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Abstract
This paper studies finite sample performances of the conditional GMM estimators for a particular conditional moment

restriction model, which is commonly applied in economic analysis using gravity models of international trade. We

consider the GMM estimator with growing moments and Dominguez and Lobato's (2004) process-based GMM

estimator. Under the simulation designs by Santos Silva and Tenreyro (2006, 2011), we find that Dominguez and

Lobato's (2004) estimator is favorably comparable with the Poisson pseudo maximum likelihood estimator, and

outperforms other estimators.
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1. Setup and estimators

This note is concerned with estimation of the conditional moment restriction model

E[Y |X] = exp(X ′β), (1)

almost surely, where Y is a scalar dependent variable, X is a k-dimensional vector of

covariates, and β is a k-dimensional vector of parameters. This model can be considered as

an example of the nonlinear regression model for a continuous Y or the Poisson regression

model for a non-negative integer Y . This particular model has been extensively applied

and studied in economic analysis using gravity models of international trade. See, e.g.,

Eaton and Kortum (2002), Anderson and van Wincoop (2003), Santos Silva and Tenreyro

(2006), among others.

Based on a random sample {Yi, Xi}
n
i=1

, popular estimators for β are the nonlinear least

squares (NLS) estimator β̂NLS = argminβ n
−1
∑n

i=1
{Yi − exp(X ′

iβ)}
2 whose first-order

condition is
1

n

n
∑

i=1

{Yi − exp(X ′

iβ̂NLS)} exp(X
′

iβ̂NLS)Xi = 0, (2)

and the Poisson pseudo maximum likelihood (PPML) estimator whose first-order condi-

tion is
1

n

n
∑

i=1

{Yi − exp(X ′

iβ̂PPML)}Xi = 0. (3)

In an influential paper, Santos Silva and Tenreyro (2006) argued the inconsistency

problem of the OLS estimator for the log-linear model under heteroskedastic normal

errors, and investigated the NLS and PPML estimators. In particular, Santos Silva and

Tenreyro (2006) advocated the use of the PPML estimator under heteroskedastic errors

rather than the NLS estimator. Their argument is that the NLS estimator tends to give

more weights on the observations where exp(X ′

iβ̂NLS) is large and generally noisier, and

the NLS estimator tends to be less efficient than the PPML estimator. A simulation

study by Santos Silva and Tenreyro (2006) endorsed the excellent performance of the

PPML estimator.

In this note, we examine the finite sample performance of the conditional GMM esti-

mator for the model in (1). By the law of iterated expectations, the conditional moment

restriction (1) implies unconditional moment restrictions

E[{Y − exp(X ′β)}h(X)] = 0, (4)

for any function h(·) (as far as the above expectation is well-defined). Thus, both the

NLS estimator (which specifies h(X) = exp(X ′β)X) and PPML estimator (which spec-

ifies h(X) = X) are consistent and also asymptotically normal under suitable regularity

conditions.

In the context of estimation of the conditional moment restriction models, there are

two substantial issues for the choice of h(·). First, the conditional moment restriction in

(1) implies infinitely many unconditional moment restrictions in the form of (4). Thus,

generally neither the NLS nor PPML estimator achieves the semiparametric efficiency

bound to estimate β in the model (1). Currently several efficient estimation methods

are available, such as the optimal instrumental variable estimator, and growing moment-

based estimator (see, Chapter 7 of Hall (2005) for a survey). In our simulation study



below, we consider the GMM estimator with growing moments (Donald, Imbens and

Newey, 2003):

β̂GMM = argmin
β

(

1

n

n
∑

i=1

gni(β)

)

′
[

1

n

n
∑

i=1

gni(β̂)gni(β̂)
′

]

−1(

1

n

n
∑

i=1

gni(β)

)

,

where β̂ is a preliminary estimator, and gi(β) = {Yi−exp(X ′

iβ)}hni with a vector of basis

functions hni = (p1(Xi), . . . pkn(Xi))
′ for kn → ∞ as n → ∞. A common drawback of

efficient estimation methods for the conditional moment restrictions is that they typically

involve some tuning parameters, such as the series lengths and bandwidths, to be chosen

by the researcher.

The second issue is on consistency of point estimators. In an insightful paper, Dominguez

and Lobato (2004) argued that even though the conditional moment restriction (1)

uniquely identifies the parameters β, the implied unconditional moment restrictions (4)

with finite dimensional h(·) may not fully exploit information contained in (1) and iden-

tification of β may not be guaranteed. In this case, the GMM estimator is typically

inconsistent. To address this issue, Dominguez and Lobato (2004) observed that the

conditional moment restriction (1) is equivalent to the continuum of the unconditional

moment restrictions E[{Y −exp(X ′β)}I(X ≤ x)] = 0 for all x, and proposed the following

estimator1

β̂DL = argmin
β

n
∑

l=1

[

n
∑

i=1

{Yi − exp(X ′

iβ)}I(Xi ≤ Xl)

]2

. (5)

Dominguez and Lobato (2004) showed the consistency and asymptotic normality of this

estimator under mild regularity conditions. Although β̂DL does not achieve the semipara-

metric efficiency bound, it does not involve any tuning parameters.2

In the next section, we evaluate the finite sample properties of β̂GMM and β̂DL based

on the simulation designs motivated by gravity models.

2. Simulation

We now assess the finite sample performances of the conditional GMM estimators and

other estimators by Monte Carlo simulations. We first adopt simulation designs by Santos

Silva and Tenreyro (2006). The dependent variable is generated by

Yi = exp(β0 + β1X1i + β2X2i)ηi, (6)

for i = 1, . . . , 1000, where X1i follows the standard normal distribution, X2i is a dummy

variable that takes 1 with probability 0.4 and 0 otherwise, ηi is a log-normal random

variable with mean 1 and variance σ2

i , and β = (β0, β1, β2)
′ = (0, 1, 1)′. The covariates

X1i and X2i are independent. As in Santos Silva and Tenreyro (2006), we consider the

following specifications of the conditional variance σ2

i :

Case 1: σ2

i = exp(−2X ′

iβ); Var(Yi|Xi) = 1,

1For k-dimensional vectors a and b, let I(a ≤ b) be the element-by-element indicator, which takes 1 if
aj ≤ bj for all j = 1, . . . , k, and 0 otherwise.
2Although it is beyond the scope of this paper, it is interesting to extend our analysis for a bilateral

setup to incorporate country-specific fixed effects. First of all, the asymptotic property of β̂DL under the

bilateral setup is an open question. Second, an efficient algorithm to implement β̂DL for a large number
of parameters needs to be developed.



Case 2: σ2

i = exp(−X ′

iβ); Var(Yi|Xi) = exp(X ′

iβ),

Case 3: σ2

i = 1; Var(Yi|Xi) = exp(2X ′

iβ),

Case 4: σ2

i = exp(−X ′

iβ) + exp(X2i); Var(Yi|Xi) = exp(X ′

iβ) + exp(X2i) exp(2X
′

iβ).

However, these simulation designs may not imitate real trade data sufficiently. Typical

trade data are rounded and include a large number of zeros. Therefore, we also conduct

simulations with rounding errors in the dependent variable for each case. See Santos Silva

and Tenreyro (2006) for detailed descriptions.

For this model, we consider six estimation methods: (i) DL, (ii) GMM, (iii) PPML,

(iv) GPML, (v) NLS, and (vi) OLS.3

Table 1 presents estimation biases and MSEs for β1 and β2 based on 10,000 Monte

Carlo replications. As shown in Santos Silva and Tenreyro (2006), PPML performs very

well for all cases. In each case, PPML has a small bias and is relatively robust to rounding

errors in the dependent variable. GMM is more robust to rounding errors than PPML.

Similar to NLS, however, GMM is somewhat biased in the cases where heteroskedasticity

is severe. Among the methods we consider, the performance of DL is the best. The

biases of DL are small in various situations and outperforms PPML in terms of MSE in

the cases where heteroskedasticity is severe (Cases 3 and 4).4 This outperformance of

DL is maintained even when the rounding errors are present, which implies that DL may

outperform PPML in a real-world setting because the simulation with rounding errors

has in common with a typical trade data in having a large number of zeros.

We next consider more realistic simulation designs adopted in Santos Silva and Tenreyro

(2011). The dependent variable is generated by Yi =
∑mi

j=1
Zij for i = 1, . . . , 1000, where

Zij follows a χ2

1
distribution, and mi is independent of Zij’s and follows a negative-

binomial distribution with the conditional mean and variance specified below. In this

setup, mi and Zij can be interpreted as the number of exporters and quantity exported by

firm j, respectively. The covariates Xi = (X1i,X2i)
′ and slope parameters β = (β0, β1, β2)

′

are same as in the first simulations in (6), and we set E[mi|Xi] = exp(β0+β1X1i+β2X2i)

and Var(mi|Xi) = aE[mi|Xi] + bE[mi|Xi]
2, where

Case 1: (a, b) = (10, 0); Pr(Yi = 0) = 0.62,

Case 2: (a, b) = (50, 0); Pr(Yi = 0) = 0.83,

Case 3: (a, b) = (1, 5); Pr(Yi = 0) = 0.65,

Case 4: (a, b) = (1, 15); Pr(Yi = 0) = 0.81.

See Santos Silva and Tenreyro (2011) for detailed descriptions. In this setup, the

conditional expectation of Yi is specified as

E[Yi|Xi] = E[mi|Xi] = exp(β0 + β1X1i + β2X2i).

3For GMM, we set the initial estimator β̂ as the PPML estimator and hni = (1, X1i, X2i, X
2

1i, X1iX2i)
′.

Our preliminary simulation suggests that the results are less sensitive to the choice of hni.
4As pointed out by Dominguez and Lobato (2004, p. 1605), DL is considered as an adaptation of the
minimum distance estimator to the conditional moment restriction models. For nonlinear regression
models, Koul (2002, Ch. 5) provided certain robustness properties for the minimum distance estimator
against heteroskedastic errors. Although it is beyond the scope of this paper, it is interesting to see
whether such robustness properties continue to hold for the current setup to explain the favorable finite
sample performances of DL in these cases.



Table 2 presents biases and MSEs for estimating β1 and β2 based on 10,000 Monte

Carlo replications.56 Similar to the first simulations, the results show that DL performs

well for all cases. In particular, when the conditional variance of Yi is quadratic (Cases 3

and 4), the MSEs of DL are smaller than those of PPML.

Overall, our simulation results suggest that DL compares favorably with PPML and is

better than other estimation methods.
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Table 1. Simulation Results for Designs in Santos Silva and Tenreyro’s (2006)

Without rounding errors With rounding errors
β1 β2 β1 β2

Bias MSE Bias MSE Bias MSE Bias MSE
Case 1: Var(Yi|Xi) = 1

DL -0.00056 0.00060 0.00088 0.00215 0.02271 0.00119 0.04265 0.00438
GMM -0.00125 0.00035 -0.00260 0.00223 0.00205 0.00018 0.02303 0.00269
PPML 0.00000 0.00027 0.00032 0.00075 0.01905 0.00068 0.02075 0.00130
GPML 0.01318 0.00494 0.00787 0.00708 0.11029 0.02159 0.09417 0.02097
NLS -0.00001 0.00006 0.00006 0.00030 0.00205 0.00007 0.00285 0.00033
OLS 0.39001 0.15363 0.35675 0.13021

Case 2: Var(Yi|Xi) = exp(X ′

iβ)
DL -0.00018 0.00076 -0.00012 0.00231 0.02610 0.00155 0.04791 0.00506

GMM -0.00063 0.00055 0.00088 0.00322 0.00147 0.00056 0.02925 0.00435
PPML -0.00023 0.00038 -0.00005 0.00158 0.02187 0.00091 0.02327 0.00227
GPML 0.00435 0.00183 0.00142 0.00390 0.13350 0.02306 0.11279 0.02041
NLS 0.00028 0.00112 0.00109 0.00330 0.00246 0.00112 0.00405 0.00335
OLS 0.21064 0.04522 0.19972 0.04229

Case 3: Var(Yi|Xi) = exp(2X ′

iβ)
DL -0.00067 0.00284 0.00006 0.00508 0.03052 0.00390 0.05772 0.00904

GMM -0.00863 0.01250 0.01335 0.03557 -0.00763 0.01232 0.04831 0.03976
PPML -0.00328 0.00527 -0.00079 0.01034 0.02383 0.00587 0.02745 0.01149
GPML -0.00028 0.00099 0.00002 0.00415 0.19717 0.04249 0.16435 0.03452
NLS 0.14259 11.04195 0.18036 26.31483 0.14472 10.84810 0.18099 26.12356
OLS -0.00037 0.00071 0.00011 0.00290

Case 4: Var(Yi|Xi) = exp(X ′

iβ) + exp(X2i) exp(2X
′

iβ)
DL -0.00123 0.00803 -0.00219 0.01237 0.03444 0.00953 0.04744 0.01568

GMM -0.02431 0.02052 0.01512 0.06500 -0.01632 0.01987 0.04956 0.07079
PPML -0.00934 0.01035 -0.00817 0.02101 0.01800 0.01071 0.01694 0.02186
GPML 0.00361 0.00330 -0.00304 0.01196 0.12920 0.02391 0.10101 0.02701
NLS 0.37629 39.34492 0.75528 1190.303 0.38910 40.00869 0.73215 1197.705
OLS 0.13231 0.01898 -0.12586 0.02145



Table 2. Simulation Results for Designs in Santos Silva and Tenreyro’s (2011)

β1 β2

Bias MSE Bias MSE
Case 1: Var(mi|Xi) = 10 exp(X ′

iβ)
DL -0.00018 0.00912 0.00528 0.02793

GMM -0.00308 0.00592 0.00412 0.04001
PPML 0.00128 0.00449 0.00205 0.01901
GPML 0.05039 0.02701 0.02274 0.05165

Case 2: Var(mi|Xi) = 50 exp(X ′

iβ)
DL -0.00386 0.04053 0.02201 0.12262

GMM -0.01223 0.02615 0.03151 0.31451
PPML 0.00302 0.01953 0.01294 0.08325
GPML 0.16546 0.13510 0.08546 0.23551

Case 3: Var(mi|Xi) = exp(X ′

iβ) + 5 exp(2X ′

iβ)
DL -0.00022 0.01604 0.00476 0.03312

GMM -0.03381 0.04918 0.07952 0.22585
PPML -0.01323 0.02459 0.00259 0.05650
GPML 0.01467 0.01266 0.00747 0.03476

Case 4: Var(mi|Xi) = exp(X ′

iβ) + 15 exp(2X ′

iβ)
DL -0.00581 0.04352 -0.00470 0.08677

GMM -0.08219 0.09929 0.27926 1.99520
PPML -0.03660 0.06107 -0.01439 0.15400
GPML 0.01249 0.02447 -0.00242 0.08095
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