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Abstract
While the literature on synthetic control methods mostly abstracts from out-of-sample measures, Abadie et al. (2015)

have recently introduced a cross-validation approach. This technique, however, is not well-defined since it hinges on

predictor weights which are not uniquely defined. We fix this issue, proposing a new, well-defined cross-validation

technique, which we apply to the original Abadie et al. (2015) data. Additionally, we discuss how this new technique

can be used for comparing different specifications based on out-of-sample measures, avoiding the danger of cherry-

picking.
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1. Introduction

Abadie and Gardeazabal (2003) and Abadie et al. (2010) have introduced synthetic con-
trol methods (SCM) to estimate a treated unit’s development in absence of the treatment.
These methods have gained a lot of popularity among applied researchers, Athey and Im-
bens (2017) even state that SCM “is arguably the most important innovation in the policy
evaluation literature in the last 15 years”. Recently, SCM have been shown to perform
well against certain panel-based approaches (see Gardeazabal and Vega-Bayo, 2017), and
have also been used for forecasting (see Klößner and Pfeifer, 2018).

The basic idea of SCM is to find suitable donor weights describing how the treated unit
is ‘synthesized’ by a weighted mix of unaffected control units, building a counterfactual.
Treated and synthetic unit should resemble each other as closely as possible prior to the
treatment, both with respect to the outcome of interest and economic predictors. The
latter are variables with predictive power for explaining the outcome. The SCM approach
searches for optimal predictor weights in order to grant more importance to variables with
better predictive power.

However, SCM operate merely in-sample, making it difficult to assess the counterfac-
tual’s validity. To mitigate this problem, Abadie et al. (2015) (henceforth: ADH) have ex-
panded SCM, incorporating cross-validation. The pre-treatment timespan is divided into
a training and a validation period, and predictor weights are selected by minimizing the
out-of-sample error in the validation period. However, Klößner et al. (2017) (henceforth:
KKPS) have recently shown that there is a misconception of the ADH cross-validation
technique. In applications, there often exist many different solutions that minimize the
out-of-sample error, rendering this technique not well-defined since predictor weights are
not uniquely defined.

We fix this problem by defining unique predictor weights following two principles.
Special predictors like lagged values of the outcome variable(s) are guaranteed to obtain
certain minimum weights, and predictors in general shall not become irrelevant due to
weights accidentally obtained too small. Applying this new cross-validation technique to
ADH’s original data, we exemplarily show that ADH’s main finding is confirmed, while
corresponding placebo exercises deliver diverging results, questioning the robustness of
the main takeaway.

2. SCM and Cross-Validation

For the synthetic control method, one uses two types of data—the variable of interest, Y ,
and predictor variables, X. The latter consist of M linear combinations of pre-treatment
values of Y as well as r other covariates with explanatory power for Y . Both Y and X

are considered for a treated unit and for so-called donors, i.e., non-treated units, denoted
by subscripts “1” and “0”, respectively. In the example discussed by ADH and KKPS
and also throughout this paper, the treated unit is the 1990 reunified Germany, while
(J = 16) Western OECD countries serve as donors. The variable of interest (Y ) is GDP
per capita, and the k = M + r predictors (X) are the average of lagged GDP values
(M = 1) and the covariates trade openness, inflation rate, industry share of value added,
amount of schooling, and the investment rate (r = 5).1

1For more details on variables as well as donor choice, see Abadie et al. (2015, p. 509). For the
moment, we will take this specification as given, while discussing some alternatives at the end of this
paper.
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Figure 1: Schematic Overview of Cross-Validation Technique. This is a refined version
of KKPS’s Figure 1.

The corresponding quantities as well as a schematic overview of the cross-validation
technique are provided in Figure 1. The SCM cross-validation approach consists of two
steps. During the first step, called ’training’, so-called predictor weights V ∗ are deter-
mined using cross-validation techniques, during the second step, these weights V ∗ are
used to estimate the variable of interest’s counterfactual development in absence of the
treatment. For determining V ∗, the training step decomposes the pre-treatment times-
pan (1971-1990) into a training (1971-1980) and a validation period (1981-1990). In the

training period, one makes use of the k × J matrix X
(train)
0 and the k-dimensional vector

X
(train)
1 , containing time averages over the training period of the predictors’ data for the

donor units and the treated unit, respectively. Given these, one considers, for any given
positive predictor weights V = (v1, . . . , vk)

′ = (v1, . . . , vM , vM+1, . . . , vM+r)
′ ∈ R

k
++, the

so-called training weights W ∗

(train)(V ) ∈ R
J , which are defined as the solution of
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(1)

where V
1
2 is the k-dimensional diagonal matrix with the roots of V ’s elements on the

diagonal, while X
(train)
1m and X

(train)
0m denote the m-th component and row of X

(train)
1 and

X
(train)
0 , respectively, and ✶ is the vector of ones. The training weightsW ∗

(train)(V ) describe
to what extent each donor country is used during the training step to produce a ’syn-
thetic’, i.e., counterfactual, Germany, given that the predictors are weighted according
to V . As the training weights W ∗

(train)(V ) depend on the predictor weights V , one aims
at finding those predictor weights V ∗ that produce the best forecast. This is done in the
second part of the training step, making use of the outcome data at L time points during
the validation period, the L × J matrix Y

(valid)
0 and the L-dimensional vector Y

(valid)
1 ,

containing the variable of interest’s data for the validation period. In particular, ADH



define predictor weights V ∗ = (v∗1, . . . , v
∗

k) as the predictor weights that minimize the

out-of-sample error ||Y
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(valid)
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where the predictor weights, without loss of generality, have been normalized to sum to
unity.

After V ∗ has been determined, one proceeds to the ’main’ step, calculating the donor
weights W ∗

(main)(V
∗) as the minimizer of

min
W
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(
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)2

s.t. W ≥ 0,✶′W = 1, (3)

where the k×J matrixX
(valid)
0 and the k-dimensional vectorX

(valid)
1 contain the predictors’

data for the validation period. Eventually, counterfactual values Ŷ
(post)
1 for comparing

with actual values Y
(post)
1 are given by Y

(post)
0 W ∗

(main)(V
∗), where Y

(post)
0 contains the

donors’ post-treatment outcome data.
However, KKPS show that this approach often leads to ambiguous counterfactual

values because V ∗ is not well-defined due to Equation (2) not having a unique solution,
but many different minimizers:

V := {V : V is a minimizer of Equation (2)} (4)

denotes the corresponding set of minimizers, which often is not a singleton. Thus, in order
to come up with a well-defined cross-validation technique, it is necessary to single out
one specific, uniquely defined element of V . In order to do so, we first prevent predictors
related with the outcome from being attributed too small predictor weights, as otherwise
the dependent variable may be fitted very poorly in the ’main’ step. Therefore, we restrict
V to

Ṽ :=




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

,

ensuring that the outcome-related predictors’ relative importance must not fall below
half of what it could maximally be.2 Second, no economic predictor should accidentally
become essentially irrelevant due to an extremely small relative weight. Thus, within Ṽ ,
the ratio of the smallest over the largest predictor weight should be as large as possible,

i.e.,
min

m=1,...,k
vm

max
m=1,...,k

vm
should be maximal within Ṽ . If there exists more than one element of

Ṽ with that property, we can among those choose the one for which the ratio
v(2)

max
m=1,...,k

vm

of the second-smallest predictor weight, v(2), over the largest predictor weight becomes
maximal. If, again, there are several solutions to this maximization problem, we may

2In the definition of Ṽ , one may choose another constant in [0, 1] different from 1
2 , the R package

MSCMT (see Becker and Klößner, 2017) also provides the corresponding flexibility. However, choosing
a constant smaller than 1

2 may lead to a poor fit in the ’main’ step. On the other hand, choosing a
constant larger than 1

2 may undermine the covariates’ importance. Therefore, we choose this constant
as 1

2 .



maximize among those the ratio
v(3)

max
m=1,...,k

vm
, and so on. Proposition 1 in the appendix

shows that this procedure results in uniquely defined predictor weights V ∗.

3. Estimating the Effect of the German Reunification

Equipped with our new, properly defined cross-validation approach, we now compare the
results of ADH and KKPS to the results our new method delivers.3

The unique predictor weights delivered by our cross-validation technique are 80.94%
for GDP per capita, 5.82% for trade openness, 1.11% for inflation, 1.11% for industry
share of value added, 4.77% for amount of schooling, and 6.25% for investment rate. The
corresponding estimated gap due to the reunification, the difference between actual and
counterfactual values, is displayed in Figure 2 (black, solid line, labeled ’cv’). In line with
ADH and KKPS, we find a loss of ca. 3,000 USD. This loss is due to Germany’s reunifi-
cation, as the upper part of Figure 3 reveals, which shows the ratio of root mean squared
differences between actual and counterfactual GDP after and before the reunification for
a so-called placebo study. Here, each donor country is artificially assigned as the treated
unit, while Germany moves to the donor pool. The post-pre-ratio of Germany is much
larger than all placebo countries’ ratios, indicating that the measured loss in GDP can
actually be considered statistically significant.
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Figure 2: Gaps between GDP per capita of actual and synthetic Germany, estimated
using cross-validation with specifications of ADH (’cv’), using last two outcome lags
(’TwoLags’), without investment (’w/o investment’), and without U.S. data (’w/o USA’).

Our new cross-validation technique is also useful for comparing different specifications
according to an objective out-of-sample measure, without the danger of cherry-picking.4

For instance, instead of using the lagged outcomes’ average, one might choose the two

3Calculations were carried out using the statistics software R-3.3.3 (see R Core Team, 2017) in com-
bination with package MSCMT (see Becker and Klößner, 2017).

4Ferman et al. (2017) discuss the dangers of cherry-picking when the standard SCM approach is used.



most recent lagged outcome values as predictors, as in Montalvo (2011). This specifi-
cation performs actually slightly better than ADH’s specification, with an RMSPE in
the validation period of 65.616 compared to 67.678. As Figures 2 and 3 show, results
for this specification are very similar to those for ADH’s specification. Alternatively,
when removing the investment rate from the predictor set or excluding the U.S. from
the donor pool, the cross-validation criterion rises to 70.198 or 84.728, respectively. The
corresponding timelines in Figure 2 still show a considerable estimated loss in GDP per
capita due to the reunification. However, estimated losses are much smaller than for the
other specifications, especially those derived without data on the U.S. Correspondingly,
Figure 3 shows that these reductions are no longer significant according to the placebo
study. When investment is discarded, Germany’s post-pre-ratio is only the second-largest,
while it is only the fifth-largest when the U.S. data are removed from the sample. Thus,
confirming the findings of KKPS and in contrast to ADH, we find that the U.S. data are
essential for detecting a significant economic gap due to Germany’s reunification.
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A. Appendix

Let V be a blunt convex cone in N -dimensional space, i.e., a convex cone not containing
0. For vectors v = (v1, . . . , vN)

′ ∈ V , we denote by v(·) := (v(1), . . . , v(N))
′ the ’ordered’

version of v with v(1) ≤ v(2) ≤ . . . ≤ v(N).

Proposition 1. There exists an up to scaling unique element v∗ of V for which, for all

v ∈ V, (
v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) is lexicographically at least as large as (
v(1)

v(N)
, . . . ,

v(N−1)

v(N)
) .

Proof. First of all, we show that such v∗ exists: if there is an up to scaling unique

maximizer of
v(1)

v(N)
= min(v)

max(v)
, then this gives the vector we are looking for. If the solution

to maximizing
v(1)

v(N)
is not unique, even up to scaling, then we can look among all these

maximizers for those with maximal
v(2)

v(N)
. Again, if this procudes a solution which is unique

up to scaling, this is the vector we are looking for. If there are still several solutions, even
after scaling, we can proceed by maximizing

v(3)

v(N)
among these, and so on. In the end, this

procedure will terminate with a vector v∗ for which (
v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) is lexicographically

maximal.
We now prove uniqueness of v∗ up to scaling. To this end, assume that another

vector ṽ is given for which (
ṽ(1)

ṽ(N)
, . . . ,

ṽ(N−1)

ṽ(N)
) is also lexicographically maximal. Then,

(
ṽ(1)

ṽ(N)
, . . . ,

ṽ(N−1)

ṽ(N)
) and (

v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) must coincide. Assuming w.l.o.g. that ṽ and v∗ are

scaled such that ṽ(N) = max(ṽ) = 1 = max(v∗) = v∗(N), this simplifies to (ṽ(1), . . . , ṽ(N−1)) =

(v∗(1), . . . , v
∗

(N−1)), showing that ṽ and v∗ are permutations of each other. We denote by

Nmin,ṽ := {n ∈ {1, . . . , N} : ṽj = ṽ(1) = v∗(1)} the set of all components where ṽ takes

its minimum. Analogously, Nmin,v∗ := {n ∈ {1, . . . , N} : v∗j = v∗(1) = ṽ(1)} denotes the
set of all components where v∗ takes its minimum. Nmin,ṽ and Nmin,v∗ have a non-empty
intersection, because otherwise we would have for v := ṽ + v∗ ∈ V : v(N) = max(v) ≤ 2
and v(1) = min(v) > min(ṽ) + min(v∗) = 2ṽ(1) = 2v∗(1), implying that

v(1)

v(N)
> ṽ(1) = v∗(1),

in contradiction to the optimality of ṽ and v∗. Thus, Nmin,ṽ ∩Nmin,v∗ 6= ∅. In particular,
therefore, ṽ and v∗ coincide for all components n ∈ Nmin,ṽ ∩ Nmin,v∗ . From here, we can
proceed iteratively, by considering {1, . . . , N} \ (Nmin,ṽ ∩Nmin,v∗) and showing that there
are further components where ṽ and v∗ coincide, both taking the value ṽ(2) = v∗(2), and
so on. Overall, then, ṽ and v∗ must coincide completely.

Klößner et al. (2017, Lemma 1) and Becker and Klößner (2018, Proposition 3) show
that V as defined in Equation (4) is a convex set which can be described by finitely

many linear (in-)equalities. Thus, the same holds true for Ṽ . Applying Proposition 1 to

Ṽ shows that V ∗ is uniquely defined. V ∗ can be calculated by solving a series of linear
programs.
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Figure 3: Ratios of post-treatment over pre-treatment root mean square prediction error
(RMSPE) for in-space placebos, estimated using cross-validation with specifications of
ADH (’cv’), using last two outcome lags (’TwoLags’), without investment (’w/o invest-
ment’), and without U.S. data (’w/o USA’).


