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Abstract
This paper examines the predictors of immunization coverages of children across Indian states and evaluates the role

of Universal Immunization Program (UIP) - a comprehensive policy of the Indian government in that light. Employing

Machine Learning methods such as LASSO and hierarchical LASSO, we find that not the UIP expenditure by itself,

but health infrastructure turns out to be a robust predictor of immunization coverage. The policy prescription that

follows from our study is that the immunization program should focus on promoting the required health infrastructure

in addition to monitoring the usage of funds closely for facilitating effective usage of the money. We also scrutinize

performances of ‘BIMARU', states that are considered traditionally underperforming states in terms of health and

education.
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1. Introduction: 

India has a startlingly high incidence of infant and maternal mortality resulting from vaccine-

preventable diseases and alone contributes to about one-fifth of child mortality worldwide, mostly 

from such diseases.1 The Universal Immunization Program (UIP) launched in 1985 is India’s 
policy response to tackling this problem. However, as of 2015, the infant-mortality rate in India is 

still quite high, at about 38 per 1000 live births with a wide variation in the coverage of 

vaccinations as well as disbursement of funds under UIP across different states in India.2 Several 

studies using household survey data have looked at the effects of household characteristics and 

UIP on immunization or the resulting anthropometric measures. However, to the best of our 

knowledge, no empirical work has attempted to find the determinants of immunization at a macro 

(state) level and our work contributes to fill that gap. This is important for policy making. Although 

UIP funds are disbursed by the central government to the state governments, achieving targeted 

goals and policy implementations at the grass root levels are largely bestowed on state 

administrations. Indian states do display alarmingly high variances in terms of their socio-

economic indicators including health and education, and that is precisely the reason why so called 

economically backward states (BIMARU) have been given special attention by policy makers over 

the years.  

We use a state level panel dataset spanning six years and 31 states and capture state specific 

unobserved heterogeneities (in terms of their socio-economic-cultural variations) using state 

dummies. We also use several state level observed covariates such as state level output per capita, 

child population under six, health infrastructure in states and UIP funds allocated to various states. 

Additionally, we include a time trend variable. Instead of treating all these regressors as being 

strictly independent of each other we further consider their interaction terms to capture explicitly 

any possible complementarities among covariates, as well as state level or time wise variations in 

the effectiveness of the observed covariates on immunizations.3 This makes our number of 

regressors larger than the sample size, necessitating the use of Hierarchical LASSO regression 

(detailed to be explained in Section 3.2) - a new Machine Learning technique. 

We consider number of people being vaccinated/covered (instead of vaccination rates) as 

dependent variable for each vaccine considered in our study. This is because our interest lies in 

the volume or level as opposed to rate which is often of interest to policy makers in health related 

studies - for example, number of deaths, number of people affected by an epidemic, number of 

people benefitted from a policy intervention etc. Our empirical ML based data mining exercises 

robustly indicate that although health infrastructure (to be defined in detail) is a crucial predictor 

for achieving immunizations, funds disbursed through the Universal Immunization Program is not. 

The upshots are that policy makers need to focus on building health infrastructure and can possibly 

use part of the fund for that purpose. Funds disbursed also need closer monitoring to prevent 

leakages. We also find variations across states in terms of effectiveness of these policy variables, 

                                                           

1 See http://unicef.in/Whatwedo/3/Immunization  
2
 While states like Karnataka and Andhra Pradesh report nearly 100% coverage under UIP, other states like Madhya 

Pradesh and Rajasthan report only about 75% coverage. There is also a wide variation in the funds received by states 

under UIP. Chandigarh received about one lakh under UIP while its neighboring state Himachal Pradesh received 

more than 200 lakh in a year and the difference can’t be explained by population size alone. 
3
 State dummies and time trend have been interacted with observed covariates in the regression.  

http://unicef.in/Whatwedo/3/Immunization
http://unicef.in/Whatwedo/3/Immunization


and make interesting observations regarding the performance of BIMARU (so called economically 

backward) states.     

2. Brief Background and Literature on Immunization 

 

2.1: Brief Background of UIP in India 

In 1978 India launched the Extended Program on Immunization (EPI) with the aim of 

immunizing all children with DPT, OPV, BCG and Typhoid by the first year of their lives. 

However, it was largely unsuccessful and managed to reach only urban areas. In 1985 India 

revamped and relaunched its immunization program - the Universal Immunization Program (UIP), 

this time in a phased manner aiming to cover all districts by 1989-90. This program also established 

the cold chain logistic system for proper storage and transportation of vaccines, and aimed to 

reduce mortality and morbidity from six vaccine-preventable diseases. Currently, UIP is run by 

the Immunization division under the National Rural Health Mission (NRHM) under the Ministry 

of Health and Family Welfare (MoHFW). All states submit a program implementation plan (PIP) 

which includes the projected requirement for funds to the MoHFW. The MoHFW disburses these 

funds to the states along with providing technical guidance about vaccination through the 

Immunization Technical Support Unit (ITSU). 4 The funds are used for vaccine logistics and cold 

chain system logistics, program monitoring and evaluation, monitoring adverse events following 

immunization and strategic communication. The utilization of these funds is supervised by the 

states through the State Health Societies under NRHM 5. Thus, it is conceivable to find variations 

across the states in the implementation of the program. State level dummies and their interactions 

with infrastructure and funds variables have been used to capture this, while no other study (to our 

knowledge) has addressed these effects in such detailed manner.  

2.2. Brief Literature on Immunization 

The existing literature on UIP in the fields of economics, public policy and health policy 

concentrate on the short-term and long-term health effects on immunization exploiting survey data 

at the household or individual level. Patra (2006) uses household data from the National Family 

Health Survey-2 (1998-99) and estimates the effect of various demographic and socio-economic 

factors like income, education level, religion along with if the mother received any ante-natal care 

(binary variable) on the likelihood of child’s immunization using a logistic regression. Datar, 

Mukherji, and Sood (2005) use the same survey dataset to estimate the effects of a constructed 

measure of health infrastructure (nearest primary health infrastructure facility available to a family 

and the presence of community health workers relevant to immunization) and community outreach 

programs on the vaccination status of a child. They found a positive and significant effect of the 

availability of health infrastructure on the coverage in certain situations. Using district level survey 

data, Anekwe and Kumar (2012) estimate the effect of being exposed to UIP (using a categorical 

variable) during the first year of a child’s life on anthropometric outcomes and vaccination status. 

                                                           

4
 For a more detailed description of the policy implementation plan see the following reports by the Ministry of 

Health and Family Welfare at 

http://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1 

and also at https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf 
5
 See the discussion in section 2.2 in 

https://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1  

http://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1
http://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1
https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf
https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf
https://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1
https://www.who.int/immunization/programmes_systems/financing/countries/cmyp/india_cmyp_2013-17.pdf?ua=1


They find a positive effect of UIP on an anthropometric measure. Banerjee et al. (2010) conduct a 

clustered randomized controlled trial in 134 villages in rural Rajasthan and find that in a low-

immunization coverage setting, immunization camps (their measure of infrastructure) combined 

with small incentives such as raw lentils and metal dishes have a positive impact on immunization 

coverage. Thus, micro data finds positive impact of vaccination on anthropometric measures of 

children, modest effect of UIP funds, and favorable effect of incentives and health infrastructure 

on the likelihood of child being vaccinated (fully or partly). These studies mostly focus on overall 

vaccination status of children, whereas we consider immunization coverage of individual vaccines 

under the program. Thus our study is at a more disaggregated vaccine level compared to the 

existing ones. We consider five vaccines which the program started with (refer to Table II for more 

details), namely BCG (Baccilus Calmette Guerin), OPV (Oral Polio Vaccine), Measles, DPT 

(diphtheria, tetanus and pertussis (whooping cough)) and TT (Tetanus Toxoid for pregnant 

women). We run separate regression for each vaccination coverage as a dependent variable. 

Following Datar et al. (2005) we include the total number of operating health centers in each state 

as a measure for health infrastructure in our regression. Note that our study complements the 

aforementioned micro household level studies. While the Banerjee et al. (2010) measure of health 

infrastructure is the temporary immunization camps at the village level (as part of their 

experiment), our measure of health infrastructure include the state-level primary health centers and 

community health centers as in Datar et al. (2005). Also note that while the Banerjee et al. (2010) 

finds effectiveness of temporary health infrastructure in conjunction with small incentives in a 

localized setting, our paper finds the effectiveness of permanent state level public health 

infrastructure (similar to findings in Datar et al. (2005)). To the best of our knowledge we do not 

find any macro-state level study on UIP and vaccination coverage. Our macro state level study 

corroborates some of these finding from micro/regional studies. Additionally, it also assesses the 

effectiveness of policies in various states and draws interesting conclusions regarding BIMARU 

(economically backward) states. 

 

3. Data and Econometric Analysis 

3.1. Data 

We use state-wise annual longitudinal data on coverage of five vaccines (BCG, DPT, Measles, 

OPV and TT) and total funds disbursed under UIP for the years 2005-06 to 2007-08 and 2009-10 

to 2011-12 from Indiastat.com.6 The Union territories of Andaman and Nicobar Islands, 

Lakshadweep, Dadra and Nagar Haveli, and Daman and Diu were dropped due to unavailability 

of data. Information on funds for the year 2008-09 was unavailable for all the states. A few other 

observations where the value of funds disbursed under UIP were missing were dropped from the 

analysis. The main analysis was conducted using 31 states and six years. For TT, the coverage 

refers to the total number of pregnant women whereas for other vaccines it refers to the total 

number of children vaccinated. The data on state-wise release of funds under UIP (measured in 

rupees), is adjusted for inflation using the price level in 2011. We also include the state-wise per 

capita net state domestic product (SDP) at factor cost at constant prices. A key covariate in this 

study is our measure of health infrastructure. It is the total number of Primary Health Centers 

(PHCs) and Community Health Centers (CHCs) in a state in a given year since both PHCs and 

                                                           

6
 We do not find data on more recent years, or specific funds disbursed for various vaccines.  



CHCs are responsible for administering vaccines under UIP. Another important covariate is the 

size of the population of the state. While there is a wide variation of population across the states, 

state-level data for this variable is not collected on a yearly basis. The most relevant and closest 

measure that we find for our purpose is the number of children under 6 years which was available 

only for the census year, 2011. We use the values for 2011 as repeated observations for each state 

to control for their population.7 A brief summary statistics of our variables are provided in Table 

I. 

3.2 Econometric Analysis: Challenge and Methodology 

As noted earlier, we are interested in state level panel analysis. We have a total of 175 observations 

(owing to many missing values in the 31 states, 6 years panel). The short panel nature of our data 

makes it inadequate for any typical non-parametric or semi-parametric regression approach such 

as that in Bhaumik et al. (2018). A researcher might use a standard fixed or random effects panel 

regression without accounting for all possible interaction effects in the covariates. But, ignoring 

those interactions will essentially mean a priori that they are independent when they are actually 

not. We not only include state dummies (as is done in a typical fixed effects model) and time trend 

but also consider their interactions with observed covariates. Interactions of the observed 

covariates with state dummies and time trend also allow us to capture the variations in their 

effectiveness across states and over time.  

Why LASSO? Note that, consideration of all such interactions lands us in a ‘high-dimensional 

setting’ of number of regressors exceeding the sample size. As a result the traditional regression 

methods fail and new Machine Learning (ML) techniques are called for. LASSO (Least Absolute 

Selection and Shrinkage Operator), a sparsity-based ML method is tailor-made to deal with such 

high-dimensional problem where K (number of regressors) exceeds or is very close to the sample 

size (n). LASSO also selects regressors by using out-of-sample prediction performance 

maximization criterion.8 In addition, Hierarchical LASSO (a modified version of LASSO) is 

further tailor-made to capture covariate interaction effects along with base covariate effects 

appropriately when degrees of freedom can be negative.9 We use ordinary LASSO results simply 

as benchmark but focus on the results from Hierarchical LASSO. See Bien, Taylor, and Tibshirani 

(2013) and Hastie, Tibshirani, and Friedman (2009) for details of the algorithms on Hierarchical 

LASSO and LASSO respectively. In our Hierarchical LASSO (results in Table III), while sample 

size is 175, the number of covariates in the model is 195 to begin with, including all base covariates 

(35 dummies and other variables) plus the interaction terms (observed variables interacted among 

themselves and interacted with state dummies and time trend). But then this sparsity algorithm 

highly shrinks the set of covariates selecting only few as reported in Table III.  

Hierarchical LASSO solves the following constrained maximization problem with L1 norms: 

                                                           

7
 For TT vaccine targeted to pregnant women we use both (i) total adult female population as well as (ii) children 

under 6 years for relevant ‘population’ measure, and obtain qualitatively similar results. More appropriate measures 

are not available. 

8
 Other ML techniques such as Random Forest can’t be used in our setting because they deal with very large N as 

opposed to large K.  
9
 If there are two covariates, say x1 and x2, for example and we consider the interaction term x1*x2, Hierarchical 

LASSO can read the x1*x2 as it is, instead of reading it as a new variable, say z.  



Minimize ∑ ቌܻ − β଴ − ∑ β௝ ௝ܺ�
௝=ଵ − ͳʹ ∑ θ௝௞ ௝ܺܺ௞�

௝≠௞ ቍଶ�
௜=ଵ + λ ∑||β||ଵ

�
௝=ଵ + λʹ ∑||θ||ଵ

�
௝≠௞ ሺͳሻ 

 

Here Y is the dependent variable measuring vaccination coverage, X is the matrix of covariates, 

i(=1,…, n) refers to the index representing sample observations, j, or k (=1,…,p) refers to the index 

representing covariates. β and θ are the coefficient estimates of the main effects and interaction 

terms respectively. λ, is the tuning parameter which controls the degree of regularization and is 

chosen through an out-of-sample prediction error minimization criterion known as cross-validation 

(explained later). 

Hierarchical LASSO produces sparse estimates of β and θ honoring either one of the two hierarchy 

conditions.  

(i) Strong hierarchy where θjk ≠ 0 when βj ≠ 0 and βk ≠ 0  
(ii) Weak hierarchy where θjk ≠ 0 when βj ≠ 0 or βk ≠ 0 

In studying macro-developmental issues, the strong hierarchy condition is too restrictive in terms 

of predictor selection. This is because there is no reason to assume that the interaction of two 

covariates is a good predictor only when both the main effects are individually good predictors.  

We employ the weak hierarchy condition which chooses an interaction term as a good predictor if 

at least one of the main effects are chosen as a good predictor. Thus, weak hierarchy is not only 

less restrictive but also more intuitive than strong hierarchy. For example, a state itself may not 

stand out in terms of performance (compared to average performance of other states) but it may 

show up as an important predictor while interacted with infrastructure, which would mean 

infrastructure is an important predictor for vaccination performance in that state. Weak hierarchy 

will pick this effect while strong hierarchy will not.    

As stated before, although our interest lies in capturing interactions, we also run ordinary LASSO 

with no interaction terms (results in Table IV) as a baseline regression. Since there are no 

interaction terms, K for this is 35 (not a high dimensional setting for 175 observations). This is 

still presented as a baseline comparison to Hierarchical LASSO. This optimization equation 

(without the interactions) now is as follows: 

Minimize ∑ ቌY − β଴ − ∑ βjXj�
௝=ଵ ቍଶ�

௜=ଵ + λ ∑||β||ଵ
p

j=ଵ ሺʹሻ 

 

 

The notations are similar to the ones used in Equation (1).  
In general, the choice of the tuning parameter λ is a crucial decision in regularized models 

since λ controls the degree of regularization of each model and hence determines variable 
selection. The commonly used method for this purpose is cross-validation which is based on the 

principle of minimizing out-of-sample prediction error. We use standard 10-fold cross-validation 



to choose the tuning parameter λ for both LASSO and Hierarchical LASSO algorithms. We run 

separate regressions for each of five vaccines. We then report the selected predictors with their 

respective signs for each vaccine following the one-standard error rule (as is common in the 

literature) in Tables III-IV and check if funds and health infrastructure (our policy variables) are 

identified as important predictors. We also check if any state underperforms (compared to median 

state) in any of the vaccination coverages or in terms of policy effectiveness.   

Machine learning techniques like LASSO are designed to produce best out-of-sample 

predictions using sparsity by selecting important regressors and dropping other covariates. 

However, the estimated values of the marginal effects and their standard errors produced by 

LASSO can be biased and hence should not be used for causal inference. But the results from 

LASSO can still prove useful for policy analysis by shifting the perspective from ‘estimating 

marginal effects’ to ‘investigating whether the policy serves as an important predictor of the 

outcome’ or not. See, Mullainathan and Spiess (2017) for a detailed discussion on this. It is also 

well known that a good in-sample prediction (or any high measure of ‘goodness-of-fit’) based on 
in-sample explanatory power of the model does not necessarily imply a good out-of-sample 

prediction performance and the latter is much more important from a realistic point of view, though 

much harder to achieve. LASSO algorithms are based on the principle of minimizing out-of-

sample prediction errors, and hence their practical advantage can’t be overstated. Nevertheless, in 

line of standard econometric literature we also provide detailed illustration of the in-sample 

performance of the method we use by comparing the kernel densities of BCG coverage (observed 

values) and its in-sample predictions (emanating from our estimation). This is presented in Figure 

1, displaying a good fit. We have very similar looking figures for other vaccines, but these are not 

reported for brevity. 

 

4 Results and Concluding Discussions: 

4.1 Results: 

Our Hierarchical LASSO and ordinary LASSO results are reported in Tables III and IV 

respectively indicating important predictors selected and their respective signs.10 The algorithms 

robustly choose health infrastructure as a good predictor of immunization across all vaccination 

coverages.  However, the UIP funds variable almost never get selected except in case of TT vaccine 

under Hierarchical LASSO analysis. We also find population size to be a good predictor as 

expected. Even after controlling for population size, we find some populous states such as Uttar 

Pradesh (UP), Madhya Pradesh (MP) and Andhra Pradesh (AP) are selected with positive signs 

whereas a different but largely populous state named Bihar gets selected with negative signs (in 

most cases). Presumably, we can interpret it as: MP and AP, achieving relatively more vaccination 

coverages than the median achiever (state of Punjab) while Bihar achieving relatively less than 

Punjab, even after controlling for (child) population size variable.11 Interactions of state specific 

effects with policy variables reveal some interesting facts in Hierarchical LASSO. We find that 

                                                           

10
 In LASSO estimation, the regression coefficient estimates are biased and therefore not used for inference 

purposes, hence not reported. The focal point is covariate selection and their signs which have been reported. 
11

 Punjab is a median achiever for all vaccination coverages and dummy for this state has been dropped to avoid 

perfect collinearity problem (or so called dummy variable trap issue). Thus performance of other states can be 

assessed relative to this state.  



both funds and infrastructure work well in UP in particular. Note, Bihar, MP, Rajasthan and UP 

have long been considered as backward states in terms of health and education indicators and 

special attention has therefore been provided by researchers and policy makers to those states. Our 

analysis reveals that MP is a relatively good performer for all vaccines, UP and Rajasthan are good 

performers for TT (vaccines given to pregnant women), while Bihar is a relatively bad performer 

for all vaccines. We also find that over time vaccination coverage has decreased as demonstrated 

by the selection of the time trend term with a negative sign. Therefore, more attention still needs 

to be provided for BIMARU states (except MP) and especially on Bihar.  

4.2 Discussions: 

While the existing studies mostly use micro household level data, standard regression techniques, 

and likelihood of overall vaccination coverage, we focus on macro-state level data, each vaccine 

under UIP separately, covariance interaction effects and use a new regression technique from 

Machine Learning literature that caters to our setting. Our analysis complements the existing micro 

studies and some clear policy prescriptions emerge. Our results suggest that there is a need to have 

more health infrastructure (health centers) in the states. While micro studies can’t examine the 
effects of UIP funds disbursed to various states, we can. Our results clearly indicate that funds 

disbursed must be scrutinized more carefully. There is no denying the fact that in India much of 

aid money is wasted or misused due to lack of governance and corruption, and our results reiterate 

that problem in the context of vaccination funds. Various reports have found high rates of vaccine 

wastage (owing to lack of appropriate cold storage facilities in tropical India) as an important 

hindrance to vaccination.12 Part of the funds should be spent towards such infrastructure building. 

Our measure of health infrastructure (PHCs and CHCs) are the last points in the cold chain logistic 

systems,13 thereby acting as proper storage facilities. Thus, states that have a higher number of 

these PHCs and CHCs are better able to store these vaccines properly and to achieve better success 

with vaccination coverage compared to other states. This explains why our measure of health 

infrastructure is consistently selected as a good predictor of coverage. Combining these we can 

suggest that not only is a rigorous monitoring of funds needed, but a part of funding can also be 

spent for building more health infrastructure (ensuring proper storage of vaccines and trained 

personnel) to make UIP more effective.  

Our analysis identifies critical states for future micro level studies (including RCTs) by indicating 

some underperforming states, with respect of specific (individual) vaccination coverages. For 

example, a detailed micro level study in Bihar can unmask the factors contributing to less 

vaccination coverage in this state. For Kerala and Tamil Nadu, an RCT can focus on identifying 

reasons behind poor coverage of TT vaccines (for the pregnant mothers). Given that our measure 

of infrastructure is consistently selected as an important predictor, policy makers must first identify 

the ‘infrastructure deserts’ in each state and then construct new health centers in such locations. A 

well-spaced network of PHCs and CHCs within each state will reduce vaccination wastage.  

Following the leads of multilateral agencies, the government of India may also provide 

disaggregated administrative data on UIP funds (used for various purposes) to researchers, in order 

to allow for the identification of leakage-sources.  

                                                           

12
 See one such report in https://www.mofa.go.jp/mofaj/gaiko/oda/seisaku/kanmin/chusho_h24/pdfs/a20-12.pdf  

13
 See https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf  under “Components” , Part II “Cold 

Chain System, Vaccines, Logistics”. 

https://www.mofa.go.jp/mofaj/gaiko/oda/seisaku/kanmin/chusho_h24/pdfs/a20-12.pdf
https://www.mofa.go.jp/mofaj/gaiko/oda/seisaku/kanmin/chusho_h24/pdfs/a20-12.pdf
https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf
https://www.nhp.gov.in/sites/default/files/pdf/immunization_uip.pdf
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APPENDIX  

Table I : Descriptive statistics of all the variables 

 Minimum Maximum Mean Median Standard 

Deviation 

B.C.G 8045 5693227 834455.4 539523 1094819 

Measles 8590 5330048 763465.6 510755 1002537 

O.P.V 8105 5544695 781922.5 524453 1032407 

T.T 7260 5689521 790056.1 519934 1048690 

Real Funds 

(in INR) 

63822 353538679 40562010 15583194 58903317 

Per-capita 

SDP 

7588 

 

129397 

 

39687 34096 22730 

Infrastructure 1 4207 893 548 940.8 

Under 6 pop 64111 30791331 

 

5401406 

 

3380721 

 

6720341 

 

Female pop 287507 

 

95331831 

 

19182168 

 

12712303 

 

21751093 

 
Note: The sample size was 175. The target group for TT vaccine is pregnant women. The target group for all other vaccines are children.  

Table II: Details of the vaccines considered in this study 

Vaccine Disease(s) Schedule 

BCG Tuberculosis at birth (up to one year) 

DPT Diphtheria, Pertussis, Tetanus 6,10,14 weeks 

OPV Poliomyelitis 6,10,14 weeks 

Measles Measles 9-12 months, 16-24 months 

Tetanus Toxide (TT)  Tetanus (in pregnant women) 2 doses during the pregnancy 

 

 

 

 

 

 

 

 

 

 

 

 



Table III: Predictors selected via Hierarchical LASSO for each vaccine 

BCG DPT OPV Measles TT 
Infrastructure (+) 

Population (+) 

Trend (-) 

Infra*trend (-) 

Andhra Pradesh (+) 

Madhya Pradesh (+) 

AP*SDP(+) 

MP*SDP(-) 
UP*population(+) 

UP*trend(-) 

 

 

Bihar*Population (-) 

 

 

 

MP*Trend(-) 

West Bengal(+) 

Population*trend (-) 

 

Infrastructure (+) 

Population (+) 

Trend (-) 

Infra*trend (-) 

Andhra Pradesh (+) 

Madhya Pradesh (+) 

AP*SDP(+) 

MP*SDP(-) 

UP*population(+) 

UP*trend(-) 

 

 

Bihar*Population (-) 

 

Infrastructure (+) 

Population (+) 

Trend (-) 

Infra*trend (-) 

Andhra Pradesh (+) 

Madhya Pradesh (+) 

AP*SDP(+) 

MP*SDP(-) 

UP*population(+) 

UP*trend(-) 

 

 

Bihar*population (-) 

 

Infrastructure (+) 

Population (+) 

Trend (-) 

Infra*trend (-) 

Andhra Pradesh(+) 

Madhya Pradesh (+) 

AP*SDP(+) 

MP*SDP(-) 

UP*population(+) 

 

 

 

Bihar*population (-) 

Bihar*trend (+) 

 

Infrastructure(+) 

Population (+) 

Trend (-) 

Infra*trend (-) 

Andhra Pradesh (+) 

Madhya Pradesh (+) 

AP*SDP(+) 

MP*SDP (-) 

UP*Population (+) 

 

UP*funds (+) 

UP*infra (+) 

 

Bihar *trend (+) 

Bihar (-) 

 

MP*trend (-) 

Chhattisgarh (+) 

Gujarat (+) 

Haryana (+) 

Kerala (-) 

Rajasthan (+) 

Tamil Nadu (-) 

Rajasthan *trend (-) 

Funds(+) 
Note: AP, MP and UP stand for Andhra Pradesh, Madhya Pradesh and Uttar Pradesh respectively. 

 

 

 

 

Table IV: Predictors selected via LASSO (without considering any interaction terms) 

BCG DPT OPV Measles TT 

Infrastructure(+) 

Population(+) 

Trend(-) 

Andhra Pradesh(+) 

Bihar(-) 

Madhya 

Pradesh(+) 

Uttar Pradesh (+) 

West Bengal(+) 

Infrastructure(+) 

Population(+) 

Trend(-) 

Andhra Pradesh(+) 

Bihar(-) 

Madhya 

Pradesh(+) 

Uttar Pradesh(+) 

Infrastructure(+) 

Population(+) 

Trend(-) 

Andhra Pradesh(+) 

Bihar(-) 

Madhya 

Pradesh(+) 

Uttar Pradesh(+) 

Infrastructure(+) 

Population(+) 

 

Andhra 

Pradesh(+) 

Bihar(-) 

Madhya 

Pradesh(+) 

Uttar Pradesh(+) 

Infrastructure(+) 

Population(+) 

 

Bihar(-) 

Madhya 

Pradesh(+) 

Uttar Pradesh(+) 

Rajasthan(+) 

Kerala(-) 
 



 

 

Figure 1: Kernel density plot comparing in sample prediction to observed values 

 


