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1. Introduction 

Models for mixture regression of normal data facilitate model-based clustering within 

econometric analysis. These models have attracted considerable interest in recent years, 

resulting in a vast number of both methodological developments and applications in different 

areas. Mixture models have been employed in economics and finance (e.g. Anh et al. 2018, Wu 

2019). For instance, Yan and Han (2019) modelled stock returns, and Wu (2019) employed 

mixtures of Gaussian processes to model electricity demand and crop insurance. Despite the 

growing interest in mixture models, the best way to decide how many mixture components are 

required to represent the data adequately still needs more research (e.g. Kasahara and Shimotsu 

2015, Li et al. 2016, Nasserinejad et al. 2017). 

Determining the number of components is a necessary step in addressing unobserved 

heterogeneity across objects (Gu et al. 2018, Pan et al. 2020). A misspecification of model 

results in terms of under- or overestimation of the number of mixture components can mislead 

experts during decision-making processes.  

Previous studies have developed a large number of criteria to help identify the mixture 

components needed. Information criteria (e.g. Akaike 1973) are used to balance the increase in 

model fit to the data against a larger number of parameters, while classification criteria can 

ensure that the solution produces well-separated clusters. A substantial majority of previous 

studies, with a few notable exceptions (e.g. Hawkins et al. 2001), have been designed to test 

new proposed measures’ performance instead of comparing the existing components’ 
performance. Therefore, the present study sought to compare the performance of 26 information 

and classification criteria in terms of identifying the correct number of mixture components and 

avoiding an expensive experimental design. This research adds to the existing literature (e.g. 

Hawkins et al. 2001) by comparing a larger number of criteria under a larger number of 

experimental conditions.  

The paper below is organised as follows. The next section starts by briefly describing the 

theoretical background of mixture regression of normal data. This section also provides a 

general review of the information and classification criteria considered in the current study. In 

section three, the experimental design used to generate the simulated data is delineated. Section 

four discusses the results and presents some guidelines that guarantee, by applying the criteria 

in question, a more accurate decision about the number of components to include in mixture 

regression of normal data. 

 

2. Theory/Calculation 

2.1 Mixture Regression Model Based on Multivariate Normal Distribution with 

Notations 

Finite mixture regressions facilitate the performance of model-based clustering for large 

heterogeneous populations. According to this approach, a sample of observations can be 

obtained with a specific set of unknown proportions. The finite mixture technique is used to 

decompose the sample into its mixture components.  

A classical mixture regression model (Wedel and DeSarbo 1995) simultaneously allows 

the probabilistic classification of observations in terms of S mixture components and the 

estimation of separate regression models relating covariates to the observers’ expectations of 

dependent variables within latent classes. The underlying idea is that a single set of regression 

coefficients across all observations may be inadequate and potentially misleading if the 

observations arise from a number of unknown groups with differing coefficients. Brief 



 

 

mathematical derivations of and notations on the multivariate normal mixture regression used 

in the present study are presented below.  

In this methodology, �� = ሺ��௥ሻ is a metric-dependent vector distributed as a finite 

mixture of S conditional multivariate normal densities as shown in Equation (1): �� ~ ∑ �௦�௦ሺܠ|�ܡ�, �௦, �௦ሻௌ௦ = ଵ      (1) 

in which 
s

f  is defined by Equation (2): �௦ሺܠ|�ܡ�, �௦, �௦ሻ = ሺʹ�ሻ−ோ/ଶ|�௦|−ଵ/ଶexp[−ͳ/ʹሺܡ� − ′௦��ܠ ሻ�௦−ଵሺܡ� − ′௦��ܠ ሻ′]     (2) 

and
s
, 1,...,=s S  define independent mixing proportions that satisfy two restrictions:  

0 1 
s

 and 
1

1
=

=
S

s

s

     (3) 

and in which: 

s = 1,..., S indicate the mixture components obtained 

n = 1,..., N indicate cross-sectional units c (e.g. consumers, companies, countries and 

regions) 

r = 1,..., R denote the repeated observations of object n 

j = 1,..., J represent the independent variables 

βjs = value of jth regression coefficient for the sth mixture component 

βs = (βj) (Jx1) is the vector of regression coefficients for the sth mixture component 

Σs = (RxR) is the covariance matrix of mixture component s 

ynr = the value of dependent variable y for repeated measure r on cross-sectional unit n 

yn= (ynr) (Rx1) vector for object n 

xnrj = the value of the jth independent variable for repeated measure r on cross-sectional unit 

n 

xn = (xrj) (RxJ) is the matrix of independent variables for cross-sectional unit n 

Given a sample of N  independent objects, the log likelihood is defined by Equation (4): 

 ( )
1 1

ln ln , ,
= =

= 
N S

s s n n s s

n s

L f y x β Σ     (4) 


s
, Σs and βs are estimated by maximising the likelihood that Equation (4) is subject to the 

restrictions in Equation (3). 

The model is estimated with the expectation-maximisation (EM) algorithm (Dempster et 

al. 1997). This algorithm considers non-observed data to be defined as an indicator function 

nsz that is assumed to be i.i.d multinomial. =1
ns
z  if cross-sectional unit n comes from latent 

class s, and = 0
ns
z  otherwise. 

The joint likelihood for the observed and non-observed data that are defined by ܡ� and 

( )=
n ns

zz  for all objects is represented as Equation (5): 

 ( ) 
1 1 1 1

ln ln , , ln 
= = = =

= + 
N S N S

c ns s n n s s ns s

n s n s

L z f zy x β Σ    (5) 

Regarding the parameters’ seed values, zns represents the missing data, and the EM 

algorithm’s two steps – expectation step (E-step) and maximisation step (M-step) – are 

alternated until a convergent sequence of log-likelihood values is achieved. In the E-step, the 

expectation of Equation (5) is evaluated over the conditional distribution of the non-observed 

data zns, given yn, xn and the estimates for 
s
, Σs and βs obtained in the M-step. Each cross-

sectional unit n is assigned to each latent class S via the estimated posterior probability (i.e. 

applying Bayes’ rule), thereby incorporating fuzzy clustering into the E-step. The conditional 

expectation of zns is identical to that of ��௦.This can be written as Equation (6): 

      ��௦ = ����ሺܠ|�ܡ�,��,��ሻ∑ ����ሺܠ|�ܡ�,��,��ሻ��=1                                                              (6) 



 

 

in which two conditions need to be satisfied:  

=

=
1

1
S

ns

s

p  and  0 1
ns
p       (7) 

In the E-step, the nonobserved discrete data zns are replaced by pns. In the M-step, Equation (5) 

is maximised with respect to 
s
, Σs and βs. 

 

2.2 Criteria 

Information criteria are designed to account for over-parameterisation because likelihood 

increases with the addition of components to a mixture model when a larger number of mixture 

components are considered. These criteria balance the increase in the model fit to the data 

against the larger number of parameters estimated for models with more mixture components. 

The criteria take the general form of ( ) ( )IC 2ln= − +
s s

L dk , in which ( )s
k  is the number of 

parameters associated with a solution with S  mixture components and d  is some constant or 

the ‘marginal cost’ per parameter (Bozdogan 1987). Information criteria encompass those that 

are estimates of relative Kullback-Leibler distance, including Akaike information criteria (AIC) 

(Akaike 1973), modified AIC 3 (Bozdogan 1994), modified AIC 4 (Bozdogan 1994) and AICc 

– small sample AIC (Hurvich and Tsai 1989, 1995), shown in Equations (8) through (11), 

respectively: AIC = −ʹ ݈� � + ʹ݇      (8) AICଷ = −ʹ ݈� � + ͵݇      (9) AICସ = −ʹ ݈� � + Ͷ݇      (10)  AIC� = AIC + [ଶ�ሺ�+ଵሻ]ሺ�−�−ଵሻ       (11) 

Bayesian information criteria (BIC) (Schwartz 1978) and adjusted BIC (ABIC) (Sclove 

1987) are developed within a Bayesian framework for model selection by using Equations (12) 

and (13): 

BIC = −ʹ ݈� � + ݇ ݈� �      (12) 

ABIC = −ʹ ݈� � + ݇ ݈�[ሺ� + ʹሻ ʹͶ⁄ ]     (13) 

Information criteria also cover consistent criteria including consistent AIC (CAIC) 

(Bozdogan 1987), CAIC with Fisher information (CAICF) (Bozdogan 1987), information 

complexity criterion (ICOMP) (Bozdogan 1994), Hannan-Quinn (HQ) information criterion 

(Hannan and Quinn 1979), minimum description length 2 (MDL2) (Liang et al. 1992) and 

minimum description length 5 (MDL5) (Liang et al. 1992). These criteria are defined by 

Equations (14) through (19), respectively: 

( ) CAIC 2ln ln 1L k N= − + +                       (14) 

CAICF AIC log log= + +k N F      (15) ICOMP = −ʹ ݈� � + ݇ ݈� [௧௥(�−1)� ] − ݈�|�−ଵ|   (16) HQ = −ʹ ݈� � + ʹ݇ ݈�ሺ݈� �ሻ    (17) MDLଶ = −ʹ ݈� � + ʹ݇ ݈� �     (18) MDLହ = −ʹ ݈� � + ͷ݇ ݈� �     (19) 

in which F denotes the inverse Fisher information matrix. 

Classification criteria evaluate a mixture model’s ability to provide well-separated clusters 

of components based on the degree of separation in estimated posterior probabilities. 

Probabilistic indices include the measure of entropy (Es) (DeSarbo et al. 1992), logarithm of 

the partition probability (LP) (Biernacki 1997), entropy (E) (Liang et al. 1992), normalised 

entropy criterion (NEC) (Celeux and Soromenho 1996), classification criterion (C) (Biernacki 

and Govaert 1997), classification likelihood criterion (CLC) (Biernacki and Govaert 1997) and 



 

 

approximate weight of evidence (AWE) (Banfield and Raftery 1993). Two other relevant 

indices are integrated completed likelihood (ICL)-BIC (Biernacki et al. 2000) and ICL with 

BIC approximation (ICOMPLBIC) (Dias 2004). Equations (20) through (28) represent each of 

these indices: 

1 1
Es 1 ln ln

N S

ns nsn s
p p N S

= =
= − −         (20) 

1 1
LP ln

N S

ns nsn s
z p

= =
= −        (21) 

1 1
E ln

N S

ns nsn s
p p

= =
= −        (22) 

( ) ( )NEC E ln ( ) ln (1)s s L s L= −       (23) 

C 2 ln 2EL= − +        (24) 

CLC 2 ln 2LPL= − +       (25) 

( )AWE -2ln 2 3 2 ln
c

L k N= + +       (26) 

ICL-BIC 2 ln 2LP lnL k N= − + +       (27) 

ICOMPLBIC 2 ln 2E ln= − + +L k N      (28) 

 

A second group of indexes have been developed in the literature on fuzzy logic (Bezdek et 

al. 1997), including partition coefficient (PC) (Bezdek 1981), partition entropy (PE) (Bezdek 

1981), normalised partition entropy (NPE) (Bezdek 1981), non-fuzzy index (NFI) (Roubens 

1978), minimum hard tendency (Minht) (Rivera et al. 1990) and mean hard tendency (Meanht) 

(Rivera et al. 1990). These indexes are calculated using Equations (29) through (34), 

respectively: 
2

1 1
PC

N S

nsn s
p N

= =
=         (29) 

1 1
PE ln

N S

ns nsn s
p p N

= =
=          (30) 

 NPE PE 1 S N= −        (31) 

( ) 2

1

1

NFI 1

S
N

nsn

s

N SS p N
=

=

= −−   
     
        (32) 

( ) 
10

1

Min max log
 

= −
ht s

s S

T      (33) 

( )101
Mean log

=
= −S

ht ss
T S       (34) 

in which Ts is the mean of all the first and second pns maxima for the cross-sectional units 

included in the mixture component s. 

 

3. Methods 

When dealing with real world data, the true number of mixture components is unknown, 

so the selected criteria’s effectiveness as a guide during model selection cannot be evaluated 

without an experimental design. This research’s experimental design included manipulating 9 

factors and 22 levels. Factor 1 was the true number of mixture components (i.e. 2 or 3). Factor 

2 was the mean separation between latent classes (i.e. low = 0.5; medium = 1.0; or high = 1.5). 

Factor 3 was the number of individuals (i.e. 100 or 300). Factor 4 was the number of 

observations per individual (i.e. 5 or 10). Factor 5 was the number of independent variables (i.e. 

2, 6 or 10). Factor 6 was the levels of measurement for independent variables (i.e. binary, metric 

or half-binary and half-metric). Factor 7 was error variance (i.e. 20% or 60%). Factor 8 was 

minimum segment size (i.e. 5–10%, 10–20% or 20–30%). Factor 9 was error distribution (i.e. 

normal vs uniform).  

As the design was factorial with three replications (i.e. datasets) per cell, the overall total 

generated was 7,776 (i.e. 2535). The likelihood was maximised using the EM algorithm, which 



 

 

was run repeatedly with three replications in order to avoid its convergence to local maxima. 

Then, the best solution was retained for each possible number of mixture components. 

For each object n and all replications, the programme generated U = Xβ. Next, an error 

was added to these true values (i.e. U, Y = U+ε). The error term’s variance was obtained from 

Equation (35), in which PEV is the percent of error variance, 
2

u  is the variance of U and 
2

  

is the variance of the error term ε: 
2

2 2

2 2 1






  
 

 =  =  + − 
u

u

PEV
PEV

PEV
     (35)  

To improve the level of general inference, parameter values were randomly generated for each 

segment and each data set.  

Regarding the coefficients for explanatory variables in each group (i.e. βs = (βsj), s = 1, ..., 

S), the parameters’ vector for the first segment 
1
β was randomly generated within the intervals 

-1.5 to 1.5. Next, a separation vector 
i
δ  ( , ,=i L M H ) was generated, with an average interval of 

0.5, 1.0 or 1.5 and a standard deviation equal to 10% of the average (i.e. 0.05, 0.1 and 0.15), as 

well as a signs vector 
+

−
S , with positives (1) and negatives (-1), for 

i
δ ( , ,=i L M H ). The vectors 

with low (0.5), medium (1.0) and large (1.5) separations were denoted, respectively, by 
S
δ , 

M
δ  

and 
E
δ . Vector coefficients for segments 2 and 3 were obtained using 

2 1
,  , ,

+

−
= + =

i
i S M Lβ β S δ  

and 
3 1

,  , ,
+

−
= − =

i
i B M Eβ β S δ , respectively. 

Cross-sectional units were assigned to mixture components on the basis of randomly 

determined segment sizes for each data set. The smallest segments consisted of 5–10%, 10–
20% or 20–30% of the sample, depending on Factor 7’s level. Normal and uniform distributed 

errors (i.e. Factor 9) were generated with an average of 0 and standard deviation of 1.  

The experimental design applied allowed each model to be fitted with the correct and 

incorrect number of latent classes. Information and classification criteria were calculated for 

each solution based on the estimated log-likelihoods and memberships after the EM estimators 

converged. Then, using the decision rules for information and classification criteria (i.e. 

maximise or minimise), the identified number of mixture components for each model was 

retained. 

The information and classification criteria were compared in terms of their success rate, 

namely, the percentage of experimental datasets in which the criteria identified the correct 

number of latent classes out of a set of competing solutions. Given two criteria with the same 

success rate, underfitting was preferred to overfitting because previous studies have reported 

that overfitting produces more parameter bias than underfitting does and that overfitting results 

in extremely small latent classes with large or unstable parameter values (Cutler and Windham 

1994). 

  

4. Results and Discussion 

4.1 Overall Results 

The best overall success rates were obtained for 3 information criteria – AIC3 (71%), HQ 

(69%) and AIC4 (68%) – and 2 classification criteria – ICLBIC (70%) and ICOMPLBIC (68%). 

Some information criteria, such as AIC, AICc and ICOMP, showed a tendency to overestimate 

the number of mixture components, while others, such as MDL5, MDL2, CAICF, CAIC and 

BIC, tended more strongly towards underfitting than overfitting. In general, almost all the 

classification criteria (i.e. Es, E, LP, AWE, NEC, ICL, ICLBIC, ICOMPLBIC, PC, PE, NPE, 

NFI and MEANht) presented higher rates of underfitting than of overfitting (see Figure 1).  



 

 

 

Figure 1. Overall success rates – underfitting and overfitting by information and 

classification criterion 

  
 

4.2 Results by Experimental Condition 

An analysis of success rates by experimental condition revealed that no single criterion is 

best for all experimental conditions. For Factor 1, AWE (99%) registers the best success rate 

for a 2-mixture component solution, while AIC, AICc and ICOMP (64%) produces the best 

results for a 3-segment solution. With regard to Factor 2, ICLBIC (61%) registers the highest 

success rate for low separation between classes, but AIC3 (76%) is best for medium – and both 

AIC3 and HQ (81%) for high – separation between classes. In terms of Factor 3, ICLBIC (67%) 

produces the highest rate for 100 individuals, but AIC3 registers the best performance (77%) 

for 300 individuals. The results for Factor 4 show that the criteria with the highest success rate 

for 5 observations per individual are ICLBIC and ICOMPLBIC (65%), and, for 10 observations, 

AIC3 (79%) is the best.  

Regarding Factor 5, the criteria that register the highest response rates for 2 independent 

variables are AIC4 and HQ, but, for 6, AIC3 (71%) and, for 10, AIC3 and ICLBIC (66%) show 

the best performance. The results for Factor 6 reveal that, when the independent variables are 

all metric, the criteria AIC3 and ICLBIC (68%) register the highest success rates, while AIC3 

(75%) is the best criteria for binary variables, as well as when the variables are half-metric and 

half-binary (70%). When Factor 7 is taken into account, AIC4 and HQ (88%) are the best criteria 

for an error variance of 20% (R-squared [R2] = 80%), and AIC and AIC3 offer the highest 

success rates for an error variance of 40% (R2 = 60%). With regard to Factor 8, the criteria best 

suited for a minimum segment size of 5–10% is ICLBIC (64%), but, at 10–20%, and 20–30%, 

AIC3 (75% and 77%, respectively) has the highest success rates. Finally, the best criteria for 

Factor 9 is AIC3 (72.5% and 70%) for normal and uniform error, respectively (see Figure 2). 
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5. Conclusion 

The correct number of mixture components is unknown in real-world applications, so 

researchers rely on heuristic devices such as information- and classification-based criteria to 

help them select the best model. Therefore, a thorough understanding of these measures’ 
performance across different data characteristics is of utmost importance. Researchers who take 

the wrong measures into consideration will conduct incorrect data analyses, which can 

subsequently contribute to imprudent managerial decisions. 

The present study addressed this problem by comparing 26 classification and information 

criteria’s performance, using an experimental design that manipulated 9 factors. The best 
overall success rates for all data sets were obtained for 3 information criteria (i.e. AIC3, HQ and 

AIC4) and 2 classification criteria (i.e. ICLBIC and ICOMPLBIC). In the context of multilevel 

mixture models, Lukočieė and Verut’s (2009) study found that AIC3 performs best. 

The overall results reveal that data characteristics affect information and classification 

criteria’s performance in terms of identifying the number of classes to include in mixture 
regression of normal data (Hawkins et al. 2001). More specifically, the results demonstrate that 

most information and classification criteria exhibit higher success rates when certain conditions 

are met. These include two mixture components, fewer explanatory variables, metric and mixed 

binary variables, a larger separation between latent classes, larger sample sizes, smaller error 

variance and normal distributed errors. 

This study’s findings provide researchers and practitioners with a better understanding of 

26 criteria’s effectiveness in terms of identifying the best number of classes to include in 

mixture regression of normal data. However, as no single criterion is able to identify the exact 

number of mixture components, additional research is needed to find the best criteria. In 

addition, significant room is left for improvement in current practices, and continued research 

is required on model selection criteria’s performance to ensure more practical procedural 

guidelines.  

Model selection decisions should be based on the data at hand and the results provided by 

information and classification criteria, as well as practical and theoretical considerations, in 

order to provide meaningful research conclusions. Various other research topics thus need to 

be considered, such as assessing the performance of criteria that address the problem of jointly 

selecting the number of components and variables in mixture regression models. The present 

study could also be extended further by considering different scenarios for distribution 

misspecifications to assess their influence on criteria’s performance.  
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