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Abstract
In this paper, a principal component analysis based on the Gini index - Gini PCA - is proposed in order to deal with

contaminated samples. The operator underlying the Gini index is a covariance-based operator, which provides a l1

metric well suited for dealing with outliers. It is shown, with simple Monte Carlo experiments, that the results of the

standard Principal Component Analysis (PCA) may be drastically aff​ected whereas some robustness holds with Gini

PCA.
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1 - Introduction

In 1912, Gini proposed the Gini Mean Difference index (GMD) as a new way to
measure inequality and disparity between individuals in a given population:

GMDx = E |xi − xj| , (1)

where xi and xj are two realizations of the random variable x. The GMD is based
on the taxi-cab distance and thus offers an alternative measure of the usual variance
based on the euclidean metrics:

σ2
x = cov(x, x) =

1

2
E |xi − xj|

2 . (2)

Since then, two main approaches have been developed in the literature for analyzing
the variability between two random variables.

The first one is based on the covariance between the c.d.f. of the random variable
x and that of y, expressed as:

Sx,y = cov(F (x), F (y)). (3)

This is the well-known Spearman’s method defined to be the rank method. The
second one, the Gini approach, has been developed by Schechtman and Yitzhaki
(2003) who paved the way on the covariance Gini operator – cogini operator from
now on – which can be seen as a mixture of the variance and Spearman’s pure rank
approaches:

cog(x, y) = cov(x, F (y)) ; cog(y, x) = cov(y, F (x)). (4)

It is noteworthy that cog(x, x) = 1/4GMDx, as a consequence, the cogini operator
is closely related to the ℓ1 metric.

The cogini operator has some appealing features. For instance, Olkin and Yitzhaki
(1992) and Yitzhaki and Schechtman (2013) point out that the ordinary least squares
method can be employed by replacing the usual covariance operator by the cogini
one. Their Gini regression has been shown to be robust to outliers. Indeed, the
variance criterion may be misleading to handle a sample with extreme values or to
deal with heavy-tailed distributions, see Carcea and Serfling (2015) in the case of
times series. Also, as shown by Greselin (2015) the use of cogini operators close to
Choquet integrals may be useful to unify measures of inequality and risk.

In this paper, we start from the recognition that the cogini lies in the family of
robust statistics, and as such, it is a good candidate to perform Principal Component
Analysis in the Gini sense (Gini PCA). In the field of PCA, Baccini et al. (1996) were
among the first authors dealing with a ℓ1-norm PCA framework. Their idea was to
robustify the standard PCA by means of the Gini Mean Difference as an estimator of
the standard deviation. Ding et al. (2006) made use of the R1 norm to robustify the
PCA, in which the Euclidean distance is applied over the dimensions of the matrix
only, whereas Frobienus norm is concerned with the Euclidean distance applied to
both dimensions and observations (rows of the matrix of the data).



The aim of this paper is to use the cogini operator underlying the correlation Gini
index in order to provide a Gini PCA less sensitive to outlying observations than the
usual PCA by substituting the variance-covariance matrix to the Gini correlation ma-
trix. Contrary to Baccini et al. (1996) in which the PCA is formalized by replacing
the standard deviation of each variable by its GMD, we employ the Gini correlation
index between all pairs of variables (Section 2). We show with simple Monte Carlo
simulations that the Gini PCA is robust to outliers thanks to the relative and ab-
solute contributions, that are respectively, the distance of the observations to the
principal components and their contributions to the overall Gini correlation (Section
3). Section 4 closes the note.

2 - Gini PCA

Let X ≡ [xik] be a N×K matrix that describes N observations on K dimensions such
that N ≫ K > 1, with elements xik ∈ R that reports the score of observation i on
dimension k. The N × 1 vectors representing each column of X are expressed as xk,
for all k ∈ {1, . . . , K}, such that xk 6= c1K , with c a real constant (and 1K a column
vector of ones of dimension K). The ℓ1 norm of xk is given by ‖xk‖1 =

∑N

i=1 |xik|.
The arithmetic means of the variables are given by x̄k. An estimator of the Gini Mean
Difference between two variables xℓ and xk, proposed by Schechtman and Yitzhaky
(1987), is given by:

GMD(xℓ,xk) :=
4

N

N
∑

i=1

(xiℓ − x̄ℓ)(F̂ (xik)− F̄xk
), (5)

where F̂ (xik) is the estimated cumulative distribution function of xk at point i, F̄xk

its mean, with ℓ, k = 1, . . . , K. When k = ℓ the GMD represents the variability of
the variable xℓ with itself, see Eq.(1). Alternatively, it is possible to define the rank
vector R(xℓ) of variable xℓ as an estimator of F (xℓ),

F̂ (xiℓ) =
R(xiℓ)

N
:=

{

#{x≤xiℓ}
N

if no ties
∑p

i=1
#{x≤xiℓ}

Np
if p ties xiℓ.

(6)

The rank vector assigns the value 1 to the smallest value of vector xℓ, and so on. In
the case of ties, the mean rank is computed as shown below for the first observation:
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(7)

A bias corrected estimator of GMD is,

GMD(xℓ,xk) :=
4

N(N − 1)

N
∑

i=1

(xiℓ − x̄ℓ)(R(xik)− R̄xk
), ∀k, ℓ = 1, . . . , K, (8)



with R̄xk
the mean of the rank vector of variable xk. The Gini correlation coefficient,

the G-correlation frown now on, is defined as follows:

GC(xℓ,xk) :=
GMD(xℓ,xk)

GMD(xℓ,xℓ)
, (9)

with GC(xk,xk) = 1 for all k = 1, . . . , K. Following Yitzhaki (2003), the G-
correlation is well-suited for the measurement of correlations in the case of distri-
butions with atypical points and in general in the case of non-normal distributions.

Property – Yitzhaki (2003):
(i) −1 ≤ GC(xℓ,xk) ≤ 1.
(ii) If the variables xℓ and xk are independent, for all k 6= ℓ, then GC(xℓ,xk) =
GC(xk,xℓ) = 0.
(iii) For any given monotonic transformation ϕ, GC(xℓ, ϕ(xk)) = GC(xℓ,xk) [in the

same than Spearman’s coefficient ].
(iv) For any given linear transformation ϕ, GC(ϕ(xℓ),xk) = GC(xℓ,xk) [in the same

manner than Pearson’s coefficient ].
(v) If xk and xℓ are exchangeable up to a linear transformation, then GC(xℓ,xk) =
GC(xk,xℓ).

Another property could have been added to the previous ones, that of robustness
of the G-correlation index. In order to assess its robustness in PCA frameworks, let
us define the K ×K G-correlation matrix containing the Gini correlations between
each and every pairs of variables:

GC(X) ≡ [GC(xℓ,xk)]. (10)

Let Xc and Rc be the N ×K column matrices containing respectively, the centered
xk vectors and the centered rank vectors. On the other hand, let the matrix of basis
vectors be B = [b1, . . . ,bh] containing the the eigen vector in columns such that
there exist h non-zero eigen values λ1, . . . , λh.

Proposition The Gini PCA consists in solving for the eigen values λk for all k =
1, . . . , K that maximize the Gini variability of X such that:

λk = argmaxb⊺

kGC(X)bk = argmaxb⊺

k(X
c)⊺Rcbk. (11)

The eigen values λk are derived from the Gini correlation matrix instead of the usual
variance-covariance matrix. The eigen vectors are normalized such that ‖bk‖1 = 1.
Then, the observations are projected such that F = XcB, with F = [f1, . . . , fh] the
matrix of projected observations into the new subspace spanned by the eigen vectors
bk.

Baccini and al. (1996) proposed a ℓ1 PCA solely based on the diagonal terms of
GC(X). In our approach, the extra-diagonal terms, representing the Gini correlation
between the variables xk and xℓ (k 6= ℓ), are taken into account in order to attenuate
the influence of the outliers that could occur in those correlations as well.



3 - Monte Carlo Simulations

As in the standard PCA, the results of the Gini PCA may be interpreted thanks to
absolute contributions (ACT ) and relative contributions (RCT ). ACTik represents
the share of axis fk variability (in the Gini sense) captured by each observation i.
This statistics the number of significant components (axis) fk to be selected. RCTik

is the distance of observation i towards a component fk.

Definition 3.1 The absolute contribution of an individual i to the Gini variability

of a principal component fk is:

ACTik =
fikrik

GMD(fk, fk)
, ∀k = 1, . . . , h, (12)

where rik is the rank of individual i on the principal axis fk and fik the score of

observation i on component fk.

The absolute contribution of each i to the Gini mean difference of fk is such that
ACTik ∈ [0, 1] and

∑N

i=1 ACTik = 1.

Definition 3.2 The relative contribution of an individual i to a component fk is:

RCTik =
|fik|

‖fi‖1
, ∀k = 1, . . . , h, (13)

where fi is the i-th row of matrix F.

On the one hand, Monte Carlo experiments are conducted with 5-variate normal
distributions of size N = 500 with independent variables in order to assess the quality
of ACT , RCT and λk by means of the estimation of Mean Squared Errors (MSE).
Let λoi

k be the eigen value issued from the contamination of the data X by an outlier
oi and λk the eigen value estimated without contamination. Over 1,000 different
possible contaminations, the MSE of λk is given by:

MSEλk
=

∑1,000

i=1 (λoi
k − λk)

2

1, 000
, ∀k = 1, . . . , h. (14)

The MSE of ACT et RCT are computed in the same manner.

Algorithm 1: Monte Carlo Simulation

Result: Robust Gini PCA with data contamination
1 θ = 1 [θ is the value of the outlier] and N = 500 ;
2 repeat
3 Generate a 5-variate normal distribution X ∼ N ;
4 Contamination: 1 observation (row) of X is multiplied by θ [random row

localization] ;
5 Compute ACT oi, RCT oi and λoi

k ;

6 until θ = 1, 000 [increment of 1];
7 return Mean squared Errors of ACT , RCT and λk ;



The MSE of the ACT of the 500 observations are computed for components f1
and f2, Figure 1a and 1b respectively.

Figure 1a: ACT1 Axis 1 Figure 1b: ACT2 Axis 2

Figure 1c: RCT1 Axis 1 Figure 1d: RCT2 Axis 2

The MSE issued from the Gini PCA (blue points) are less spread out than those
of the variance (red points). This means that the quantity of information (dispersion)
captured by each observation i remains much more stable with the Gini PCA when
the data are increasingly contaminated by θ. The same conclusion holds true for the
MSE of RCT (Figures 1c/1d).

Table I below depicts the MSE of the eigen values that are much lower in the Gini
PCA (except on axis 3 since the quantity of dispersion is not significant on this axis).
The variability on each axis (in mean over 1,000 iterations) λk∑

k λk
× 100 shows that

the presence of one outlier drastically affects the repartition of the information on
the three components. In the standard PCA (Variance case), the overall variability



is important on component 1 (90%), whereas each component must capture 1/5 of
the overall variability (since the 5 variables are independent). The repartition of the
variability on each component is more uniform in the Gini case.

Table I. Eigen Values and MSE: Normal distributions

% λk (Gini) % λk (Var) MSE (Var) MSE (Gini)
axis1 0.57 0.90 11.89 0.69
axis2 0.14 0.05 0.79 0.81
axis3 0.11 0.02 0.75 14.15

Another Monte Carlo simulation is performed with a mixture of probability dis-
tributions of size N = 500: Normal [N (0,1)], Gamma [Γ(2,2)], Uniform [U(min =
1,max = 5)], Cauchy [(location = 0, scale = 1)] and Beta [β(2, 3)]. The results are
similar.

Figure 2a: ACT1 Axis 1 Figure 2b: ACT2 Axis 2

Figure 2c: RCT1 Axis 1 Figure 2d: RCT2 Axis 2



Table II. Eigen Values and MSE: mixture of distributions

% λk (Gini) % λk (Var) MSE (Var) MSE (Gini)
axis1 0.64 0.88 11.04 0.49
axis2 0.14 0.09 0.87 0.81
axis3 0.09 0.01 0.74 19.25

4 - Concluding remarks

In this paper, a robust Gini PCA has been performed thanks to the cogini operator
underlying the Gini correlation matrix GC(X). The interpretations of the Gini PCA,
on the basis of ACT , RCT and eigen values, have been shown to be more relevant
than the variance case when one outlier affects the sample. This opens the way
on using the Gini PCA in many fields. For instance, in financial econometrics, the
principal axes are employed as risk factors in order to compute systematic risks and
to deduce the risk premium. This also open the way on generalized Gini PCA, which
could be based on the generalized cogini operator, see Yitzhaki and Schechtman
(2013) and Greselin and Zitikis (2015).
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