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1 Introduction

Time series of counts arise in different areas of applications related to finance, transport,

socioeconomic activities, medical science and among others. Usually, it is perceived that these

series of count observations are dynamic in nature and are thus subject to significant overdisper-

sion relative to the means. In this regard, several observation-driven integer valued time series

autoregressive models have been proposed in literature for the modelling of such data. How-

ever, much theoretical work has been concentrated on the use of the Poisson distribution as an

integral feature of the model. In this context, McKenzie (1985) and Al-Osh and Alzaid (1987),

independently, introduced the first order non-negative integer-valued autoregressive (INAR(1))

process with Poisson innovations, the Poisson distribution is not always suitable for modelling,

since its mean and variance are the same and this property may be unacceptable for real data.

Several alternatives to models with a Poisson innovations have been proposed in the liter-

ature. Ristić et al. (2017) defined the negative binomial thinning operator and based on the

such operator introduced the overdispersed integer-valued time series model with geometric

marginal (NGINAR(1)). Jazi et al. (2012) proposed the geometric INAR(1) model with ge-

ometric innovations. Mohammadpour et al. (2018) proposed a first-order integer-valued au-

toregressive process with Poisson-Lindley marginals based on the binomial thinning. But, the

innovation structure form is complex, consequently, the conditional probabilities of this model

don’t have a simple form. However, the PL distribution has many properties (see below), then

it is worth study the INAR(1) model with PL innovations.

The main objective of this paper is to propose an new INAR(1) model with Poisson-Lindley

(PL) innovations based on the binomial thinning operator (Steutel and van Harn, 1979), denoted

by INARPL(1) model, for modeling nonnegative integer valued time series with overdispersion,

with the hope that the new process may have a better fit in certain practical situations (see

Section 5). The use of innovations that come from the PL distribution has many advantages, that

the PL distribution belongs to compound Poisson family and has other common properties like

unimodality, overdispersion, and infinite divisibility (Ghitany and Al-Mutairi, 2009), such as

the negative binomial distribution. Furthermore, considering a PL distribution with parameter

θ, then the PL distribution can be viewed as mixture of geometric with parameter 1/(1 + θ)
and negative binomial with parameters 2 and 1/(1 + θ) with mixing proportions θ/(1 + θ) and

1/(1 + θ), respectively. Moreover, the skewness and kurtosis of the PL distribution are smaller

than the negative binomial distribution (Ghitany and Al-Mutairi, 2009).

The rest of the paper unfolds as follows. In Section 2, the INAR(1) process with Poisson-

Lindley innovation is presented. In the same section, the main properties of the model are

derived. In Section 3, we propose estimation methods for the model parameters. In Section 4,

we present some simulation results for the estimation methods. In Section 5, we illustrate the

application of the model to the weeky sales series of soap product.

2 Poisson-Lindley INAR(1) model

A random variable X is said to have a Poisson-Lindley (PL) distribution (Sankaran, 1970)

if its probability mass function (pmf) is given by

Pr(X = k) =
θ2(k + θ + 2)

(θ + 1)k+3
, θ > 0, k ∈ N. (1)



The mean and variance of the PL distribution are given, respectively, by

E(X) =
θ + 2

θ(θ + 1)
and Var(X) =

θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2
= E(X)

[
1 +

θ2 + 4θ + 2

θ(θ + 1)(θ + 2)

]
.

Note that Var(X)/E(X) > 1, i.e, the PL distribution is overdispersed, for more details see

Ghitany and Al-Mutairi (2009).

The skewness and kurtosis of the Poisson-Lindley distribution are given by

γ1 =
2(θ + 1)4(θ + 2)− θ3(θ + 2)(θ + 3)

[2(θ + 1)3 − θ2(θ + 2)]3/2

and

γ2 = 3 +
2(θ + 1)5[(θ + 3)2 − 3]− θ4(θ + 2)[(θ + 4)2 − 3]

[2(θ + 1)3 − θ2(θ + 2)]2
.

In short, we name this distribution as the PL(θ) distribution. The probability generating

function (pgf) of X , denoted by ϕX(s) := E[sX ], is given by

ϕX(s) =
θ2

θ + 1
· 2 + θ − s

(θ + 1− s)2
.

A discrete-time stationary non-negative integer-valued stochastic process {Yt}t∈Z is said

to be a first-order integer-valued autoregressive [INAR(1)] process if it satisfies the following

equation

Yt = α ◦ Yt−1 + ǫt, t ∈ Z, (2)

where α ◦ Yt−1 =
∑Yt−1

j=1 Bj is the binomial thinning operator, {Yj}j≥1 is a sequence of inde-

pendent and identically distributed Bernoulli random variables with Pr(Bj = 1) = 1−Pr(Bj =
0) = α ∈ [0, 1), {ǫt}t∈Z is an innovation sequence of independent and identically distributed

non-negative integer-valued random variables not depending on past values of {Yt}t∈Z of mean

µǫ and variance σ2
ǫ . It is also assumed that the Bj variables that define α ◦Yt−1 are independent

of the variables from which other values of the series are calculated. Moreover, we assume that

all Bj variables defining the thinning operations are independent of the innovation sequence

{ǫt}t∈Z.

Let {ǫt}t∈Z be a sequence of discrete i.i.d. random variables following a PL distribution

with pmf given in (1). Thus, the mean and variance of {Yt}t∈Z are given, respectively, by

E(Yt) =
θ + 2

(1− α)(1 + θ)θ
and Var(Yt) =

θ + 2

θ(θ + 1)(1− α2)

[
1 + α +

θ2 + 4θ + 2

θ(θ + 1)(θ + 2)

]
.

The process defined in Equation (2) with {ǫt}t∈Z ∼ PL(θ) is Markovian, stationary, and

ergodic. From Al-Osh and Alzaid (1987), we have that α ∈ [0, 1) and α = 1 are the conditions

of stationarity and non-stationarity of the process {Yt}t∈Z, respectively. Also, α = 0 and

α > 0 respectively imply the independence and dependence of the observations of {Yt}t∈Z.

In this paper, we restrict our study to the stationary case. In short, we name this model as the

INARPL(1) process.

The conditional mean and the conditional variance are given by

E(Yt+1|Yt) = αYt +
θ + 2

θ(θ + 1)



and

Var(Yt+1|Yt) = α(1− α)Yt +
θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2
.

The transition probabilities of this process are given by

Pr(Yt = k|Yt−1 = l) =

min(k,l)∑

i=0

(
l

i

)
αi(1− α)l−i · θ

2(k − i+ θ + 2)

(θ + 1)k−i+3
, k, l ≥ 0, (3)

where (·) is the standard combinatorial symbol.

The autocorrelation function (ACF) at lag h is given by

Corr(Yt, Yt−h) = ρX(h) = αh, h ≥ 0.

3 Estimation and inference of the unknown parameters

This section is concerned with the estimation of the two parameters of interest. We con-

sider three estimation methods, namely, conditional least squares, Yule-Walker and conditional

maximum likelihood.

3.1 Conditional least squares estimation

The conditional least squares estimator η̂ = (α̂cls, θ̂cls)
T of η = (α, θ)T is given by

η̂ = argmin
η

(Sn(η)),

where Sn(η) =
n∑

t=2

[Yt − g(η, Yt−1)]
2 and g(η, Yt−1) = E(Yt|Yt−1). Thus, the conditional least

squares (CLS) estimators of α and θ can be written in closed form as

α̂cls =
(n− 1)

∑n
t=2 YtYt−1 −

∑n
t=2 Yt

∑n
t=2 Yt−1

(n− 1)
∑n

t=2 Y
2
t−1 − (

∑n
t=2 Yt−1)

2 ,

θ̂cls =
Yα̂cls

− 1 +
√
Y 2
α̂cls

+ 6Yα̂cls
+ 1

2
,

where Yα̂cls
= (n− 1) (

∑n
t=2 Yt − α̂cls

∑n
t=2 Yt−1)

−1
.

Theorem 3.1 The estimators α̂cls and θ̂cls are strongly consistent for estimating α and θ, re-

spectively, and satisfy the asymptotic normality

√
n

(
α̂cml − α

θ̂cml − θ

)
d−→ N

(
0, c2

[
r11 r21
r12 r22

])
,

where c = θ3(α− 1)(θ+ 1)3[µ2θ
4(1− α)2(θ+ 1)− (θ+ 2)2(θ2 + 4θ+ 2)]−1, r11, r12, r21 and

r22 are given in the Appendix.



3.2 Yule-Walker estimation

The Yule-Walker (YW) estimator of α and θ, based upon the fact that ρX(1) = α and

E(Yt) = (θ + 2)[(1 − α)(1 + θ)θ]−1. Thus, from a sample Y1, . . . , Yn of a stationary process

{Yt}t∈Z, the estimators of α and θ are defined as

α̂yw =

∑n
t=2(Yt − Y )(Yt−1 − Y )∑n

t=1(Yt − Y )2
,

θ̂yw =
Yα̂yw

− 1 +
√
Y 2
α̂yw

+ 6Yα̂yw
+ 1

2
,

where Yα̂yw
= [Y (1− α̂yw)]

−1 and Y = (1/n)
∑n

t=1 Yt is the sample mean.

3.3 Conditional maximum likelihood estimation

The conditional log-likelihood function for the PLINAR(1) model is given by

ℓ(α, θ) = log

[
n∏

t=2

Pr(Yt = yt|Yt−1 = yt−1)

]
=

n∑

t=2

log [Pr(Yt = yt|Yt−1 = yt−1)] , (4)

with Pr(Yt|Yt−1) as in (3). The conditional maximum likelihood (CML) estimators α̂cml and

θ̂cml of α and θ are defined as the values of α and θ that maximize the conditional log-likelihood

function in (4). There will be, in general, no closed form for the CML estimators and their

obtention will need, in practice, numerical methods.

4 Simulation

In this section, a small Monte Carlo simulation experiment is conducted to evaluate the

estimation of the INARPL(1) process parameters, i.e., the performances of the CLS, YW and

CML estimators for a sample size of n observed values of Yt is the motivation of this section.

The simulation was performed using the R programming language (http://www.r-project.org).

The number of Monte Carlo replications was 1000. The sample sizes considered are n =
100, 200, 300, and 500. For the values of parameters, we considered α = 0.2, 0.4, 0.6 and 0.8,

and θ = 0.5, 1.0, 2.0 and 4.0.

Tables 1 presents the empirical mean and mean squared error (in parentheses) of the es-

timates of the parameters of the INARPL(1) process. Note that as the sample size increases,

the bias tends to zero in all three cases, confirming that the estimators are asymptotically unbi-

ased. Furthermore, for CLS and YW methods, increasing α, the bias and MSE also increase.

This indicates that these two estimation methods are sensitive to a process that is closer to the

non-stationary boundary (α = 1). The empirical investigation presented here suggests that,

generally speaking, the CML is, in fact, much better than the CLS and YW. Thus, we recom-

mend the use of the CML method to estimate the model parameters of an INARPL(1) model.

5 Application

In this section, consider the series of weekly sales (in integer units) of particular soap prod-

uct in a supermarket. The data are taken from a database provided by the Kilts Center for



Table I: Empirical means and mean squared errors (in parentheses) of the estimates of the

parameters for some values of α and θ.
T α̂yw θ̂yw α̂cml θ̂cml α̂cls θ̂cls

(a) α = 0.2 e θ = 0.5
100 0.1971 (0.0083) 0.5341 (0.0049) 0.2117 (0.0032) 0.5396 (0.0035) 0.1994 (0.0085) 0.5361 (0.0052)

200 0.2033 (0.0053) 0.4830 (0.0039) 0.2107 (0.0021) 0.4847 (0.0029) 0.2043 (0.0054) 0.4834 (0.0039)

300 0.1997 (0.0040) 0.4853 (0.0022) 0.2054 (0.0015) 0.4864 (0.0013) 0.2005 (0.0040) 0.4855 (0.0022)

500 0.2087 (0.0022) 0.5313 (0.0017) 0.2130 (0.0009) 0.5329 (0.0013) 0.2092 (0.0022) 0.5316 (0.0017)

(b) α = 0.4 e θ = 1
100 0.3846 (0.0093) 1.0214 (0.0303) 0.4050 (0.0038) 1.0395 (0.0192) 0.3885 (0.0094) 1.0282 (0.0321)

200 0.3891 (0.0047) 1.0090 (0.0139) 0.4013 (0.0018) 1.0206 (0.0088) 0.3910 (0.0047) 1.0119 (0.0143)

300 0.3924 (0.0035) 1.0033 (0.0109) 0.4024 (0.0014) 1.0128 (0.0066) 0.3939 (0.0035) 1.0055 (0.0111)

500 0.3961 (0.0019) 1.0063 (0.0061) 0.4005 (0.0008) 1.0100 (0.0035) 0.3969 (0.0019) 1.0075 (0.0062)

(c) α = 0.6 e θ = 2
100 0.5660 (0.0090) 1.9681 (0.1871) 0.5940 (0.0032) 2.0410 (0.1048) 0.5718 (0.0088) 1.9944 (0.1999)

200 0.5813 (0.0045) 1.9902 (0.0875) 0.5969 (0.0017) 2.0349 (0.0550) 0.5846 (0.0044) 2.0047 (0.0897)

300 0.5863 (0.0030) 1.9816 (0.0603) 0.5970 (0.0011) 2.0118 (0.0326) 0.5880 (0.0030) 1.9903 (0.0615)

500 0.5908 (0.0017) 1.9850 (0.0383) 0.5983 (0.0006) 2.0069 (0.0211) 0.5919 (0.0017) 1.9897 (0.0387)

(d) α = 0.8 e θ = 4
100 0.7492 (0.0077) 3.6750 (1.4570) 0.7907 (0.0019) 4.1480 (1.0560) 0.7582 (0.0070) 3.8335 (1.8526)

200 0.7764 (0.0030) 3.8851 (0.7749) 0.7959 (0.0008) 4.0987 (0.4213) 0.7810 (0.0028) 3.9627 (0.8222)

300 0.7815 (0.0020) 3.8372 (0.5165) 0.7972 (0.0005) 4.0095 (0.2100) 0.7844 (0.0019) 3.8829 (0.5299)

500 0.7912 (0.0011) 3.9724 (0.3599) 0.7986 (0.0003) 4.0420 (0.1389) 0.7928 (0.0010) 4.0013 (0.3724)

Marketing, Graduate School of Business of the University of Chicago, at: http://gbswww.

uchicago.edu/kilts/research/db/dominicks. (The product is ’Zest White Wa-

ter 15 oz.’, with code 3700031165). The length, sample mean and variance are 242, 5.44,

15.40, respectively. Note that the sample variance is much larger than the sample mean; hence,

the data seem to be overdispersed. We apply the test for overdispersion described by Schweer

and Weiß (2014) with significance level at 5%. The p-value for the test being < 0.01 leads

to a rejection of the null hypothesis of a Poisson INAR(1) process. Consequently, a Poisson

marginal distribution would not be appropriate.

We compared the INARPL(1) process with the PLINAR(1) process (Mohammadpour et

al., 2018), with the Poisson INAR(1) process (Al-Osh and Alzaid, 1987), and also with the

NGINAR(1) model with geometric marginal distribution (Ristić et al., 2017). These models

can be capture overdispersion inherent in the analysis of integer-valued time series data. Thus,

the use of these models for fitting this data set seems justified. In order to estimate the param-

eters of these models, we adopt the CML method (as discussed in Subsection 3.3) and all the

computations were done using the R software (R Core Team, 2016). Since the Fisher informa-

tion matrix is not available, the standard errors are obtained as the square roots of the elements

in the diagonal of the inverse of the negative of the Hessian of the conditional log-likelihood

calculated at the CML estimates (Bourguignon and Vasconcellos, 2015).

The time series data and their sample autocorrelation and partial autocorrelation functions

are displayed in the Figure 1. Analyzing Figure 1, we conclude that a first order autoregressive

model may be appropriate for the given data series, because of the clear cut-off after lag 1 in

the partial autocorrelations.

Table II provides the estimates (with standard errors in parentheses) of the model parameters

and three goodness-of-fit statistics: Akaike information criterion (AIC), Bayesian information

criterion (BIC) and root mean square (RMS) (differences between observations and predicted



Figure 1: Plots of the time series, autocorrelation and partial autocorrelation functions for the

number of weekly sales.

Time

N
u
m

b
e
r 

o
f 
w

e
e
k
ly

 s
a
le

s

0 50 100 150 200 250

0
5

1
0

1
5

2
0

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

5 10 15 20

−
0
.2

0
.0

0
.2

0
.4

Lag

A
C

F

5 10 15 20

−
0
.2

0
.0

0
.2

0
.4

Lag

P
A

C
F

values). In general, it is expected that the better model to fit the data presents the smaller values

for these quantities. From this table, we observe that the proposed model being better.

Table II: Estimates of the parameters (standard errors in parentheses), AIC, BIB, and RMS for

the number of weekly sales.

Model Par. 1 Par. 2 AIC BIC RMS

INARPL(1) 0.3202 0.4533 1249.07 1256.05 3.6094
(α, θ) (0.0368) (0.0324)
PLINAR(1) 0.3152 0.3516 1287.12 1294.10 3.6282
(α, θ) (0.0518) (0.0241)
Poisson INAR(1) 0.2340 4.1855 1363.81 1370.79 3.6515
(α, λ) (0.0324) (0.2110)
NGINAR(1) 0.5770 4.6146 1296.43 1303.41 3.6883
(α, µ) (0.0515) (0.5558)
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Appendix

Proof of Theorem 1.

To derive asymptotic properties of the CLS estimators we use Theorems 3.1 and 3.2 given

in Tjostheim (1986). It can be verified that the conditions stated in the Theorems 3.1 and 3.2 by

Tjostheim (1986) are satisfied by our model. Let η = (α, θ) and g(η, Yt−1) = E(Yt|Yt−1) =
αYt−1 + (θ + 2)[θ(θ + 1)−1], the first condition C1 of Theorem 3.1 is satisfied, because

E

[(
∂g

∂α

)2
]
= E(Y 2

t ) = σ2 + µ2 < ∞, E

[(
∂g

∂θ

)2
]
=

[
θ2 + 4θ + 2

θ2(θ + 1)2

]2
< ∞,



where V ar(Yt) = σ2 and E(Yt) = µ.

To verify the second condition of Theorem 3.1, we need to find the real numbers a1 and a2
that makes

E

[(
a1

∂g

∂α
+ a2

∂g

∂θ

)2
]
= E[(a1Yt−1 + a2k)

2] = E
(
a21Y

2
t−1 + 2a1a2kYt−1 + a22k

2
)
= 0, (5)

where k =
θ2 + 4θ + 2

θ2(θ + 1)2
. Solving the Equation (5) in relation to a1, we obtain a1 =

−a2kµ± |a2|kσi
σ2 + µ2

, where i =
√
−1. Then a1 /∈ R, unless a1 = a2 = 0. Let

ft|t−1 = V ar(Yt|Yt−1) = α(1− α)Yt−1 + σ2
ǫ ,

where σ2
ǫ = (θ3 + 4θ2 + 6θ + 2)[θ2(θ + 1)]−1, after some algebra, we obtain

R = E

(
∂g

∂β
(α, θ)ft+1|t

∂gT

∂β
(α, θ)

)

=




α(1− α)µ3 + σ2
ǫµ2

−(θ2 + 4θ + 2)[α(1− α)µ2 + σ2
ǫµ1]

θ2(θ + 1)

−(θ2 + 4θ + 2)[α(1− α)µ2 + σ2
ǫµ1]

θ2(θ + 1)

(θ4 + 8θ3 + 20θ2 + 4)[α(1− α)µ1 + σ2
ǫ ]

θ4(θ + 1)2


 ,

where µr = E(Y r
t ), r = 1, 2, 3. Then, R < ∞. Thus,

U =

[
a11 a12
a21 a22

]
=




σ2 + µ2 (θ + 2)(θ2 + 4θ + 2)

θ3(θ + 1)3(1− α)
(θ + 2)(θ2 + 4θ + 2)

θ3(θ + 1)3(1− α)

θ2 + 4θ + 2

θ2(θ + 1)2


 ,

where aij ≡ E

(
∂g

∂βi

∂g

∂βj

)
, i, j = 1, 2. The covariance matrix is given by U

−1
RU

−1. Using

the above expressions for U and R, after some algebra, it can be shown that the covariance

matrix is given by

U
−1

RU
−1 = c2

[
r11 r21
r12 r22

]
,

where c = θ3(α− 1)(θ + 1)3[µ2θ
4(1− α)2(θ + 1)− (θ + 2)2(θ2 + 4θ + 2)]−1 and



r11 =
1

θ
(α− 1) [−θ3 (α− 1) (θ + 1)2

(
αµ3 (α− 1)− σ2

ǫµ2

)
+ (θ + 2)

(
αµ2 (α− 1)− µ1σ

2
ǫ

) (
θ3 + 4θ +

+
1

θ4 (θ + 1)2
(θ + 2) [θ3 (α− 1) (θ + 1)2

(
αµ2 (α− 1)− µ1σ

2
ǫ

) (
θ3 + 4θ + 2

)

+ (θ + 2)
(
αµ1 (α− 1)− σ2

ǫ

) (
θ4 + 8θ3 + 20θ2 + 4

)
],

r21 = r12 =
µ2

θ (θ2 + 4θ + 2)
(α− 1) (θ + 1) [θ3 (α− 1) (θ + 1)2

(
αµ2 (α− 1)− µ1σ

2
ǫ

) (
θ3 + 4θ + 2

)

+ (θ + 2)
(
αµ1 (α− 1)− σ2

ǫ

) (
θ4 + 8θ3 + 20θ2 + 4

)
]

+
1

θ2 (θ + 1)
(θ + 2) [−θ3 (α− 1) (θ + 1)2

(
αµ3 (α− 1)− σ2

ǫµ2

)

+ (θ + 2)
(
αµ2 (α− 1)− µ1σ

2
ǫ

) (
θ3 + 4θ + 2

)
],

r22 =
µ2θ (θ + 1)2

(θ2 + 4θ + 2)2
(α− 1) [µ2θ (α− 1) (θ + 1)2

(
αµ1 (α− 1)− σ2

ǫ

) (
θ4 + 8θ3 + 20θ2 + 4

)

+ (θ + 2)
(
αµ2 (a− 1)− µ1σ

2
ǫ

) (
θ2 + 4θ + 2

) (
θ3 + 4θ + 2

)
]

+
1

θ2 + 4θ + 2
(θ + 2) [µ2θ (α− 1) (θ + 1)2

(
αµ2 (α− 1)− µ1σ

2
ǫ

) (
θ3 + 4θ + 2

)

− (θ + 2)
(
αµ3 (α− 1)− σ2

ǫµ2

) (
θ2 + 4θ + 2

)
].


