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Abstract
We present sufficient conditions for the non-representability of a class of lexicographic preferences. The proof of non-

representability builds on the classical Debreu (1954) argument and its usefulness in generating counter examples is

demonstrated through a series of examples.
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1 Introduction

Lexicographic preference is often the most accessed example of non-representability
of a binary relation that is complete, transitive and monotone. The example orig-
inates in Debreu (1954)1and has received a formal textbook treatment in leading
theory textbooks, for example, Mas-Colell, Whinston and Green (1995).

While the appeal of lexicographic reasoning is hardly contained by its use in
generating counter-examples of non-representable preference orders, in this paper
our interest is in this speci�c methodological use of a class of lexicographic pref-
erence orders. In particular our motivation is to provide a class of lexicographic
orders and establish conditions on which such an order is non-representable. Our
hope is that such a tool will �nd use in generating examples in decision theory. The
argument presented here and the conditions su¢cient for non-representability are
derived from a similar result in Debreu (1954). We deal with the non-representation
issue exclusively in contrast to the rich literature on the characterization of lexi-
cographic preferences � see for example the classic by Fishburn (1975) and Mitra
and Sen (2014) more recently.

One can think of our version of lexicographic preference as one that is de�ned on
the space of �attributes�. Following Lancaster (1966), if one interprets consumer
behavior as an individual�s attempt to choose the right mix of attributes in a con-
sumption bundle and not just the bundle itself, then our preferences de�ne a lexico-
graphic ordering on what is considered the �right� mix. For instance, a consumer in
choosing a car could have a value function de�ning the mix of safety and mileage in
each car, and among those cars for which she is indi¤erent with regards to the con-
sideration of safety and mileage, she chooses the one that gives the most mileage.
In this example the consumer�s preference is de�ned over the attributes of safety
(x1) and mileage (x2) and his true preference over two attribute pro�les (x1; x2)
and (x01; x

0

2) is a lexicographic ordering of the form (v(x1; x2); x2) �L (v(x
0

1; x
0

2); x
0

2),
where v is the value she assigns to the mix of safety and mileage. This is the simple
extension to the standard lexicographic case that we pursue, and demonstrate two
conditions that guarantee non-representability.

As a road map of what lies ahead, we prove the main non-representability
result in Proposition 1 (section 2) and demonstrate how failure of the su¢cient
conditions (P1 and P2, stated in section 2) change the conclusion of Proposition
1. Finally in section 3 we demonstrate how the result of this note can be applied
to concrete examples from the class of lexicographic orders under consideration.

1The use of the lexicographic order in topology and order theory has a long history. For an
early order theoretical reference the reader can consult Sierpinski (1965, p. 221).



2 The Result

We focus our attention on the positive orthant of the two-dimensional Euclidean
space2. Let f : R2+ ! R+ and g : R2+ ! R+ be two functions. We list the
properties crucial to the analysis.

(P1) f(a; a) 6= f(b; b) for a; b 2 R+ and a 6= b.

(P2) There is an uncountable subset U � R++ such that for every r 2 U there
is an x 2 R2+ with x 6= (r; r) such that (i) f(r; r) = f(x) and (ii) g(x) 6= g(r; r).

Now de�ne % by

(a; b) % (a0; b0) i¤ (f(a; b); g(a; b)) �L (f(a
0; b0); g(a0; b0)) (1)

where, �L is the standard lexicographic order. Recall that this means that when-
ever f(a; b) > f(a0; b0) we have (a; b) � (a0; b0) and if f(a; b) = f(a0; b0), then
(a; b) % (a0; b0) i¤ g(a; b) � g(a0; b0). Denote the symmetric and asymmetric com-
ponents of % (�L) by � (=L) and � (>L) respectively.

We will say that a binary relation v on R2+ is representable if there is some
function u : R2+ ! R such that

x v y i¤ u(x) � u(y).

In P1 and P2 the diagonal D = f(x1; x2) : x1 = x2g plays a crucial role. Con-
dition P1 states that the �rst component in the lexicographic ordering is sensitive
to distinct element along the diagonal3.

Condition P2 is the crucial su¢cient condition that makes preferences de�ned
in (1) non-representable. Lexicographic orders of the form (1) will have intuitive
appeal when the priority de�ning functions f and g are in some con�ict. The
precise nature of this con�ict is what motivates condition P2 and its structure is
dictated by the proof of Proposition 1 (a generalization of the standard argument
presented in Debreu 1954).

Proposition 1. If f; g satisfy P1 and P2, then the preference order % as
de�ned in (1) is not representable.

2While generalization to higher dimensions and more abstract spaces are possible they would
not add much to our understanding of Proposition 1.

3Weak forms of strict monotonicity are su¢cient for P1; for example if we require strict
monotonicity only along the diagonal (Diagonal Pareto: f(a; a) > f(b; b) whenever a > b) then
P1 would be satis�ed. Su¢cient conditions for representation of preferences that satisfy Diagonal
Pareto are explored in Banerjee (2014).



proof: Suppose if possible, % be representable by a real valued function
u : R2+ ! R. Let U be an uncountable subset as in property P2. For each r 2 U
pick c(r) 2 B(r) where,

B(r) = fx 2 R2+ : x 6= (r; r); f(r; r) = f(x) and g(r; r) 6= g(x)g. (2)

By P2, the set B(r) given in (2) is non empty, so there is a c(r) 2 B(r)4 and the
inequality g(c(r)) 6= g(r; r) must hold. De�ne:

x(r) =

�

c(r) if g(r; r) > g(c(r))
(r; r) otherwise.

(3)

and

x0(r) =

�

c(r) if g(r; r) < g(c(r))
(r; r) otherwise.

(4)

Now for any r 2 U we must have x0(r) � x(r). To see this consider two cases:
(a) g(r; r) > g(c(r)) and (b) g(r; r) < g(c(r)).

In (a) since g(r; r) > g(c(r)) it follows that x0(r) = (r; r) (by (4)) and x(r) =
c(r) (by (3)). Now f(r; r) = f(c(r)) and g(r; r) > g(c(r)) implies (using (1)) that
x0(r) � x(r) holds.

In (b) since g(r; r) < g(c(r)), an argument similar to case (a) yields x0(r) =
c(r) and x(r) = (r; r) which would again imply (using f(r; r) = f(c(r)) and the
de�nition (1)) x0(r) � x(r) as required.

Denote the non-degenerate interval [u(x(r)); u(x0(r))] by I(r). To complete the
argument we need to show that whenever q 6= r we must have I(q) \ I(r) = ;.
Assume q 6= r, using P1 we know that f(r; r) 6= f(q; q). Two cases are possible (i)
f(r; r) < f(q; q) (ii) f(r; r) > f(q; q).

In (i) we will compare x0(r) with x(q) and show that x(q) � x0(r). Observe
that

f(c(r)) = f(r; r) < f(q; q) = f(c(q)) (5)

holds (the equalities follow from the de�nition of c and the inequality is the con-
sequence of the assumption for case (i)). As x(r) is either (r; r) or c(r) and x0(q)
is either (q; q) or c(q) , (5) and (1) implies x(q) � x0(r) as was needed. This
establishes I(q) \ I(r) = ; in case (i).

4On the collection B = fB(r) : r 2 Ug of non-empty sets there exists a choice function (using
the Axiom of Choice) c� : B ! [B2BB such that c

�(B) 2 B for B 2 B. In recognition of the role
played by the uncountable set U in this proof we are making the dependence on the elements of
U explicit by writing c(r) = c�(B(r)) 2 B(r).



In (ii) we will compare x0(q) and x(r) and show that x(r) � x0(q). Note that
in case (ii)

f(c(r)) = f(r; r) > f(q; q) = f(c(q))

must hold. Using an argument similar to case (i) we can show that x(r) � x0(q) is
true. This implies I(q) \ I(r) = ; for case (ii).

In conclusion, the interval I(q) \ I(r) = ; holds whenever r 6= q and r; q 2
U . So we have established a one-to one correspondence between a collection of
non-degenerate, non-intersecting intervals of R (a countable collection) and the
set U (an uncountable set). This is a contradiction which proves that % is not
representable. �

Remarks.

We demonstrate that Proposition 1 fails to hold when we violate each of the
three conditions (P1, P2(i) and P2(ii)). Three simple examples of the form (1)
are presented towards that goal. In each example the set U from condition P2 is
R++.

(i) Proposition 1 fails without P1: Let f : R2+ ! R be de�ned as f(x) = 5 and
for all x 2 R2+ and let g : R

2
+ ! R be de�ned by g(x) = 6+x1+x2. It is easy to see

that P2 is satis�ed but P1 fails to hold. The resultant order % is representable,
since in this case x % y i¤ g(x) � g(y) must hold true.

(ii) Proposition 1 fails without P2 (i): Let f : R2+ ! R be de�ned as

f(x) =

8

<

:

maxf(x1=x2); (x2=x1)g if x1 6= x2 and (x1; x2) 2 R2++
[x1=(x1 + 1)] if x1 = x2 and (x1; x2) 2 R2++

0 otherwise

and let g : R2+ ! R be de�ned by g(x) = �[f(x)]. We verify that condition P1
holds. Note that along the diagonal f is a strictly increasing function in x1 which
implies that P1 must be satis�ed. To show that condition P2(i) fails it is enough
to note that f(r; r) < 1 for any r > 0 and f(x) > 1 for any x 2 R2++ with x1 6= x2.
Condition P2(ii) is satis�ed, since g(r; r) = �[f(r; r)] > �1 > �[f(x)] = g(x)
for all x 2 R2++ and r > 0. Hence the resultant order % satis�es P1 but not
P2. However observe that % is representable since whenever x % y we must have
f(x) � f(y) and conversely.

(iii) Proposition 1 fails without P2 (ii): Let f : R2+ ! R be de�ned as f(x) =
x1 + x2 and g : R2+ ! R by g(x) = f(x). We can verify that properties P1 and
P2(i) are satis�ed but P2(ii) fails. The resultant order % is representable, since
in this case x % y i¤ f(x) � f(y) must hold true.



3 Examples

We conclude the analysis with three examples of non-representable preferences.

Example 1: We demonstrate that the standard lexicographic order, an exam-
ple often cited as an example in the discussion of non-representable preferences in
a standard introductory graduate Microeconomic Theory course (see Mas-Colell,
Whinston and Green 1995, p. 46) meets the conditions required by Proposition
1. Take f(x1; x2) = x1 and g(x1; x2) = x2 for all (x1; x2) 2 R2+. As f is strictly
increasing along the diagonal condition P1 must hold. To verify condition P2, for
r 2 U take x = (r; r + 1). Then f(x) = f(r; r) = r and g(x) = r + 1 6= g(r; r) = r.
So we can apply Proposition 1 and conclude that% in this case is not representable.

Example 2: De�ne f : R2+ ! R and g : R2+ ! R as follows: f(x1; x2) = x1+x2
for (x1; x2) 2 R2+; g(x1; x2) = [x1x2=(x1+x2)] when (x1+x2) 6= 0 and g(x1; x2) = 0
when (x1 + x2) = 0. As f is strictly increasing, property P1 must be satis�ed.
To verify P2, for any r 2 R++ = U take x = (r � "; r + ") for some " 2 (0; r).
Then f(r; r) = f(r � "; r + ") = 2r, g(x) = (r � ")(r + ")=2r = (r2 � "2)=2r and
g(r; r) = r2=2r 6= g(x) as needed. So we can apply Proposition 1 to show that the
resultant order % is not representable.

Example 3: In all the examples presented the set U in condition P2 turned
out to be R++. This example shows that there are cases where the set U in P2 is
a strict subset of R++. Let f : R2+ ! R and g : R2+ ! R be de�ned by

f(x) =

�

x1 if x1 is irrational
x2 if x1 is rational

and

g(x) =

�

x2 if x2 is irrational
x1 if x2 is rational

To verify that P1 is satis�ed, it is su¢cient to note that for any r > 0 we must have
f(r; r) = r. Denote the set of positive irrational numbers by I++ and set U = I++,
noting that U is uncountable. Consider P2, for r 2 U we let x = (r; r + 1)
and note that both r and r + 1 are irrational numbers. Our choice of x implies
f(r; r) = f(x) = r and g(x) = r + 1 6= g(r; r) = r as needed for P2. Applying
Proposition 1 we conclude that % is not representable.
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