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1. Introduction 
Financial institutions need to determine the economic capital to manage the credit risk 
of the lending portfolios. Over the past decade, they have measured it by value-at-risk 
(VaR), which is calculated by Monte-Carlo simulation or analytical approximation. 
Analytical approximation techniques that are superior to Monte-Carlo simulation in 
terms of computational quantity are starting to be proposed. Here we discuss the 
granularity adjustment approximation, and apply it to calculating incremental VaR. 

Granularity adjustment approach was introduced by Gordy(2003) and (2004). 
Gordy(2003) show the conditions under which the effect of unsystematic risk factor in 
heterogeneous portfolio asymptotically vanishes. One of these conditions requires an 
infinitely fine-grained portfolio in order to have good approximations by the asymptotic 
approach. In the real world, a lending portfolio is not perfectly diversified. By the
granularity adjustment technique, the remaining unsystematic risk is adjusted. The 
mathematical expansion was carried out by the results of Gouriéroux, Laurent and 
Scaillet(2000), and many studies of granularity adjustment technique have been 
developed among others by Bredow(2002), Emmer and Tasche(2005). 

However, many practitioners and literatures insist that it is difficult to practically 
apply the granularity adjustment approach for a real world lending portfolio. It is 
because the existing portfolio is more concentrated than the conditions required by the 
granularity adjustment technique. We suggest that the granularity adjustment 
technique can be applied to incremental VaR 1, much better than VaR itself. When 
calculating incremental VaR of concentrated portfolios, approximation errors offset each 
other. 

This paper is organized as follows. In second section, the theoretical framework on 
granularity adjustment approach is introduced. In the third section we present the 
incremental VaR model. In the fourth section, we discuss numerical examples, and the 
fifth section concludes. 
 
2. Granularity Adjustment Approach 
2.1 Preliminaries 
We set up our VaR model as follows. In our model, portfolio loss is defined by the extent 

of the exposures to a defaulted obligor. Let iA  denote the exposure to obligor i, which is 

non-stochastic. We define the indicator variable D1  of the default event D by 
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where Dii   is expressed as the default of obligor i in fixed period of time.2 

For a portfolio of n obligors, we define the portfolio loss ratio )(nL  as the ratio 

of total losses to total exposure; 3 
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1 Incremental VaR is defined “how much VaR is increased when a new loan is added to 
the original portfolio“, what is called “capital charge for a new loan”. See Crouhy, Galai 
and Mark(2000), Hallerbach(1999) and Tasche(1999).  
2 We assume that an appropriate probability space   ,, F  has been chosen. 
3 We assume that LGD (loss given default) is 1, and our model take the default mode. 



Therefore we obtain VaR (the q-quantile of the distribution of loss); 
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where   qyYRyYq  Pr:inf:)( . When we calculate VaR, it is important to 

analyze  
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2.2 Essence of Granularity Adjustment  
Gordy(2003) show the conditions under which the effect of the unsystematic risk factor 

in heterogeneous portfolios asymptotically vanishes;  n . The conditions are 

(A-1)-(A-4): 

(A-1) the iA  are a sequence of positive constants such that 
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     where )(  is order notation. 

(A-2) Let X denote the systematic risk factor (one-dimensional), such as macroeconomic 
variables that influences all obligors in the portfolio. We assume that conditional 
on X, unsystematic risk factors are independent to the individual obligors in the 
portfolio. 

(A-3)  xLE n)(  is continuous and strictly decreasing. 

(A-4) There exists an open interval B containing )(Xq  on which 

(a) the cumulative distribution function (cdf) of X is continuous and increasing. 

(b)there are real numbers  ,   and 0n  such that 

    xLE n)(0  for all 0nn  . 

Note that for (A-3) we take into consideration only strictly decreasing functions which 
differs from Gordy(2003) assumption. (A-3) is stronger assumption than Gordy(2003), 
and by it we try to understanding easily the essence. If lending portfolio meets 
(A-1)-(A-4), we can obtain asymptotically approximation formulas: 4 
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Equation (4) implies that unsystematic risk factors of the individual obligors in the 
portfolio offsets each other by perfect diversification. Equation (4) relies on assumption 
(A-1), which is that the portfolio is an infinitely fine-grained portfolio. The intuition is 
that when the number of obligors in the portfolio increases, exposure of individual 

                                                   
4 The proof of equation (2.4) uses the strong law of large numbers, and if (A-2) and (A-3) 
are satisfied, then equation (2.4) is obtained. However, the detail of the proof is omitted 
here.  See Gordy(2003). 



obligors is much smaller than the total exposure. 
 However, the real world lending portfolio is much more concentrated than as 
required condition by the asymptotic approach. Granularity adjustment approach is an 
approximation that adjusts the asymptotic approximation error when (A-1) is not 
satisfied.5  It is essentially a second order Taylor expansion of the true loss ratio. First, 
consider a function of h as: 

  hUXLEL nhn  )(),(
. (6) 

The true loss ratio is obtained when h =1. First term of equation (2.6) is the systematic 
risk, and second term is the unsystematic risk. Next, a second Taylor expansion 

of  
hnq L ),(  around   XLE nq )(  yields 
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The first term of equation (7) is q-quantile of the distribution of the asymptotic loss ratio. 
The second term and third term can be calculated by the results of Gouriéroux, Laurent 
and Scaillet(2000). From Ando(2005), we obtain 6 
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and, 
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where  var  is variance,   xXLExl n  )(:)( , )(
'

xl  is first derivative of )(xl , 

)(xf X  is the probability density function(pdf) of X, and   )(
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 XLE n)( . 

Finally, granularity adjustment (approximation) formula is yielded as 
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5 Unfortunately, as we mentioned above, real world lending portfolio is more 
concentrated than required by Granularity adjustment approach condition.  

6 In order to calculate it, use      lXLELlXLEU nnn  )()()( varvar  and 
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2.3  Application to One-factor Merton Model 
In this section, in order to lead to the available formula for calculating VaR by 
granularity adjustment approach, we chose a simplified default structure that is 
specified by the firm’s asset value. It assumes that firm i defaults when the 

standardized asset value iV  falls below a certain threshold ic . We define the asset 

value iV  by  

iiii XV   1  (11) 

where i  are coefficient which refracts the degree of dependence on X  10  i , 

and X, i  are independent random variables with standard normal distributions.7 We 

then define the default event D by 

 iiiii cXD   1  (12) 

where ic  are constants  ic0 . And we define indicator variable D1  conditional on X 

by 
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Then we obtain the conditional expected value  )(1 xE Di  as 
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where    is the standard normal cdf ( )(  is the standard normal pdf).   

 Therefore the granularity adjustment formula, equation (10) can be expressed 
as  
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where  xXLxv n  )(var:)( . In order to specify equation (15) more explicitly, we 

                                                   

7 Then asset correlation between obligor i and j is  jiji  . 
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3. Incremental VaR 
3.1 Generalizing Incremental VaR 
Incremental VaR measures the incremental impact on the VaR of the original portfolio 
when adding a new loan. Therefore we separate original plan - not adding a new loan, 
and new plan - a new loan is added to the original portfolio. Then no conditions other 
than a new loan change. The loss ratio of the original plan is 
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and the loss ratio of the new plan is   
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where 
1nA  is the new loan. 

 Define the original plan’s VaR as )1(

qVaR , and the new plan’s VaR as )2(

qVaR . 

Then the change of VaR in adding a new loan 1nA  is  
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 We decompose the true VaR into the granularity adjustment formula and the 
approximation error. First, the original plan’s VaR is 
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where 1  indicates the approximation error on the VaR by the granularity adjustment 
approach. Similarly the new plan’s VaR is 
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where  )2(

)1(  nq L  and 2  is the approximation error with granularity adjustment 

approach. Therefore the incremental VaR is 

                                                   
8 Our definition of incremental VaR is different from the one of Hallerbach(1999) and 
Emmer and Tasche(2005). They define incremental VaR by 
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where    )1(
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VaR approximated by the granularity adjustment approach, and   indicates the 

approximation error on the incremental VaR approximated by the granularity 
adjustment approach.  
 
3.2 Predicted Results 

Under the definition of the previous section3.1,  is the approximation error on the 

incremental VaR approximated by granularity adjustment approach. It is defined as 
12  , and implies the difference in the errors between the new plan and the original 

plan. Therefore we predict that the incremental VaR approximated by the granularity 
adjustment approach gets effective result by what errors between new plan and original 
plan offset. Of course we found that this predicted result is not always true. The 
relationship between the new loan and the original plan decides the how much this 
offset occurs. The property of error 1  must not be changed by 2 , because the new 
loan is much smaller than total exposure in the original portfolio. Therefore we insist 
that the granularity adjustment approach yields a good approximation on incremental 
VaR. In the next section, we show a numerical example of the errors of incremental VaR 
approximation. 
 
4. Numerical Example 
4.1 Set Up Sample Portfolio 
We illustrate the approximations discussed so far with a simple numerical example. In 
order to test the effectiveness of the granularity adjustment approach applying to 
Incremental VaR, we set up various portfolios with different concentration. We followed 
Ieda, Marumo, and Yosiba(2000). 

First we set the sub-portfolios. Each sub-portfolio’s total exposures is $100, and 
portfolio has 100 obligors. Table1 express the four types of distribution for exposure of 
sub-portfolios: (S1) concentration on one borrower, (S2) concentration on 10% of 
borrowers, and (S3) 3-level distribution, and (S4) homogeneous distribution. 
Distribution (S4) implies the perfect diversification. The order of concentration level in 
term of variance is S4 < S3 < S2 <S. 
 Next we set four sample portfolios P1-P4 by combining the sub-portfolios for 
various ratings. The composition of the sub-portfolios is on table2. Each sample portfolio 
has 300 obligors and the total exposure is $300.  
 
4.2 Test of VaR 
In this section, we compare VaR calculated by granularity adjustment approach with 
VaR calculated by Monte-Carlo simulation. We consider here a special case where 

154.0i  for all obligor i (as in Emmer and Tasche(2005) ). Then we chose 99%VaR 

(q=99%), and we did 1,000,000 Monte-Carlo simulation.9 
Table3 express the results. It indicates that granularity adjustment approach 

fits well in portfolio P3 and P4. However we judge that in portfolio P1 and P2 
granularity adjustment approach does not fit well. Of course this result is similar to the 
preceding literatures.  
                                                   
9 We got essentially 1,000,000 scenarios by doing one hundred 10,000 Monte-Carlo 
simulations. 



Table1  Exposure Distributions for Sub-portfolios (which sample portfolios make up of) 
Note: total exposure for individual sub-portfolios is $100. 

 S1: 

Concentration on one 

borrower 

 (100 time others) 

S2: 

Concentration on 

10% of borrowers 

 (100 time others) 

S3: 

3-level distribution 

( double at 2nd level, 

10-time at 3rd level ) 

S4: 

Homogeneous 

distribution 

The Extent to 

exposure 

1 

borrowers 

$50.25 

each  

10  

borrowers 

$9.17 

each 

50  

borrowers 

$0.29 

each 

100 

borrowers 

$1 

each 

99  

borrowers 

$0.50 

each 

90 

borrowers 

$0.09 

each 

40 

borrowers 

$1.43 

each 

10 

borrowers 

$2.86 

each 

Total 100 

borrowers 

$100 100 

borrowers 

$100 100  

borrowers 

$100 100  

borrowers 

$100 

 

 Table2  Sample portfolios  
Rating Level 

 

Portfolio 

 

Rating 1 

(  DP ＝0.001) 

 

Rating 2 

(  DP ＝0.01) 

 

Rating 3 

(  DP ＝0.1) 

 

Total exposures  

 

Total obligors 

(Total borrowers) 

P1 S1 S1 S1 300 300 

: : : : : : 

P4 S4 S4 S4 300 300 

Table3   Numerical Result on VaR 
Nate1: MC is expressed as Monte-Carlo simulation, and GA is expressed as granularity 

adjustment. 
Note2: VaR(MC) is mean of one hundred 10,000 Monte-Carlo simulations. SSD is the 

standard deviation, and CV is the coefficient of variation. 
Note3: Define the granularity adjustment approximation error on VaR as 

.          
)(

)()(
:)()(

2

MCVaR

MCVaRGAVaR
GAerrorGAVaR


    

Portfolio P1 P2 P3 P4 

VaR(MC) 42.94 68.14 49.522 44.171 

SSD(VaR) 0.914 0.698 0.453 0.754 

CV(VaR) 0.021 0.010 0.009 0.017 

VaR(GA) 42.948 42.845 42.860 43.074 

VaR error(GA) 0.000 0.371 0.134 0.024

 



4.3 Test of Incremental VaR 
In this section, we compare incremental VaR calculated by granularity adjustment 
approach with the incremental VaR calculated by Monte-Carlo simulation. The Credit 
standing of calculation is as in section 4.2. We set the extent to exposure of new loan is 
$0.01. By adjusting the number of the new loan, we increased total exposure of the 
original portfolio.  
 The results are on Table4. In portfolio P2, P3, P4, granularity adjustment 
approach fits well. In portfolio P1 approximation error of Incremental VaR became 
smaller than the error of VaR. For example, the approximation error of VaR in table3 is 
0.371%, while the error of Incremental VaR in table4 is 0.2% (The Ratio of new loans($) 
in total exposure = 0.1). But we cannot judge that granularity adjustment approach is 
practically used. In other words, when granularity adjustment approach is applied to 
calculating incremental VaR, the approximation technique is useful except for excessive 
concentrated portfolio like P1.  
 
Table 4   Numerical Result on Incremental VaR 

Note1: SSD, CV is denoted similar to Table3. 
Note2: Define the granularity adjustment approximation error on Incremental VaR as 

 
)(

)()(
:)(

2

MSVaR

MSVaRGAVaR
GAerrorVaR






 

(P1) 
The Ratio of new loans($) 

in total exposure 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

VaR(MC) 68.985 69.845 70.703 71.570 72.445 73.311 74.167 75.043 75.907 76.773 

ΔVaR(MC) 0.845 1.705 2.563 3.430 4.305 5.171 6.027 6.903 7.767 8.633 

SSD(ΔVaR) 0.129 0.164 0.203 0.233 0.256 0.282 0.307 0.329 0.351 0.373 

CV(ΔVaR) 0.153 0.096 0.079 0.068 0.059 0.054 0.051 0.047 0.045 0.043 

ΔVaR(GA) 1.014 2.028 3.042 4.056 5.069 6.083 7.097 8.11 9.124 10.137 

 ΔVaR error(GA) 0.2 0.189 0.186 0.182 0.177 0.176 0.177 0.174 0.174 0.174 

 
 

（Ｐ2） 
The Ratio of new loans($) 

in total exposure 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

VaR(MC) 50.561 51.614 52.665 53.728 54.780 55.823 56.865 57.883 58.887 59.853 

ΔVaR(MC) 1.039 2.092 3.143 4.206 5.258 6.301 7.343 8.361 9.365 10.331 

SSD(ΔVaR) 0.119 0.191 0.293 0.391 0.494 0.563 0.643 0.660 0.684 0.694 

CV(ΔVaR) 0.115 0.091 0.093 0.093 0.093 0.089 0.087 0.079 0.073 0.067 



ΔVaR(GA) 1.014 2.028 3.042 4.056 5.069 6.083 7.097 8.11 9.124 10.137 

 ΔVaR error(GA) 0.024 0.030 0.032 0.035 0.035 0.034 0.033 0.029 0.025 0.018 

 
（P3） 

The Ratio of new loans($) 

in total exposure 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

VaR(MC) 45.136 46.094 47.041 48.006 48.976 49.949 50.929 51.892 52.861 53.848 

ΔVaR(MC) 0.964 1.922 2.869 3.835 4.804 5.777 6.757 7.720 8.689 9.676 

SSD(ΔVaR) 0.099 0.147 0.155 0.194 0.214 0.238 0.269 0.302 0.333 0.356 

CV(ΔVaR) 0.103 0.076 0.054 0.050 0.044 0.041 0.039 0.039 0.038 0.036 

ΔVaR(GA) 1.014 2.028 3.042 4.056 5.069 6.083 7.097 8.11 9.124 10.137 

 ΔVaR error(GA) 0.051 0.055 0.060 0.057 0.055 0.052 0.050 0.050 0.049 0.047 

 
(P4) 

The Ratio of new loans($) 

in total exposure 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

VaR(MC) 43.937 44.925 45.895 46.877 47.867 48.880 49.866 50.845 51.840 52.825 

ΔVaR(MC) 0.997 1.985 2.955 3.937 4.927 5.940 6.926 7.905 8.900 9.885 

SSD(ΔVaR) 0.145 0.250 0.322 0.337 0.354 0.356 0.385 0.406 0.425 0.426 

CV(ΔVaR) 0.145 0.126 0.109 0.085 0.071 0.059 0.055 0.051 0.047 0.043 

ΔVaR(GA) 1.014 2.028 3.042 4.056 5.069 6.083 7.097 8.11 9.124 10.137 

 ΔVaR error(GA) 0.017 0.021 0.029 0.038 0.029 0.024 0.024 0.026 0.025 0.025 

 
5. Conclusions 
The literature on the application of granularity adjustment approach to VaR cannot 
have derived effective approximation in concentrated portfolio, and our result is gained 
similarly. When granularity adjustment approach is applied to incremental VaR, we get 
a more effective approximation. Of course in very high concentrated portfolio, the 
granularity adjustment approach cannot necessarily be used practically. However we 
have enlarged the applicability of the approximation compared to VaR. 
 The essence of our proposal is the utilization of the offset in errors based on the 
concentration risk. To my knowledge, many literatures on credit risk management have 
emphasized on the adjustment of concentration risk. In the future, concentration risk 
will not be only adjusted, but must be also utilized in credit risk model itself.  
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