be known as the “Shimer puzzle”.  

The Shimmer puzzle addresses two main problems in the MP model, namely: (1) the 
underestimation of the fluctuation (i.e. the standard deviation) of unemployment and vacancy, and 

(2) a lower estimation of elasticity of the v–u ratio with respect to productivity. To be more specific, 

firstly, according to Shimer’s analysis, the actual volatility of unemployment and vacancy in the 

quarterly US data (1951–2003) were 0.190 and 0.202, respectively (see Panel A in Table 1 in the 

Appendix). However, the calibrated volatilities were 0.009 and 0.027 (see Panel B in Table 1). 

Furthermore, despite approximately the same levels of actual volatility of unemployment and 

vacancy, the calibrated standard deviation for the vacancy was three times higher than the 

generated standard deviation for the unemployment. This means that the MP model has a tendency 

to underestimate unemployment in a greater degree compared to the underestimation of vacancy. 

Secondly, the MP model tends to estimate lower standard deviation of the v–u ratio in comparison 

with productivity in the actual data. As shown in Panel A in Table 1, the actual volatility of the v–

u ratio and productivity were 0.382 and 0.020, respectively. In other words, the actual volatility of 

the v–u ratio was almost 20 times higher than that of productivity. By contrast, as can be seen in 

Panel B in Table 1, the calibrated volatility of the v–u ratio was less than 2 times higher than that 

of productivity.  

Researchers have proposed several options to circumvent this puzzle; for example, wage 
rigidity, endogenous job destruction, moral hazard and bubble could be incorporated into the MP 

model. The options offering incorporating wage rigidity and endogenous job destruction have been 
the most popular. To be more specific, some researchers (Hall 2005, Pissarides 2009, Schmieder 

and von Wachter 2010) proposed that taking account of wage rigidity could offer a solution to the 
Shimer puzzle. Other researchers (e.g., Robin 2011) considered the endogenous job destruction as 

the key element to understanding the puzzle. Other alternative options have been put forward as 
well. For example, Costain and Jansen (2010) suggested that moral hazard could help to 

circumvent the volatility problem. More recently, Vuillemey and Wasmer (2020) proposed that 
stochastic bubbles could give the key to solving the Shimer puzzle.  

Notwithstanding this debate, Marcus Hagedorn and Iourii Manovskii (2008) maintained 

that the MP model is valid: it is the calibration strategy adopted by Shimer (2005) that is 

problematic. As the researchers argued, Shimer had set the parameters for the value of nonmarket 

activity (z) too low [ݖ = 0.4]  while the worker’s bargaining power (β) had been set too high [ߚ =

0.72] . They proposed that using a different calibration strategy [ݖ = ߚ,0.955 = 0.052] in their 

model (Panel C in Table 1 in the Appendix) would enable to accurately generate cyclical 

movements of the labour market variables. In other words, Hagedorn and Manovskii suggested 

that with an appropriate calibration strategy there would be no Shimer puzzle. In view that the 

Shimer puzzle continues to generate debates and attract researchers’ interest (Atolia et al. 2019, 

Krusell et al. 2010) it would be plausible to suggest that a lack of studies that show how the puzzle 

could be examined by using the dynamic stochastic general equilibrium (DSGE) model―with the 



 

 

codes provided―might have prevented the research community from findings solution to the 
puzzle.  

There is a scarcity of published codes for the analysis of the Shimer puzzle and other related 
topics. Notable exceptions are studies by Petrosky-Nadeau and Zhang (2017) and Droste (2020). 

Petrosky-Nadeau and Zhang (2017) proposed an interesting solution to the Shimer puzzle by 
incorporating the consumption function into the DSGE model. The researchers used the Dynare 

software (Adjemian et al. 2011) to generate movements of only three variables, namely, 
employment, productivity and consumption.1 However, the solution for the other three prominent 

labour market variables, which are unemployment, vacancy and the v–u ratio, had to be obtained 
indirectly using nonlinear equations. Droste’s (2020) insightful study employed the Dynare 

software to replicate Shimer’s analysis without taking account of the Hagedorn–Manovskii 
counterargument. Nevertheless, his Dynare code could be used to confirm the presence of the 

Shimer puzzle in the cyclical behaviours of unemployment and vacancy.   

Against this background, the current paper employs the DSGE analysis and compares 

Shimer’s and Hagedorn–Manovskii’s approaches. It used the Dynare software (Adjemian et al. 

2011) to generate movements of the key labour market variables. The main Dynare codes for this 

study can be found in the Appendix (see the Dynare Codes A for Shimer DSGE model and the 

Dynare Codes B for Hagedorn and Manovskii DSGE model).  

To give more detail of the procedures adopted by the two studies, Shimer (2015) suggested 

a two-stage analysis in which the DSGE model firstly generated movements of the labour market 

variables and then the Hodrick–Prescott (HP) filter was used to detrend the log of the model-

generated movements. This two-stage DSGE procedure was adopted by Droste (2020). In this 

DSGE model the initial values are not specified; instead the steady-state values are used to give a 

solution to the deterministic equilibrium.  

The contribution of the current study is threefold. Firstly, it developed appropriate Dynare 

codes for analysing the Shimer puzzle. These codes can be used in future replication studies. 

Secondly, it implemented a systematic calibration analysis to examine the existence of the Shimer 
puzzle using these codes. Thirdly, this study used the DSGE in logs, which is the main contribution.  

This helped to overcome a methodological problem where some DSGE models produce negative 
values for the vacancies and v–u ratio, which would prevent from taking logarithms of these 

values.2   
  

2. Canonical search model and DSGE analysis 
The basic building blocks of the Mortensen–Pissarides search model are three equilibrium 
conditions and three labour market equations, all of which are incorporated into the current DSGE 

analysis. The main differences between Shimer and Hagedorn and Manovskii approaches to the 

DSGE analysis are the job creation condition and the matching equation. Firstly, the job creation 

condition in Shimer DSGE model (Line 22 in the Dynare Codes A in the Appendix) were derived 

from these four Bellman equations (Shimer 2005): 

 

 

                                                   
1 The Dynare is a free software that can effectively handle a wide range of economic models, such as the DSGE model 

and the overlapping generations (OLG) model (Heijdra 2017). 
2 If the generated movements are not negative in the two-stage DSGE procedure, the calibrated movements in the two-

stage approach are largely identical to those in the DSGE in logs procedure. This procedure is similar to Adjemian et 

al.’s (2011) approach. 



 

 

௣ܬݎ = ݌ − ݓ − ௣ܬ൫ݏ − ௣ܸ൯ + ௣ᇲܬ)ߣ − (௣ܬ ݎ  ௣ܸ = −ܿ + ௣ܬ൫(ߠ)ݍ − ௣ܸ൯ + )ߣ ௣ܸᇲ − ௣ܸ) ௣ܷݎ  = ݖ + ൫(ߠ)݂ ௣ܹ −ܷ௣൯ + ௣ᇲܷ)ߣ − ௣ܷ) ݎ  ௣ܹ = ݓ − ൫ݏ ௣ܹ − ௣ܷ൯ + ௣ᇲܹ)ߣ − ௣ܹ)                                                                                          (1) 

 

where Up, Wp, Jp, Vp are the current values of unemployed workers, employed workers, filled 

vacancy and unfilled vacancy, p is the current productivity, ݌′ is the expected productivity after a 

shock, w is the wage, c is the cost of vacancy, z is the value of nonmarket activity, s is the separation 
rate, λ is the shock arrival rate, f is the job-finding rate, q is the vacancy-filling rate, θ is the v–u 

ratio and r is the discount rate. From these four equations, the first condition for the Shimer DSGE 
model could be formulated as: 

 

ݎ) + ݏ + ܿ(ߣ =
௙(ఏ೟)ఏ೟ ௧݌) ௧ݓ− +

ఒ௖ఏ೟శభ௙(ఏ೟శభ)
 )                                                                                              (2) 

 

In contrast, the job creation condition in Hagedorn and Manovskii DSGE model (Line 20 in the 
Dynare Codes B) were derived from the following four Bellman equations (Hagedorn and 

Manovskii 2008):  
௣ܬ  = ݌ − ݓ + 1)ݎ − ௣ ௣ܸܬ(ݏ = −ܿ + (ߠ)ݍݎ ௣ ௣ܷܬ  = ݖ + (ߠ)݂ݎ ௣ܹ + 1)ݎ − (ߴ)݂ ) ௣ܷ  ௣ܹ = ݓ + 1)ݎ − (ݏ ௣ܹ + ݏݎ ௣ܷ                                                                                                    (3) 

 

From these four equations, the first condition for Hagedorn and Manovskii DSGE model could be 

formulated as: 

  ௖௥ =
௙(ఏ೟)ఏ೟ ௧݌) ௧ݓ− + (1 − (ݏ

௖ఏ௙(ఏ)
 )                                                                                               (4) 

 

Secondly, the wage determination condition (Line 19 in the Dynare Codes A and Line 17 in the 
Dynare Codes B) could be determined from the Nash bargaining rule (Shimer 2005):  

 

(1 − ൫(ߚ ௣ܹ − ௣ܷ൯ = )ߚ ௣ܬ − ௣ܸ)                                                                                                                   (5) 

 

where β is the worker’s bargaining power. From the four Bellman equations and the bargaining 
solution, the second condition for both Shimer DSGE model and Hagedorn and Manovskii DSGE 

model could be formulated as: 

௧ݓ      = ௧݌ߚ + (1 ݖ(ߚ− +  ௧                                                                                                                        (6)ߠߚܿ

 

Thirdly, the flow equilibrium condition (Line 24 in the Dynare Codes A and Line 22 in the Dynare 
Codes B) could be derived from an interaction between the flow from unemployment to 

employment (i.e.,  1)ߣ − (ݑ ) and the opposite flow from employment to unemployment (i.e., 



 

 

f(ߠ)ݑ). The third condition for both Shimer DSGE model and Hagedorn and Manovskii DSGE 

model could be expressed as (Shimer 2005): 

௧ݑ  = ௧ିଵݑ + 1)ݏ − (௧ݑ − ௧ݑ(௧ߠ)݂                                                                                                 (7) 

 

Three additional equations need to be included in the DSGE analysis. The first is the labour 

productivity equation (Line 23 in the Dynare Codes A and Line 21 in the Dynare Codes B). The 

productivity equation for both Shimer DSGE model and Hagedorn and Manovskii DSGE model 

could be approximated by the first-order autoregressive process (Hagedorn and Manovskii 2008, 

Petrosky-Nadeau and Zhang 2017): 
 

 ݈݊ ௧ܲ = ݈݊ߩ ௧ܲିଵ + ௧ߝ                                                                                                                      (8) 
 

where ρ is the first-order autoregressive parameter and ߝ௧ ∼ (ଶߪ,0)ܰ . The second necessary 
equation is the v–u ratio equation (Line 25 in the Dynare Codes A and Line 23 in the Dynare Codes 

B). This ratio measures labour market tightness (Pissarides 2000). The v–u ratio equation for both 

Shimer DSGE model and Hagedorn and Manovskii DSGE model could be expressed as (Shimer 

2005, Hagedorn and Manovskii 2008): 

௧ߠ  = ௧ݒ ⁄௧ݑ                                                                                                                                                     (9)  

 

The third equation is the job-finding rate equation. The fundamental difference between Shimer 

and Hagedorn and Manovskii models is the matching function. Shimer (2005) proposed that it 

could be derived from a standard Cobb–Douglas matching function (den Haan and Kaltenbrunner 

2009):  

(௧ݒ,௧ݑ)݉  =  ௧ଵିఈ                                                                                                                                (10)ݒ௧ఈݑߤ

 

where m is the matching function, μ and α are the matching parameters; μ is expressed as mp1 and 

α is expressed as mp2. The job-finding rate equation for the Shimer model (Line 20 in the Dynare 

Codes A) could be formulated as (Shimer 2005):  

(௧ߠ)݂  = ௧ଵିఈߠߤ                                                                                                                                                  (11) 

 
In contrast, Hagedorn and Manovskii (2008) suggested an alternative matching function: 

(௧ݒ,௧ݑ)݉  = ௧ఐݒ௧ఐݑ ⁄௧ఐݑ) + ௧ఐ)ଵݒ ఐ⁄                                                                                                                       (12) 

 

where ι is the matching parameter. The job-finding rate equation in Hagedorn and Manovskii’s 

analysis (Line 18 in the Dynare Codes B) could be formulated as (Hagedorn and Manovskii 2008):    

(௧ߠ)݂  = 1 (1⁄ + ௧ିߠ ఐ)ଵ ఐ⁄                                                                                                                               (13) 

 

Hagedorn and Manovskii (2008) also suggested to replace the flow equilibrium condition with the 

employment motion condition. This DSGE model for the analysis of the Shimer puzzle was 

adopted by Petrosky-Nadeau and Zhang (2017). However, a methodological issue is that the model 



 

 

does not allow to directly generate the movement of the unemployment rate. In other words, the 
unemployment movement needs to be generated indirectly from the equation (ݐݑ = ݐ݊−1 ). 

Therefore, the present study used the flow equilibrium condition, rather than the Petrosky-Nadeau 
and Zhang’s strategy, to empirically estimate the unemployment movement.  

     

3. Calibration strategies 
This study implemented six different calibration strategies in order to assess and compare Shimer’s 

and Hagedorn–Manovskii’s approaches. The current comparative analysis was structured in line 
with an influential paper by Krusell and Smith Jr. (2015). Following Shimer’s (2005) suggestion, 

the current study generated 1,212 quarters of data and then dropped the first 1,000 quarters (Line 
42 in the Dynare Codes A and Line 40 in the Dynare Codes B). In other words, the present analysis 

used 212 quarters of calibrated data points that correspond to the quarter data in Shimer’s study.  

Calibration strategy 1 in this study employed Shimer DSGE model. It incorporated the 

following six equations: Equation (2), Equation (6), Equation (7), Equation (8), Equation (9) and 

Equation (11). Also, it used Shimer’s choice of the parameters [ݏ = ݎ,0.1 = ݖ,0.012 = ߤ,0.4 =

ߙ,1.355 = ߚ,0.72 = 0.72,ܿ = ߣ,0.213 = 0.034] .  Some of the Shimer’s original parameters 

were changed. This includes his choice for standard deviation of stochastic process [ߪ = 0.0165]  , 

which would generate volatile movements for productivity. Therefore, in the current study this 

parameter was [ߪ = 0.0083] which generated the standard deviation of 0.020 for productivity. In 

addition, Shimer’s choice for autoregressive parameter of stochastic process [ ߩ = 0.996]  

generated disproportionately high autocorrelation for productivity. Therefore, in the current study 

this parameter was set to [ߩ = 0.935]  which generated autoregression of 0.878 for productivity.   
Calibration strategy 2 adopted the DSGE model from the current study’s Calibration 

strategy 1, but with Hagedorn and Manovskii’s choice of parameter values [ݏ = ݎ,0.0081 =

ݖ,0.999 = ߤ,0.955 = ߙ,1.355 = ߚ,0.72 = 0.052,ܿ = 0.584].  It should be noted that 

Hagedorn and Manovskii’s choice for the standard deviation parameter of stochastic process [ߪ =

0.058] and autoregressive parameter of stochastic process [ߩ = 0.9895]  would generate volatile 

movements with a disproportionately high autocorrelation of productivity. Therefore, the current 

study set the standard deviation parameter to 0.0083 [ߪ = 0.0083] and the autoregressive 

parameter was set to 0.935 [ߩ = 0.935] . In short, the main difference between parameters in 

Calibration strategy 1 and Calibration strategy 2 is the choice of the values for nonmarket activity 

and worker’s bargaining power. Hence, the parameter for the value of nonmarket activity [ݖ =

0.4] in Calibration strategy 1 was replaced with [ݖ = 0.955] and the parameter for worker’s 

bargaining power [ߚ = 0.72] was replaced with [ߚ = 0.052].  

Calibration strategy 3 adopted the job creation condition from Hagedorn and Manovskii 
DSGE model and incorporated the following six equations: Equation (4), Equation (6), Equation 

(7), Equation (8), Equation (9) and Equation (11). The parameters were the same as in Calibrations 
strategy 1.3 In other words, the job creation equation (i.e., Equation [2]) in Calibration strategy 1 

was replaced with Equation (4) in the current calibration strategy.  
Calibration strategy 4 used the DSGE model from Calibration strategy 3; its parameter 

values were the same as in Calibration strategy 2. In other words, the difference between 

                                                   
3  More precisely, the job creation rate equation in Shimer DSGE model (Line 22 in the Dynare Codes A)  

(r+s+lambda)*c=(f/exp(theta))*(exp(p)-w+lambda*c*exp(theta(+1))/f1) would be replaced with a new job creation 

equation (c/r)=(f/exp(theta))*(exp(p)-w+(1-s)*c*exp(theta(+1))/(f1*r)) in Hagedorn and Manovskii DSGE model 
(Line 20 in the Dynare Codes B). 



 

 

Calibration strategies 2 and 4 is the job creation equation. Calibration strategy 2 used Shimer’s job 
creation equation (i.e., Equation [2]) while Calibration strategy 4 adopted Hagedorn and 

Manovskii’s job creation equation (i.e., Equation [4]).       
Calibration strategy 5 used the job-finding rate equation in Hagedorn and Manovskii DSGE 

model which incorporated Equation (4), Equation (6), Equation (7), Equation (8), Equation (9) and 
Equation (13). The parameter values were the same as in Calibration strategy 1, except for the job-

matching parameter which was set to 0.407 [݈ = 0.407] .4 In other words, the job-finding rate 

equation (i.e., Equation [11]) used in earlier Calibration strategy 3 was replaced with Equation 

(13) in this calibration strategy.  

Calibration strategy 6 employed the DSGE model from Calibration strategy 5. The 
parameter values were the same as in Calibration strategy 2, except for the job-matching parameter 

which was set to 0.407 [݈ = 0.407]. In other words, this calibration strategy closely resembles the 
strategy adopted by Hagedorn and Manovskii. The difference between Calibration strategies 4 and 

6 is the job-finding rate equation. Calibration strategy 4 adopted Shimer’s choice of the job-finding 
rate equation (i.e., Equation [11]) while the current calibration strategy relied on Hagedorn and 

Manovskii’s choice (i.e., Equation [13]).  

 

4. Calibration results 
Results from the six analyses employing different calibration strategies are reported in Table 2. To 

begin with, the generated movements of the four main labour market variables in Calibration 

strategy 1 were found to be exactly in line with Shimer’s findings. The differences in the four 

generated volatility movements between the current and Shimer’s study are approximately 0.001. 

In other words, the first calibration strategy unambiguously confirmed the existence of the Shimer 

puzzle. This means that Shimer DSGE model with his choice of parameters tended to 
underestimate the volatility of unemployment, vacancy and the v–u ratio.  

Secondly, the generated movements in Calibration strategy 2 were moderately in line with 
Hagedorn and Manovskii’s study. The differences in the generated volatility between the two 

studies are less than 0.325. Interestingly, the calibrated movement for unemployment was largely 
in line with the actual movement in the US labour market. The differences between the two are 

0.045. This result implies that Hagedorn and Manovskii’s choice of parameters would generate 
more accurate cyclical behaviour of unemployment.  

Thirdly, the generated movements in Calibration strategy 3 were greatly in line with 
Shimer’s study. The differences in the generated volatility movements between these two studies 

are less than 0.014. These findings confirmed the existence of the Shimer puzzle. They also 
indicate that the job creation condition in Hagedorn and Manovskii DSGE model (i.e., Equation 

[4]) would have a minor impact on the calibrated movements of all four labour market variables 
when Shimer’s choice of parameters is adopted.   

Fourthly, the generated movements in Calibration strategy 4 were largely in line with 
Hagedorn and Manovskii’s study; the differences in the generated volatility movements between 

the two studies were less than 0.178. The calibrated movements for unemployment and v–u ratio 

largely coincided with the actual movements; the differences between the two values were less 

                                                   
4 To be more specific, the job-finding rate equation in Shimer DSGE model (Line 20 in the Dynare Codes A  

#f=mp1*exp(theta)^(1-mp2) would be replaced with a new job-finding rate equation or #f=1/((1+exp(theta)^(-

mp2))^(1/mp2)) in Hagedorn and Manovskii DSGE model (Line 18 in the Dynare Codes B). In the job-finding rate 

equation in Shimer DSGE model, μ is expressed as mp1 and α is expressed as mp2. In the job-finding rate equation 
in Hagedorn and Manovskii DSGE model, ι is expressed as mp2. 



 

 

than 0.082. This result indicates that Hagedorn and Manovskii’s choice of the job creation equation 
would generate more accurate cyclical behaviours of unemployment and v–u ratio. Furthermore, 

the generated volatility for the v–u ratio was more than twenty-three times as large as the generated 
volatility for productivity, which is largely in line with the actual movement. However, Calibration 

strategy 4 generated more volatile movement for vacancy; the difference in volatility between this 
calibration strategy and the actual movement is 0.144.   

Fifthly, the calibrated standard deviation and autocorrelation in Calibration strategy 5 were 
also greatly in line with Shimer’s study. The differences in standard error between the two studies 

are less than 0.014. These findings provide additional empirical support to the existence of the 
Shimer puzzle. They also indicate that the job-finding rate condition in Hagedorn and Manovskii 

DSGE model (i.e., Equation [13]) would have a minor impact on the calibrated movements of all 
four labour market variables, when Shimer’s choice of parameters is used.   

Finally, the generated movements in Calibration strategy 6 were only moderately in line 

with Hagedorn and Manovskii’s study and the differences between the two calibrations were less 

than 0.363. The calibrated volatility of unemployment largely coincided with the actual movement 

and the differences between the two were less than is 0.008. However, the difference in volatility 

between the actual and calibrated movements of the v–u ratio increased from 0.081 in Calibration 

strategy 4 to 0.264 in this current calibration. This means that Hagedorn and Manovskii’s choice 

of job-finding rate condition and job creation equation would contribute to generating more 

volatile cyclical behaviour of the v–u ratio. 

In short, the results suggest that an appropriate calibration strategy―such as Calibration 

strategy 4 in the current study―might offer a solution to two solvable aspects of the Shimer puzzle, 

namely, the underestimation of volatility for unemployment and the lower estimation of elasticity 

of the v–u ratio with respect to productivity. However, this calibration strategy tends to 

overestimate the volatility of vacancy, which is the unsolvable aspect of the Shimer puzzle.  

 

5. Additional calibration analysis:  

The importance of values (z) and (β) 
This section examines the effects of z and β on the generated movements in Shimer and Hagedorn–

Manovskii models. Hagedorn and Manovskii (2008) suggested that the elasticity of θ with respect 

to p would be determined by z and β. There also would be a positive correlation between z and 

elasticity of θ, and a negative correlation between β and elasticity of θ.5 In the DSGE model, one 

needs to set a higher value for z and a lower value for β in order to get a higher volatility of θ, 

which could offer a solution to the Shimer puzzle. Particularly, a change in z, rather than β, would 

have a substantial impact on the determination of the volatility of θ (Hagedorn and Manovskii, 

2008). Shimer (2005) proposed the choice of parameters as [ݖ = ߚ,0.4 = 0.72]  while Hagedorn 

and Manovskii (2008) used different parameter values [ݖ = ߚ,0.955 = 0.052] .   

In order to assess the relative impact of z and β on the generated movements of u, v and θ, 
the current study employed four different z values [0.955,0.7,0.5,0.4] and four different β values 

[0.72,0.5,0.3,0.52] . Table 3 reports the findings from Shimer DSGE model with his parameter 

values, which are the same as in Calibration strategy 1 [ݏ = ݎ,0.1 = ߤ,0.012 = ߙ,1.355 =

0.72,ܿ = ߣ,0.213 = ߩ,0.034 = ߪ,0.935 = 0.009]. Table 4 reports the findings for Hagedorn–

Manovskii DSGE model with their choice of parameter values, which are the same as in 

                                                   
5 There is a negative correlation between β and elasticity of θ with respect to p in Shimer model. However, there is a 
positive correlation between β and elasticity of θ in Hagedorn–Manovskii model. 



 

 

Calibration strategy 6 [ݏ = ݎ,0.0081 = 0.999, ݈ = ݖ,0.407 = 0.955,ܿ = ߩ,0.584 = ߪ,0.935 =

0.009]. This analysis yielded three notable findings.  

Firstly, as the findings in Table 3 and Table 4 suggest, in both Shimer and Hagedorn–

Manovskii models, z rather than β played a central role in determining volatility of θ. With z value 

set to 0.995 in Shimer model, the θ values varied in the range of 0.472–0.531 when the value of β 

was between 0.72 and 0.052 (see Panel A in Table 3). In Hagedorn–Manovskii model, with z value 

set to 0.995, the θ varied in the range of 0.621–0.947 when the value of β had the same span (see 

Panel A in Table 4). Furthermore, when z was set to 0.7 in Shimer model, θ varied in the range of 

0.069–0.070 (see Panel B in Table 3). With z value set to 0.7 in Hagedorn–Manovskii model, θ 

varied in the range of 0.072–0.075 (see Panel B in Table 4). Similarly, with z set to 0.5, θ varied 
in the range of 0.042–0.043 in Shimer model (see Panel C in Table 3) while its values in Hagedorn–

Manovskii model (see Panel C in Table 4) varied in the range of 0.017–0.032. Finally, when z was 
set to 0.4, θ varied in the range of 0.035–0.036 in Shimer model (Panel D in Table 3) and its range 

in Hagedorn–Manovskii model varied from 0.014 to 0.027 (Panel D in Table 4).     

  Secondly, the findings suggest that if z is set to a higher value, such as ݖ = 0.955, then 

both Shimer’s and Hagedorn–Manovskii models calibrate elasticity of the v–u ratio with respect 
to productivity that are greatly consistent with the actual data. Thus, when z was set to 0.955 in 

Shimer model (see Panel A in Table 3), the generated elasticity of the v–u ratio with respect to 
productivity varied in the range of 23.6–26.5, when the value of β was between 0.72 and 0.052. 

These generated elasticities are greatly in line with the actual data and the differences between 
their values are less than 7.5. Similarly, Hagedorn–Manovskii model calibrated elasticity of the v–

u ratio with respect to productivity that is moderately consistent with the actual data if z was set to 

a higher value (i.e., ݖ = 0.955). With z set to 0.955 (see Panel A in Table 4) the generated elasticity 

of the v–u ratio with respect to productivity varied in the range of 31.2–49.8, when the value of β 

was between 0.72 and 0.3. However, when β was set to 0.052, Hagedorn–Manovskii model 

generated a higher elasticity than the actual data and the difference between them was 9.1. 

Thirdly, the findings indicate that Shimer model generated movements of u that are greatly 

consistent with the actual data if z was set to a higher value, such as ݖ = 0.955. With z set to 0.955 

in Shimer model (Panel A in Table 3), u varied in the range of 0.101–0.131 when the value of β 
was between 0.72 and 0.052. At the same time, Shimer model generated the movements of v and 

θ which were more volatile than the actual data. Furthermore, with z set to 0.955, v varied in the 
range of 0.325–0.403, and θ varied in the range of 0.472–0.531 when the value of β was between 

0.72 and 0.052. This means that a higher value of z may contribute to generating more accurate 
movements of u and more volatile movements of v and θ in Shimer model. Similarly, Hagedorn–

Manovskii model would generate the movements of u that are greatly consistent with the actual 

data if z is set to a higher value (i.e., ݖ = 0.955). When z was set to 0.955 (Panel A in Table 4), u 

varied in the range of 0.047–0.197 when the value of β was between 0.72 and 0.052. However, 

Hagedorn–Manovskii model generated movements of v and θ which were more volatile than the 

actual data. When z was set to 0.955, v varied in the range of 0.531–0.939 and θ varied in the range 

of 0.642–0.947 when β had the same span. This means that a higher value of z may contribute to 

generating more accurate movements of u and more volatile movements of v and θ in Hagedorn–

Manovskii model.    

 

6. Conclusions 
The current study’s comparative analysis of Shimer’s and Hagedorn–Manovskii’s approaches has 
yielded some notable findings. To begin with, Calibration strategies 1, 3 and 5 confirmed the 



 

 

existence of the Shimer puzzle. Calibration strategies 2 and 6 indicated that Hagedorn and 
Manovskii’s choice of parameters would generate more appropriate movements of unemployment 

similar to the actual movement. Calibration strategy 4 showed that Hagedorn and Manovskii’s 
choice of job creation equation would generate more accurate movements of unemployment and 

v–u ratio. A minor problem with this calibration strategy is that it could underestimate volatility 
of unemployment in comparison with vacancy. Furthermore, the empirical analysis of the effects 

of z and β on the generated movements indicated that z would play the dominant role in 
determining volatility of θ. Notably, the Hagedorn and Manovskii’s approach is more sensitive to 

adjustments in non-labour income compared to the Shimer’s approach. Also, if z is set to a higher 
value, Hagedorn and Manovskii DSGE model would generate more accurate movements of v and 

θ and less volatile movement for unemployment.  
As a conclusion, the findings of the current comparative analysis suggest that an 

appropriate calibration strategy could offer valuable insights concerning both solvable and 

unsolvable aspects of the Shimer puzzle. More precisely, such a strategy could assist in solving 

two aspects of the Shimer puzzle by generating more accurate standard errors for unemployment 

and elasticity of the v–u ratio with respect to productivity. However, there still remains the 

unsolvable problem of generating an accurate standard deviation for vacancy.  

A poor reproducibility of an empirical study is a thorny issue in scientific research, 

including the area of macroeconomics. In order to overcome this problem and obtain replicable 

results, researchers might want to show how exactly the results were obtained. In this context, the 

main objective of this paper was to develop the Dynare codes and then to systematically apply 

them for a comparative analysis. The codes developed for this study can be used in future studies 

that seek to find a solution to the Shimer puzzle.     
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Figure and Tables 
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Figure 1: Generated movements of unemployment, vacancy and v–u ratio in the first 

procedure   

 

 



 

 

Table 1: Actual and predicted movements of key labour market variables 

  

 Panel A 

Quarterly US Data (1951-2003) 
Table 1 in Shimer (2005) 

Panel B 

The Shimer puzzle 
Table 3 in Shimer (2005) 

 u V θ p  u v θ p 

Standard deviation  0.190 0.202 0.382 0.020  0.009 0.027 0.035 0.020 

Autocorrelation  0.936 0.940 0.941 0.878  0.939 0.835 0.878 0.878 

 
Correlation matrix 

 u V θ p  u v θ p 

u 1 -0.894 -0.971 -0.408 u 1 -0.927 -0.958 -0.958 

v  1 0.975 0.364 v  1 0.996 0.995 

θ   1 0.396 θ   1 0.999 

p    1 p    1 

 Panel C 

Hagedorn–Manovskii counterargument  

Table 4 in Hagedorn and Manovskii (2008) 
  u v θ p 

Standard deviation  0.145 0.169 0.292 0.013 

Autocorrelation  0.830 0.575 0.751 0.765 

 

Correlation matrix 
 u v θ p 

u 1 -0.724 -0.916 -0.892 

v  1 0.940 0.904 

θ   1 0.967 

p    1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: Results from calibration analysis 

  

 Actual data 

Quarterly US Data (1951-2003) 
Table 1 in Shimer (2005) 

 U v θ p 

Standard deviation  0.190 0.202 0.382 0.020 

Autocorrelation  0.936 0.940 0.941 0.878 

 
Correlation matrix 

 U v θ p 

u 1 -0.894 -0.971 -0.408 

v  1 0.975 0.364 

θ   1 0.396 

p    1 

 Calibration I 
Shimer DSGE model with his choice of 

parameters 

Calibration II 
Shimer DSGE model with Hagedorn and 

Manovskii’s choice of parameters 

 u v θ p  u v θ p 
Standard deviation  0.008 0.026 0.034 0.020  0.145 0.487 0.616 0.020 

Autocorrelation  0.937 0.851 0.878 0.878  0.960 0.892 0.878 0.878 

 

Correlation matrix 
 u v θ p  u v θ p 

u 1 -0.958 -0.975 -0.975 u 1 -0.854 -0.997 -0.997 

v  1 0.997 0.997 v  1 0.992 0.992 

θ   1 1.000 θ   1 1.000 

p    1 p    1 

 Calibration III 
Hagedorn and Manovskii DSGE model (i.e. the 

replacement of job creation condition) with 

Shimer’s choice of parameters 

Calibration IV 
Hagedorn and Manovskii DSGE model (i.e. the 

replacement of job creation condition) with their 

choice of parameters  
 u v θ p  u v θ p 

Standard deviation  0.007 0.040 0.046 0.020  0.120 0.346 0.463 0.020 

Autocorrelation  0.967 0.855 0.878 0.878  0.937 0.849 0.878 0.878 

 

Correlation matrix 
 u v θ P  u v θ p 

u 1 -0.895 -0.849 -0.849 u 1 -0.956 -0.976 -0.976 

v  1 0.995 0.995 v  1 0.997 0.997 

θ   1 1.000 θ   1 1.000 

p    1 p    1 

 Calibration V 
Hagedorn and Manovskii DSGE model (i.e. the 

replacement of job-creation condition and 

matching function) with Shimer’s choice of 

parameters 

Calibration VI 
Hagedorn and Manovskii DSGE model (i.e. the 

replacement of job-creation condition and 

matching function ) with their choice of 

parameters 
 u v θ p  u v θ p 

Standard deviation  0.010 0.040 0.047 0.020  0.197 0.531 0.646 0.020 

Autocorrelation  0.973 0.847 0.878 0.878  0.997 0.892 0.878 0.878 

 

Correlation matrix 
 u v θ p  u v Θ p 

u 1 -0.646 -0.766 -0.766 u 1 -0.429 -0.663 -0.663 

v  1 0.985 0.985 v  1 0.960 0.960 

θ   1 1.000 θ   1 1.000 

p    1 p    1 

 

 



 

 

Table 3: Results from additional calibration analysis (Shimer model) 

 
 Actual data 

Quarterly US Data (1951-2003) 

Table 1 in Shimer (2005) 

u v θ p 

Standard deviation 0.190 0.202 0.382 0.020 

Autocorrelation 0.936 0.940 0.941 0.878 

Panel A (ݖ = 0.955) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.101 0.340 0.472 0.020 Standard deviation 0.107 0.375 0.476 0.020 

Autocorrelation 0.954 0.898 0.878 0.878 Autocorrelation 0.948 0.888 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u V θ p  u v θ p 

Standard deviation 0.113 0.325 0.483 0.020 Standard deviation 0.131 0.403 0.531 0.020 

Autocorrelation 0.904 0.849 0.878 0.878 Autocorrelation 0.934 0.883 0.878 0.878 

Panel B (ݖ = 0.7) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.016 0.053 0.069 0.020 Standard deviation 0.017 0.053 0.069 0.020 

Autocorrelation 0.942 0.850 0.878 0.878 Autocorrelation 0.936 0.852 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.017 0.053 0.070 0.020 Standard deviation 0.019 0.056 0.070 0.020 

Autocorrelation 0.930 0.854 0.878 0.878 Autocorrelation 0.919 0.860 0.878 0.878 

Panel C (ݖ = 0.5) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.010 0.031 0.041 0.020 Standard deviation 0.010 0.031 0.041 0.020 
Autocorrelation 0.939 0.851 0.878 0.878 Autocorrelation 0.932 0.853 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.010 0.031 0.042 0.020 Standard deviation 0.011 0.033 0.045 0.020 

Autocorrelation 0.927 0.856 0.878 0.878 Autocorrelation 0.915 0.862 0.878 0.878 

Panel D (ݖ = 0.4) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.008 0.026 0.034 0.020 Standard deviation 0.008 0.026 0.034 0.020 

Autocorrelation 0.937 0.881 0.878 0.878 Autocorrelation 0.931 0.853 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.008 0.026 0.032 0.020 Standard deviation 0.009 0.027 0.037 0.020 

Autocorrelation 0.921 0.856 0.878 0.878 Autocorrelation 0.914 0.862 0.878 0.878 

 

 

 

 



 

 

Table 4: Results from additional calibration analysis (Hagedorn-Manovskii model) 

 
 Actual data 

Quarterly US Data (1951-2003) 

Table 1 in Shimer (2005) 

u v θ p 

Standard deviation 0.190 0.202 0.382 0.020 

Autocorrelation 0.936 0.940 0.941 0.878 

Panel A (ݖ = 0.955) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.047 0.939 0.997 0.020 Standard deviation 0.085 0.659 0.679 0.020 

Autocorrelation 0.985 0.877 0.878 0.878 Autocorrelation 0.984 0.874 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.124 0.583 0.621 0.020 Standard deviation 0.197 0.531 0.642 0.020 

Autocorrelation 0.983 0.868 0.878 0.878 Autocorrelation 0.977 0.843 0.878 0.878 

Panel B (ݖ = 0.7) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.017 0.069 0.075 0.020 Standard deviation 0.021 0.062 0.073 0.020 

Autocorrelation 0.982 0.863 0.878 0.878 Autocorrelation 0.975 0.836 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.022 0.054 0.072 0.020 Standard deviation 0.018 0.059 0.074 0.020 

Autocorrelation 0.975 0.836 0.878 0.878 Autocorrelation 0.965 0.837 0.878 0.878 

Panel C (ݖ = 0.5) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u V θ p 

Standard deviation 0.012 0.038 0.043 0.020 Standard deviation 0.013 0.038 0.043 0.020 
Autocorrelation 0.980 0.855 0.878 0.878 Autocorrelation 0.980 0.855 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u V θ p 

Standard deviation 0.013 0.023 0.042 0.020 Standard deviation 0.009 0.035 0.043 0.020 

Autocorrelation 0.972 0.832 0.878 0.878 Autocorrelation 0.963 0.844 0.878 0.878 

Panel D (ݖ = 0.4) ߚ  = ߚ 0.72 = 0.5 

 u v θ p  u v θ p 

Standard deviation 0.010 0.031 0.036 0.020 Standard deviation 0.010 0.028 0.035 0.020 

Autocorrelation 0.979 0.851 0.878 0.878 Autocorrelation 0.975 0.837 0.878 0.878 

ߚ  = ߚ 0.3 = 0.052 

 u v θ p  u v θ p 

Standard deviation 0.010 0.027 0.035 0.020 Standard deviation 0.007 0.029 0.036 0.020 

Autocorrelation 0.971 0.831 0.878 0.878 Autocorrelation 0.962 0.846 0.878 0.878 

 

 

 

 



 

 

% Dynare Codes A (Shimer’s model; Calibration I) 1 
 2 

var u, v, theta, p; 3 
varexo e; 4 

 5 
parameters z,beta,mp1,mp2,c,r,s,rho,sigma,lambda; 6 

z=0.4; 7 
beta=0.72; 8 

mp1=1.355; 9 
mp2=0.72; 10 

c=0.213; 11 
r=0.012; 12 

s=0.1; 13 

rho=0.935; 14 

sigma=0.009; 15 

lambda=0.034; 16 

 17 

model; 18 

#w=beta*exp(p)+(1-beta)*z+exp(theta)*c*beta; 19 

#f=mp1*exp(theta)^(1-mp2); 20 

#f1=mp1*exp(theta(+1))^(1-mp2); 21 

(r+s+lambda)*c=(f/exp(theta))*(exp(p)-w+lambda*c*exp(theta(+1))/f1); 22 

p=rho*p(-1)+e; 23 

exp(u)=exp(u(-1))+s*(1-exp(u))-f*exp(u);     24 

exp(theta)=exp(v)/exp(u); 25 

end; 26 

 27 
steady; 28 

 29 
shocks; 30 

var e=sigma^2; 31 
end; 32 

 33 
stoch_simul (order=1,hp_filter=100000,periods=1212,drop=1000,IRF=0);  34 



 

 

% Dynare Codes B (Hagedorn–Manovskii’s model; Calibration VI) 1 
 2 

var u, v, theta, p; 3 
varexo e; 4 

 5 
parameters z,beta,mp2,c,r,s,rho,sigma; 6 

z=0.955; 7 
beta=0.052; 8 

mp2=0.407; 9 
c=0.584; 10 

r=0.999; 11 
s=0.0081; 12 

rho=0.935; 13 

sigma=0.009; 14 

 15 

model; 16 

#w=beta*exp(p)+(1-beta)*z+exp(theta)*c*beta; 17 

#f=1/((1+exp(theta)^(-mp2))^(1/mp2)); 18 

#f1=1/((1+exp(theta(+1))^(-mp2))^(1/mp2)); 19 

(c/r)=(f/exp(theta))*(exp(p)-w+(1-s)*c*exp(theta)/f); 20 

p=rho*p(-1)+e; 21 

exp(u)=exp(u(-1))+s*(1-exp(u))-f*exp(u);     22 

exp(theta)=exp(v)/exp(u); 23 

end; 24 

 25 

steady; 26 

 27 
shocks; 28 

var e=sigma^2; 29 
end; 30 

 31 
stoch_simul (order=1,hp_filter=100000,periods=1212,drop=1000,IRF=0); 32 


