
   

 

 

 

Volume 37, Issue 4

 

Efficient portfolios and the generalized hyperbolic distribution

 

José Antonio Núñez-Mora 

Tecnologico de Monterrey, EGADE Business School

Roberto Joaquín Santillán-Salgado 

Tecnologico de Monterrey, EGADE Business School

Leovardo Mata 

Tecnologico de Monterrey, Escuela de Ciencias Sociales

y Gobierno y EGADE Business School

Abstract
This paper proposes a twist to the classical Markowitz approach to build efficient portfolios of risky assets that

improves their risk-return performance. The originality of our approach consists in the utilization of a covariance

matrix from a member of the Generalized Hyperbolic (GH) Family distribution, instead of the sample covariance

matrix described in Markowitz's (1959) seminal contribution. We test the approach with the daily returns of stocks

traded in MILA (Mercado Integrado Latino Americano) markets: Chile, Colombia, Mexico and Peru, from January

1st, 2010, to December 31st, 2015. The GH based portfolios are benchmarked with an equally weighted portfolio and

a historical covariance based Markowitz portfolio using the coefficient of variation of returns. The results confirm the

GH based portfolio's dominance over the other two benchmarks.

Citation: José Antonio Núñez-Mora and Roberto Joaquín Santillán-Salgado and Leovardo Mata, (2017) ''Efficient portfolios and the

generalized hyperbolic distribution'', Economics Bulletin, Volume 37, Issue 4, pages 2711-2727

Contact: José Antonio Núñez-Mora - janm@itesm.mx, Roberto Joaquín Santillán-Salgado - roberto.santillan@itesm.mx, Leovardo Mata -

leovardo.mata@itesm.mx.

Submitted: August 15, 2017.   Published: December 01, 2017.

 

   



~ 1 ~ 

1. Introduction 

According to Markowitz (1952, 1959), an efficient portfolio combines market-traded financial 

assets to maximize returns at a given level of risk, or minimizes risk at a given level of return. 

Markowitz’s optimization method to build efficient portfolios uses the covariance matrix as a key 

input, and determines the optimal portfolio weights by solving a non-linear programming problem 

(Alayón, 2014); however, the population covariance matrix is never known in practice, so the best-

fit normal multivariate probability density function is generally used, even when there is a 

consensus about the non-normality of the returns (Hu, 2005). 

  

While many models in finance assume the normality of financial returns, it has been extensively 

documented that financial data series do not comply with a normal distribution. For that reason, an 

increasing number of studies are considering alternative methodological approaches (Karoglou 

2010; Peiro 1999; Sheikh and Qiao 2010). For example, according to Alayón (2014), “the 

Generalized Hyperbolic (GH) Distribution has been increasingly used by academicians and 

practitioners to solve the problem of heavy tails in financial data distributions, and for its usefulness 

to model asset returns and market risk measures”. 

  

The GH family of probability distributions was introduced by Barndorff-Nielsen (1977) and was 

first used in financial data analysis by Eberlein (1995), who adjusted the univariate hyperbolic 

distribution to the returns of German stocks. Some years later, Protassov (2004) used the 

Expectation-Maximization algorithm (EM) to estimate a multivariate GH of dimension five in a 

sample of OECD countries exchange rates, and is recognized as the first to estimate the GH 

distribution with more than three dimensions. 

 

This investigation follows Protassov’s (2004) algorithm to estimate the parameters of the 
covariance matrix to solve for the optimal weights of a Markowitz’s type portfolio, and takes into 

consideration some additional numerical aspects mentioned by Breymann (2013). The process also 

implements McNeil’s (2005) specification and does not fix the parameter of the third-order Bessel 

function. Finally, a hypothesis testing procedure developed by McAssey (2013) to evaluate the 

goodness-of-fit of the GH distribution corroborates the quality and reliability of the results.  

 

The covariance matrix is estimated with a multivariate GH distribution and its associated 

parameters, and then used as an input for the Markowitz non-linear programming procedure to 

obtain efficient-portfolio weights. Tests on the parameters using t statistics (from asymptotic theory) 

confirm the statistical significance of the estimations. Finally, the GH based portfolio is compared 

to a) an equally weighted and b) a Markowitz portfolio using their coefficient of variation as a 

measure of performance, confirming the proposed methodology’s superiority. 

 

The next section discusses theoretical and applied aspects of the GH family and the hypothesis 

testing methods used in this work. In the third section, estimates of the portfolios parameters and 

performance results are explained. Finally, the fourth section discusses the main empirical findings 

of the study, confirming that the GH-based efficient portfolios’ performance clearly dominates that 

of traditional Markowitz portfolios, and concludes the study. 

 

2. Methodological approach 

It is common to observe that financial data returns have heavier tails in comparion with a normal 

distribution. Generalized Hyperbolic distributions have greater flexibility because their functional 
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form contains more parameters, which allows a better adjustment for the implementation of 

applications on data with heavy tails. The normal distribution lacks that flexibility because it 

considers only two parameters, i.e., the mean and the variance (or its square root, the standard 

deviation). There are very well known examples of members or limiting cases of Generalized 

Hyperbolic Distributions (e.g. t-Student, Variance-Gamma, Hyperbolic, Normal and Normal 

Inverse Gaussian), and each incorporate different levels of skewness and kurtosis.  

 

The GH family is established in terms of the ɉ, ɖ  and ɗ parameters of a Generalized Inverse 

Gaussian (GIG) distribution; Ɋ, and Σ from a normal multivariate distribution, and a vector of bias 

denoted with ɀ (Hu, 2005). The last parameter mixes the GIG density function with a normal 

multivariate in Ɋ, Σ (McNeil, 2005), as in equation (1):  ݂ሺݔ; ,ߣ ߯, ߰ሻ = ଵ௞ഊሺ஧,நሻ ఒ−ଵݔ exp [− ଵଶ ሺ߯ݔ−ଵ + [ሻݔ߰ ;           (1) 

and the function �ఒሺɖ, ɗሻ is an alternative specification of the third kind Bessel function, (Paolella 

2007), given by equation (2), as follows: �ఒሺɖ, ɗሻ = ∫ −] ఒ−ଵexpݔ ଵଶ ሺ߯ݔ−ଵ + ሻ]∞଴ݔ߰  (2)       .ݔ݀

The parameters satisfy the condition that ɉ is a real number and ɖ, ɗ ≥ Ͳ. Formally, if X is a 

random vector of dimension n × ͳ, then, as indicated in equation (3):  ܺ|ܹ = ~ݓ ௡ܰሺߤ + ,∆ߚݓ ,ߣሻ, and                    (3) ܹ~���ሺ∆ݓ ߯, ߰ሻ, 
where ௡ܰሺߤ + ,∆ߚݓ ߤ ሻ represents a multivariate normal variable with mean∆ݓ +  and ∆ߚݓ

covariance matrix ݓ∆.  

Protassov (2004) rewrites the function of joint probability density – equation (4) – as:  

݂ሺݔ; ,ߣ ,ߙ ,ߚ ,ߤ �, Δሻ = ቆ√�మ+ሺ�−ഋሻΔ−భሺ�−ഋሻ′ഀమ+ഁ′∆ഁ ቇഊ−�మ
ሺଶ�ሻ�మቀ�ഀቁ−ഊ �ഊ−�మቀ√�మ+ሺ�−ఓሻΔ−భሺ�−ఓሻ′ሺఈమ+ఉ′∆ఉሻቁ�ഊሺ�ఈሻexp ሺ−ሺ�−ఓሻఉ′ሻ   (4) 

In this function, the parametrization is such that ߯ = �ଶ, ߰ = ଶߙ − and Ƚ, Ɂ ߚ∆′ߚ ≥ Ͳ. Also, the 

modified third order Bessel function for ݔ > Ͳ is, according to equation (5): ܭఒሺݔሻ = ଵଶ ∫ −] ఒ−ଵexpݓ ଵଶ ݓሺݔ + ଵሻ]∞଴−ݓ  (5)     ;ݓ݀

the expected value and variance of the vector X are calculated, according to the above definitions 

(Hu, 2005) as: �[ܺ] = ߤ + [ܺ]ܸ ߚ[ܹ]� = �[ܹ]Δ +  ߚ′ߚ[ܹ]ܸ

In the above expressions it can be seen that ߤ is a transformation of the expected value of ܺ, 

while ߚ capture part of the bias presented by the random vector around the vector location ߤ 

(Alayón, 2014). Also, Δ is a transformation of ܸ[ܺ] and it can be interpreted as a scattering 

matrix which is weighted by the magnitude of the bias β'β as well as the expected value and the 

variance of the random variable in the mixture between GIG and multivariate normal. The λ 

parameter influences in shape of the tail of the distribution and magnitude of kurtosis (Hu, 2005). 
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Similarly, ߙ, � are scaling parameters that influence in the dispersion around the mean (Paolella, 

2007). 

 

Finally, the approach proposed uses the covariance matrix ܸ[ܺ] as an input to solve for the 

optimal weights of an efficient portfolio, following the rest of the steps of the classical Markowitz 

methodology. The next section briefly discusses the procedure followed to calculate the parameters 

of the GH family.  

 

2.1. Expectations Maximization Algorithm 

The Expectation-Maximization algorithm (EM) consists of two steps. In the first, the expected 

value of the augmented log likelihood function is obtained (McNeil, 2005) as: ln(ܮሺΘ; ,ݔ  (ሻݓ = ∑ ln ሺ ௑݂|ௐሺݔ௜|ݓ௜; ,ߤ Δ, ሻሻ௠ߚ
௜=ଵ + ∑ ln ሺ ௐ݂ሺݓ௜; ,ߣ ,ߙ �ሻሻ௠

௜=ଵ , 
with a starting point Θ଴ = ሺɉ଴, ,଴ߙ Ɂ଴, Ⱦ଴, Ɋ଴, Δ଴ሻ, where ݔ = ሺݔଵ, … ,  ௠ሻ comes from a randomݔ

sample and ݓ = ሺwଵ, wଶ, … , wmሻ comes from a latent variable whose GIG distribution modifies 

the log-likelihood function (Hu, 2005), as described by equation (7): ln ሺܮሺΘ; ,ଵݔ … , ௠ሻݔ = ∑ ln(݂ሺݔ௜; Θሻ) .௠௜=ଵ        (7) 

Thus, the kth iteration yields the objective function shown in equation (8): ℎ(Θ; Θ[௞]) = �[ln(ܮሺΘ; ,ݔ  ;ݔ|(ሻݓ Θ[௞]]        (8) 

Next, the objective function h(Θ; Θ[k]) is maximized in step 2, to obtain the parameters Θ[k+ଵ] 
(Breymann, 2013) and, finally, the GH density function is evaluated using a multivariate 

continuous distributions test, as explained in the following section. 

 

2.2 Hypothesis testing  

McAssey (2013) developed a relatively simple procedure for continuous multivariate distributions 

of any dimension that tests the goodness of fit of the GH family, and reinforces the estimation and 

inference of the calculations. In this tests (i) The null hypothesis is true; i.e., the random sample 

follows a GH distribution, and the estimation via the EM algorithm is right; (ii) A random sample 

is simulated with the parameters obtained from the EM algorithm. This step uses the condition  ܺ|ܹ = ~ݓ ௡ܰሺߤ + ,∆ߚݓ ሻ∆ݓ , with ܹ~���ሺߣ, ߯, ߰ሻ.  (iii)The Mahalanobis distance between 

series i) and ii) is calculated using the mean ̂ߤ  and the covariance matrix ∑̂ , as in equation (9): 

             ݀̂௜ = √ሺ̂ݑ௜ − ௜ݑሻ′Σ̂−ଵሺ̂ߤ̂ −   ሻ                         (9)ߤ̂

             

(iv) The previous step is repeated until it generates a random sample to calculate: 
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�� = ∑ |ͳ − �௝ܱ௝|�
௝=ଵ  

where �௝ is the expected frequency of observations, ݀̂௜  in a fixed interval, and ௝ܱ is the observed 

frequency in that interval. Next, the p-value of the test is calculated to test the null hypothesis. 

Additionally, the level of significance of each parameter of the GH distribution is calculated. This 

result is validated by the Asymptotic Theory (Barndorff-Nielsen, 2012), because √݊(�̂ − �) →ܰሺͲ, �−ଵሻ , where � is the matrix of information that can be defined as � = ሺ�௜ሻ, and: �௜ݒ݋� = � ln[݂ሺݔ௜; �ሻ]��  .  
Moreover, the confidence interval ሺͳ − ݒ̂ :is given by ݒ̂ ሻ% for the parameterߙ ± ఈ/ଶ√ͳ݊ݐ ሺ�−ଵሻ�� , 
and the test statistic to assess the level of significance is:  ݐ = ݒ̂ − ሻݒ଴݁݁ሺ̂ݒ  . 
The goodness of fit of the adjusted parameters is established through previous estimates, finalizing 

the process. The next section briefly describes the Markowitz procedure to estimate the weight of 

risky assets that constitute efficient portfolios. 

 

2.3 Markowitz Portfolio  

Markowitz (1952, 1959) assumes that a risk-averse investor has an initial capital endowment and 

wishes to invest it in risky financial assets. However, the investors’ preferences are such that they 

are willing to accept more risk if adequately compensated with more return. In that sense, investors 

are maximizers (of return) subject to a certain risk tolerance that is revealed as they seek to 

determine the optimal proportion of their wealth to invest in each risky asset. The mathematical 

solution to the investor’s problem is a combination of risky asset weights that maximize the 

portfolio’s expected return subject to a given level of risk or, vice versa, that minimizes risk subject 

to a desired level of expected return1 (Alaitz, 2002). The portfolio is considered to be efficient 

provided its expected return is maximized, compared to other possible portfolios with a similar 

level of risk; or its level of risk is minimized, compared to alternative portfolios with a similar 

expected return.  

In this paper, Markowitz’s optimization algorithm is solved using two different covariance matrices: 

(i) the usual sample covariance matrix (or Markowitz procedure) and (ii) the estimator obtained by 

adjusting the GH distribution probability. Comparing the performance of both approaches in terms 

of the coefficient of variation of each portfolio provides valuable information about which 

methodology is preferable, from an investor’s point of view.  

The next section reports the empirical results of the two approaches, and adds the performance of 

an equally weighted portfolio to the comparison.  

 

                                                        
1 Markowitz proposed the use of the standard deviation as a measure of risk (Markowitz 1959). 
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3. Empirical Analysis Results 
The data used to build efficient portfolios according to Markowitz (sample covariance matrix) and 

the GH family estimated covariance matrix, consists of the daily continuous returns of the stocks 

included in the market indices of Chile, Colombia, Mexico and Peru (the MILA members), for the 

period 2010-2015.  

The MILA is a common trading platform for the stocks listed in its member countries’ exchanges, 
and it is part of the Alianza del Pacífico (AP), a subregional integration project launched to promote 

economic cooperation among Chile, Colombia, Mexico and Peru. The GDP of the AP is 

approximately 2 trillion dollars2, and its total population is 210 million.  The MILA allows 

participants in its member countries to seamlessly trade stocks of the four nations. Small and 

institutional investors of any of the four MILA member markets gain access to enhanced portfolio 

diversification opportunities and, in terms of liquidity measured by the volume of trading, the 

MILA market is significantly more liquid than any of its members. 

 

The empirical analysis first builds and measures the performance of individual country portfolios 

(that include only domestic listed stocks), and then portfolios that includes all MILA stocks, so the 

information can reveal the comparative performance of the proposed methodology with respect to 

the traditional Markowitz approach and the equally weighted portfolio, at different levels of 

aggregation (see Tables 2 and 3, below).  

Daily returns are calculated as:  

rit= ln ቆ pi,t

pi,t-1
ቇ 

where i=1,…, 4 are the individual stock prices, and t denotes time;  

pi,t= reported daily price of asset � at time t; and  

ri,t = daily return of the asset � in time t. 

The multivariate returns are adjusted according to the EM algorithm and goodness of fit (McAssey, 

2013). At the same time, univariate probability distributions which belong to the GH family are 

estimated, and their fit is tested using the classical Kolmogorov-Smirnov test for each asset. The 

tests results tables for each country and for the whole MILA sample are presented in the Appendix 

as Tables A1 through A5, and they include the estimated parameters, the goodness of fit p-values, 

and statistical t tests of significance for each parameter, according to Asymptotic Theory. Most of 

the coefficients are statistically relevant at, at least, 90% level. In all cases for the p-value(Normal) 

we reject the null hypothesis of normality of the data and with the p-values(GH) do not reject the 

null hypothesis that the data are Generalized Hyperbolic distributed.  

Three different portfolios are considered: 

a) Portfolio A, with equal weights (ݓ௜ = ͳ/݊, where ݊ is the number of assets in the sample). 

b) Portfolio B, where the weights are obtained following the classical Markowitz methodology 

(the sample covariance matrix is used). 

c) Portfolio C, where the covariance matrix is obtained from the GH family and used as an 

input to the ‘modified” Markowitz method. 

                                                        
2 If it were a single country, MILA would be the eighth largest economy in the world. 
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Table 1 reports the performance of each portfolio, represented in terms of the coefficient of 

variation. As can be seen, when the GH family-based covariance matrix is used, the variation 

coefficient is smaller, confirming that the GH family covariance matrix can be a useful tool to 

improve the risk-return performance of portfolios. 

 

 

Table 1. Mean coefficient of variation for the different portfolios (2010-2015). 

 
Source: Authors’ own compilation based on data from Bloomberg. 

 

According to the evidence presented so far, the argument that the classical Markowitz procedure 

to build efficient risky assets portfolios may be improved with a GH distribution based covariance 

matrix is clearly validated. This is a result that has importance implications for portfolio managers, 

ETFs, and other institutional investors, and should be further explored to validate its suitability for 

other international markets, an endeavour we expect to pursue in the near future. 

 

4. Conclusions 

Daily returns for a sample of stocks listed in the MILA (the stock markets of Chile, Colombia, 

Mexico and Peru) indices are used to analyze the performance of three types of portfolios: a) an 

equally weighted portfolio; b) a traditional Markowitz portfolio; and, c) a Markowitz portfolio that 

uses a GH based covariance matrix as an input. The comparison is made using their mean 

coefficient of variation, for the 2010-2015 period. The stocks included in the sample are those 

whose returns could be adjusted to a GH multivariate probability distribution.  The goodness of 

fit of the GH distribution is confirmed using McAssey’s (2013) test, and the estimated parameters 

significance is confirmed with an asymptotic test (Barndorff-Nielsen, 2012). 

Enough confirmatory evidence that the joint probability distribution for the different subsets and 

for the whole sample of MILA stocks behaves like a GH multivariate distribution is found. The 

mean estimated parameters are different from one country to another, and their significance is at 

least 90%.  

The empirical evidence suggests that the GH distribution based covariance matrix can improve the 

traditional Markowitz portfolio building methodology. 

 

 

 

 

Chile 0.0060% 0.8748% 144.74 0.0246% 0.7473% 30.41 0.0251% 0.7139% 28.43

Colombia 0.0018% 0.7772% 426.60 0.0019% 0.5335% 280.80 0.0020% 0.5238% 261.91

Mexico 0.0698% 0.8774% 12.57 0.0778% 0.8120% 10.43 0.0762% 0.7723% 10.13

Peru 0.0187% 1.2998% 69.52 0.0188% 1.1606% 61.75 0.0191% 0.9473% 49.61

MILA 0.0218% 0.5231% 23.97 0.0293% 0.0184% 0.63 0.0297% 0.0140% 0.47

Coefficient 

of Variation
Mean

Standard 

Deviation 

Coefficient 

of Variation

Standard 

Deviation 
Mean

Coefficient 

of Variation
Mean

Standard 

Deviation 

Portfolio A

Country/MILA

Portfolio B Portfolio C
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Appendix 

Table A1. GH Distribution Parameters for Mexico 2010-2015 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

 

 

 

 

 

l -3.9517 (1.69)* p-value (GH) 0.3751 p-value (Normal) 0.0001

d 0.0161 (1.65)* a 69.7153 (1.89)* log-likelihood 62963.95

0.0000 (1.73)* 0.0002 (1.93)* 0.0003 (1.82)**

-0.0005 (-1.91)* 0.0003 (1.86)* 0.0007 (1.77)**

0.0007 (1.66)* 0.0003 (1.62) -0.0005 (-1.51)

0.0004 (1.95)* 0.0004 (1.71)* 0.0011 (1.54)

0.0004 (1.64)* 0.0003 (1.78)* 0.0000 (1.69)*

0.0011 (1.67)* 0.0004 (1.67)* -0.0003 (-1.40)

0.0009 (1.83)* 0.0002 (1.76)* -0.0001 (1.90)**

-0.0002 (-1.71)* 0.0003 (1.84)* 0.0012 (1.34)

0.0008 (1.89)* 0.0007 (1.98)** 0.0001 (2.34)***

-0.0005 (-2.21)** 0.0002 (1.95)* 0.0008 (1.97)**

0.0004 (1.69)* 0.0003 (1.89)** -0.0003 (-2.2)***

0.0011 (1.88)* 0.0002 (1.66)* 0.0002 (2.7)***

0.0007 (1.82)* 0.0002 (1.81)* 0.0001 (1.16)

0.0006 (1.78)* 0.0003 (1.67)* 0.0006 (1.2)

0.0010 (1.93)* 0.0002 (1.90)* -0.0005 (-1.68)**

m diag(D) b
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Table A2. GH Distribution Parameters for Chile 2010-2015 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

l 2.4982 (1.65)* p-value (GH) 0.2876 p-value (Normal) 0.00671

d 0.0129 (1.67)* a 69.6134 (1.79)* log-likelihood 100585.4

0.0000 (1.84)* 0.0004 (1.71)* -0.0004 (-1.80)*

0.0000 (1.88)* 0.0005 (1.98)** -0.0013 (-1.82)*

0.0000 (1.68)* 0.0003 (2.03)** -0.0001 (-1.91)*

0.0000 (1.75)* 0.0005 (1.97)** -0.0011 (-1.58)

0.0000 (1.85)* 0.0002 (1.71)* 0.0000 (1.98)**

0.0000 (1.77)* 0.0001 (1.98)** 0.0004 (1.77)*

0.0000 (1.95)* 0.0002 (1.70)* 0.0001 (2.01)**

0.0000 (1.93)* 0.0002 (2.01)** 0.0004 (1.90)*

0.0000 (1.83)* 0.0002 (1.81)* -0.0001 (1.51)

0.0000 (1.98)** 0.0002 (1.79)* 0.0006 (1.79)*

0.0000 (1.78)* 0.0002 (2.03)** 0.0008 (1.70)*

0.0000 (1.71)* 0.0002 (1.67)* 0.0003 (1.92)*

0.0000 (1.87)* 0.0002 (2.05)** 0.0004 (1.66)*

0.0000 (1.93)* 0.0003 (1.93)* -0.0003 (-1.77)*

0.0000 (1.65)* 0.0002 (1.69)* 0.0005 (1.71)*

0.0000 (1.99)** 0.0002 (1.74)* 0.0004 (1.64)

0.0000 (1.77)* 0.0001 (1.85)* 0.0004 (1.96)*

0.0000 (1.79)* 0.0001 (1.71)* 0.0003 (1.68)*

0.0000 (1.65)* 0.0003 (1.86)* 0.0000 (1.75)*

0.0000 (1.93)* 0.0002 (1.75)* 0.0000 (1.69)*

0.0000 (1.77)* 0.0002 (1.92)* 0.0004 (2.01)**

0.0000 (1.97)** 0.0002 (1.91)* -0.0003 (-1.92)*

0.0000 (1.89)* 0.0001 (1.78)* 0.0001 (-1.91)*

0.0000 (2.06)** 0.0002 (1.67)* 0.0000 (-1.72)*

0.0000 (1.68)* 0.0001 (1.94)* 0.0000 (-1.62)*

m diag(D) b
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Table A3. GH Distribution Parameters for Colombia 2010-2015 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

 

 

 

 

l -1.0837 (1.71)* p-value (GH) 0.1874 p-value (Normal) 0.00393

d 0.0120 (1.69)* a 53.2674 (1.66)* log-likelihood 49825.59

-0.0001 (-1.97)** 0.0002 (2.02)** 0.0001 (1.84)*

-0.0016 (-1.76)* 0.0003 (1.99)** 0.0019 (1.65)*

-0.0030 (-1.98)** 0.0008 (1.67)* 0.0043 (2.09)**

0.0002 (1.72)* 0.0002 (1.71)* -0.0002 (-1.84)*

-0.0005 (-1.97)** 0.0002 (1.79)* 0.0002 (1.89)*

-0.0003 (-1.89)* 0.0001 (1.91)* -0.0001 (-1.73)*

-0.0001 (-1.74)* 0.0002 (1.86)* -0.0002 (-1.88)*

-0.0008 (-2.07)** 0.0001 (1.91)* 0.0002 (1.94)*

-0.0009 (-1.61) 0.0002 (1.76)* 0.0012 (1.66)*

0.0000 (1.68)* 0.0002 (1.70)* -0.0002 (-1.88)*

-0.0011 (-1.75)* 0.0001 (1.81)* 0.0010 (1.71)*

-0.0018 (-1.83)* 0.0002 (1.69)* 0.0020 (2.01)**

0.0007 (1.86)* 0.0002 (1.84)* -0.0005 (-1.76)*

m diag(D) b
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Table A4. GH Distribution Parameters for Peru 2010-2015 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

 

l -0.9894 (1.71)* p-value (GH) 0.1346 p-value (Normal) 0.0098

d 0.0040 (1.65)* a 9.4562 (1.68)* log-likelihood 78541.75

-0.0010 (-1.77)* 0.0002 (1.88)* 0.0002 (1.70)*

-0.0014 (-1.69)* 0.0002 (1.96)** 0.0009 (1.80)*

0.0015 (1.78)* 0.0005 (1.67)* -0.0007 (-1.67)*

0.0015 (1.91)* 0.0013 (1.97)** 0.0000 (1.95)*

0.0019 (1.86)* 0.0007 (1.94)* -0.0009 (-1.76)*

0.0028 (1.72)* 0.0008 (1.83)* -0.0012 (-1.95)*

-0.0013 (-1.88)* 0.0001 (1.67)* 0.0008 (1.74)*

0.0008 (1.75)* 0.0005 (1.81)* 0.0001 (1.88)*

0.0002 (1.65)* 0.0005 (1.84)* -0.0001 (-1.87)*

-0.0013 (-1.74)* 0.0001 (1.91)* 0.0006 (1.69)*

-0.0006 (-1.97)** 0.0002 (1.74)* 0.0005 (1.75)*

-0.0003 (-1.69)* 0.0003 (1.85)* 0.0000 (1.72)*

0.0008 (1.84)* 0.0003 (1.66)* 0.0000 (1.69)*

-0.0011 (-1.95)* 0.0002 (1.96)** 0.0011 (1.85)*

0.0001 (1.76)* 0.0003 (1.94)* -0.0001 (-1.86)*

0.0000 (1.65)* 0.0004 (1.78)* 0.0005 (2.05)**

-0.0011 (-1.93)* 0.0003 (1.92)* 0.0006 (1.78)*

0.0002 (1.85)* 0.0004 (1.65)* -0.0002 (-1.91)*

-0.0005 (-1.52) 0.0007 (1.81)* 0.0013 (1.81)*

-0.0012 (-1.94)* 0.0003 (1.89)* 0.0006 (1.93)*

-0.0015 (-1.89)* 0.0002 (1.77)* 0.0012 (1.94)*

m diag(D) b
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Table A5. GH Distribution Parameters for MILA 2010-2015 

 

Source: Authors’ own compilation based on data from Bloomberg. 

l -7.1328 (1.74)* p-value (GH) 0.1003 p-value (Normal) 0.0003

d 0.0012 (1.78)* a 76.3264 (1.76)* log-likelihood 276326.6

-0.0019 (1.85)* -0.0002 (1.95)* 0.0002 (1.91)* 0.0006 (1.67)* 0.0011 (1.77)* -0.0009 (1.8)*

0.0041 (1.82)* -0.0006 (1.83)* 0.0002 (1.65)* 0.0002 (1.92)* -0.0024 (1.91)* 0.0004 (1.89)*

-0.0022 (1.92)* 0.0007 (1.75)* 0.0005 (1.77)* 0.0002 (2.04)** 0.0021 (1.78)* -0.0011 (1.68)*

-0.0007 (1.77)* -0.0014 (1.91)* 0.0013 (1.74)* 0.0002 (1.77)* 0.0011 (1.67)* 0.0012 (1.79)*

-0.0018 (1.83)* -0.0015 (1.71)* 0.0007 (2.04)** 0.0002 (1.86)* 0.0016 (1.82)* 0.0014 (1.71)*

-0.0007 (1.76)* 0.0008 (1.69)* 0.0008 (2.05)** 0.0002 (1.82)* 0.0004 (1.85)* 0.0009 (1.83)*

-0.0011 (1.81)* -0.0005 (1.93)* 0.0002 (1.78)* 0.0002 (1.79)* 0.0009 (1.75)* 0.0014 (1.88)*

-0.0021 (1.67)* 0.002 (1.68)* 0.0006 (1.86)* 0.0002 (1.83)* 0.0007 (1.67)* -0.0008 (1.85)*

-0.0001 (1.78)* -0.0006 (1.96)* 0.0005 (1.94)* 0.0002 (1.76)* 0.0002 (1.91)* 0.0024 (1.91)*

-0.0001 (1.65)* -0.0013 (1.93)* 0.0001 (1.74)* 0.0002 (1.73)* 0.0004 (1.83)* 0.0013 (1.87)*

0.0017 (1.77)* -0.0032 (1.91)* 0.0002 (2.04)** 0.0003 (1.86)* -0.0013 (1.72)* 0.0031 (1.84)*

0.0005 (1.88)* -0.0023 (1.79)* 0.0003 (1.78)* 0.0002 (1.86)* -0.0009 (1.81)* 0.0031 (1.81)*

0.0009 (1.72)* -0.0014 (1.72)* 0.0003 (1.81)* 0.0002 (1.83)* -0.0006 (1.86)* 0.0026 (1.83)*

0.0019 (1.73)* -0.0003 (1.66)* 0.0002 (1.99)* 0.0001 (1.95)* -0.0012 (1.84)* -0.0003 (1.95)*

0.0011 (1.93)* 0.0001 (1.89)* 0.0003 (1.71)* 0.0002 (2.01)** 0.0002 (1.82)* 0.0001 (1.87)*

-0.0026 (1.66)* 0.0001 (1.73)* 0.0004 (2.02)** 0.0003 (2.05)** 0.0021 (1.77)* -0.0002 (1.87)*

-0.0024 (1.82)* -0.0003 (1.82)* 0.0003 (1.98)** 0.0002 (2.05)** 0.0018 (1.82)* 0.0009 (1.68)*

-0.0018 (1.69)* 0.0002 (1.81)* 0.0004 (1.92)* 0.0002 (1.71)* 0.0015 (1.76)* 0.0002 (1.67)*

-0.0035 (1.70)* -0.0001 (1.81)* 0.0007 (1.95)* 0.0002 (1.84)* 0.0029 (1.86)* 0.0001 (1.78)*

-0.0004 (1.68)* 0.0005 (1.94)* 0.0003 (1.81)* 0.0001 (1.88)* 0.0004 (1.83)* -0.0006 (1.69)*

-0.0008 (1.85)* 0.0019 (1.69)* 0.0002 (1.87)* 0.0002 (1.75)* 0.0003 (1.71)* -0.0014 (1.67)*

-0.0017 (1.67)* -0.0013 (1.79)* 0.0003 (1.71)* 0.0002 (1.7)* 0.0016 (1.81)* 0.0018 (1.94)*

-0.001 (1.68)* 0.0032 (1.69)* 0.0003 (1.82)* 0.0002 (1.77)* 0.0007 (1.91)* -0.0026 (1.69)*

0.0002 (1.66)* -0.0002 (1.72)* 0.0009 (2.05)** 0.0003 (1.68)* 0.0003 (1.66)* 0.0013 (1.87)*

0.0006 (1.79)* -0.0014 (1.95)* 0.0003 (1.91)* 0.0004 (2.04)** -0.0003 (1.95)* 0.0007 (1.73)*

-0.0005 (1.94)* -0.0017 (1.72)* 0.0002 (1.97)* 0.0004 (2.03)** 0.0007 (1.91)* 0.0016 (1.95)*

0.0001 (1.80)* -0.0032 (1.86)* 0.0001 (1.74)* 0.0003 (2.03)** 0.0001 (1.67)* 0.0026 (1.91)*

0.0015 (1.87)* -0.0017 (1.93)* 0.0002 (1.97)** 0.0004 (1.84)* -0.0013 (1.83)* 0.0016 (1.78)*

0.0011 (1.90)* -0.001 (1.87)* 0.0001 (1.76)* 0.0002 (1.77)* 0.0003 (1.87)* 0.0013 (1.86)*

0.0011 (1.83)* -0.0003 (1.91)* 0.0003 (1.98)** 0.0004 (1.94)* -0.0003 (1.68)* -0.0001 (1.72)*

-0.0003 (1.93)* 0.0002 (1.82)* 0.0002 (2.01)** 0.0004 (1.88)* 0.0011 (1.83)* 0.0002 (1.76)*

-0.0013 (1.84)* 0.0018 (1.83)* 0.0001 (1.75)* 0.0002 (1.92)* 0.0022 (1.68)* -0.0014 (1.82)*

0.0002 (1.72)* 0.0012 (1.85)* 0.0003 (1.79)* 0.0003 (1.71)* 0.0006 (1.74)* -0.0008 (1.85)*

-0.0015 (1.78)* -0.0009 (1.96)* 0.0002 (1.85)* 0.0002 (1.74)* 0.0016 (1.85)* 0.0012 (1.67)*

-0.0012 (1.88)* 0.0017 (1.65)* 0.0004 (1.94)* 0.0003 (2.01)** 0.0015 (1.78)* -0.0014 (1.67)*

-0.0005 (1.88)* 0.0019 (1.74)* 0.0005 (1.95)* 0.0003 (2.05)** 0.0002 (1.66)* -0.0011 (1.71)*

-0.0015 (1.94)* 0.0017 (1.67)* 0.0003 (2.02)** 0.0002 (1.93)* 0.0016 (1.82)* -0.0016 (1.73)*

m diag(D) b
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Table A.6 Weights for the Mexican Stocks Portfolios (2010-2015) 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

 

ELEKTRA 6.6667% 10.0695% 9.0539%

GFNORTE 6.6667% 0.0837% 0.0000%

BIMBO 6.6667% 0.9017% 0.0000%

LIVEPOL 6.6667% 6.7855% 5.3852%

FEMSA 6.6667% 2.7502% 2.2844%

GCARSO 6.6667% 0.1311% 0.0633%

GRUMA 6.6667% 13.3490% 9.3128%

GFINBUR 6.6667% 4.4102% 6.4810%

WALMEX 6.6667% 3.3977% 6.3483%

AMXL 6.6667% 11.0806% 9.7214%

KIMBER 6.6667% 3.4697% 3.4653%

TLEVISA 6.6667% 16.3785% 15.1527%

CEMEX 6.6667% 6.1579% 4.6996%

ALSEA 6.6667% 4.1264% 5.0887%

ALFA 6.6667% 16.9081% 22.9433%

Mean 0.0698% 0.0778% 0.0762%

Standard Deviation 0.8774% 0.8120% 0.7723%

Coefficient of Variation 12.5664 10.4343 10.1349

Portfolio CTicker Portfolio A Portfolio B
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Table A.7 Weights for the Chilean Stocks Portfolios (2010-2015)

 

Source: Authors’ own compilation based on data from Bloomberg. 

ENTEL 4.0000% 0.0000% 0.0000%

ANDINA 4.0000% 0.0000% 0.0000%

BEVIDE 4.0000% 1.3083% 2.5862%

CHILE 4.0000% 0.0000% 0.0000%

ECL 4.0000% 7.1308% 7.7288%

QUINENCO 4.0000% 21.4085% 19.6793%

SONDA 4.0000% 4.7823% 4.7669%

RIPLEY 4.0000% 4.7753% 5.3051%

EMBONOR 4.0000% 10.0811% 9.3591%

FALABELLA 4.0000% 0.3873% 1.8313%

COLBUN 4.0000% 1.1713% 2.5958%

BANMEDICA 4.0000% 7.8968% 5.9815%

SALFACORP 4.0000% 10.3014% 8.2800%

AESGENER 4.0000% 0.6084% 0.9663%

AGUAS 4.0000% 0.0000% 0.0000%

BCI 4.0000% 2.2200% 3.4282%

SECURITY 4.0000% 8.9782% 7.9627%

CMPC 4.0000% 8.1246% 9.4201%

LAN 4.0000% 0.0000% 0.0000%

COPEC 4.0000% 0.0000% 0.0000%

SK 4.0000% 0.0000% 0.0000%

BUPACL 4.0000% 0.0000% 0.0000%

SQM 4.0000% 8.5142% 8.6241%

CAP 4.0000% 0.0000% 0.0000%

ENDESA 4.0000% 2.3113% 1.4846%

Mean 0.0060% 0.0246% 0.0251%

Standard Deviation 0.8748% 0.7473% 0.7139%

Coefficient of Variation 144.7368 30.4098 28.4306

Portfolio A Portfolio B Portfolio CTicker
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Table A.8 Weights for the Colombian Stocks Portfolios (2010-2015)

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

 

 

 

CLH 7.6923% 4.4391% 3.9997%

ECOPETROL 7.6923% 7.7404% 6.9360%

BVC 7.6923% 1.4725% 2.8459%

PFDAVVNDA 7.6923% 4.3629% 3.1616%

PFAVH 7.6923% 4.7031% 5.7665%

CELSIA 7.6923% 9.3440% 9.1549%

CNEC 7.6923% 5.0268% 4.6245%

PFAVAL 7.6923% 2.8744% 4.9164%

EEB 7.6923% 6.4155% 7.0820%

PREC 7.6923% 4.1315% 4.6216%

GRUPOSURA 7.6923% 8.9062% 7.8902%

BOGOTA 7.6923% 6.4573% 7.3758%

ISAGEN 7.6923% 34.1263% 31.6251%

Mean 0.0018% 0.0019% 0.0020%

Standard Deviation 0.7772% 0.5335% 0.5238%

Coefficient of Variation 426.5961 280.8001 261.9085

Ticker Portfolio A Portfolio B Portfolio C
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Table A.9 Weights for the Peruvian Stocks Portfolios (2010-2015) 

 

Source: Authors’ own compilation based on data from Bloomberg. 

 

 

 

IFS 4.7619% 0.0000% 0.0000%

GRA 4.7619% 0.0000% 0.0000%

CON 4.7619% 1.2094% 3.7295%

MIN 4.7619% 0.9097% 1.2723%

TV 4.7619% 1.8191% 3.6887%

LGC 4.7619% 6.1827% 6.6827%

UNA 4.7619% 19.8465% 14.1749%

LUS 4.7619% 0.0000% 0.0000%

MIL 4.7619% 0.0000% 0.0000%

ATA 4.7619% 0.6366% 15.8101%

COR 4.7619% 1.2083% 5.8560%

REL 4.7619% 5.9012% 3.4088%

EDE 4.7619% 17.2455% 17.1097%

FER 4.7619% 1.0347% 10.0382%

BVN 4.7619% 0.0000% 0.0000%

BAP 4.7619% 0.5551% 0.0000%

CPA 4.7619% 0.0000% 0.0000%

ENE 4.7619% 0.0000% 0.0000%

SID 4.7619% 15.2648% 10.4565%

CAS 4.7619% 5.7364% 0.0000%

ALI 4.7619% 22.4500% 7.7725%

Mean 0.0187% 0.0188% 0.0191%

Standard Deviation 1.2998% 1.1606% 0.9473%

Coefficient of Variation 69.5185 61.7456 49.6056

Ticker Portfolio A Portfolio B Portfolio C
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Table A.10 Weights for the MILA Stocks Portfolios (2010-2015) 

 

Source: Authors’ own compilation based on data from Bloomberg. 

IFS 1.3514% 0.0000% 0.0000% ECOPETROL 1.3514% 1.3598% 1.2185%

GRA 1.3514% 0.0000% 0.0000% BVC 1.3514% 0.2587% 0.5000%

CON 1.3514% 0.3432% 1.0584% PFDAVVNDA 1.3514% 0.7665% 0.5554%

MIN 1.3514% 0.2582% 0.3611% PFAVH 1.3514% 0.8262% 1.0130%

TV 1.3514% 0.5162% 1.0468% CELSIA 1.3514% 1.6415% 1.6083%

LGC 1.3514% 1.7545% 1.8964% CNEC 1.3514% 0.8831% 0.8124%

UNA 1.3514% 5.6321% 4.0226% PFAVAL 1.3514% 0.5050% 0.8637%

LUS 1.3514% 0.0000% 0.0000% EEB 1.3514% 1.1270% 1.2441%

MIL 1.3514% 0.0000% 0.0000% PREC 1.3514% 0.7258% 0.8119%

ATA 1.3514% 0.1807% 4.4867% GRUPOSURA 1.3514% 1.5646% 1.3861%

COR 1.3514% 0.3429% 1.6618% BOGOTA 1.3514% 1.1344% 1.2958%

REL 1.3514% 1.6747% 0.9674% ISAGEN 1.3514% 5.9952% 5.5558%

EDE 1.3514% 4.8940% 4.8555% ENTEL 1.3514% 0.0000% 0.0000%

FER 1.3514% 0.2936% 2.8487% ANDINA 1.3514% 0.0000% 0.0000%

BVN 1.3514% 0.0000% 0.0000% BEVIDE 1.3514% 0.4420% 0.8737%

BAP 1.3514% 0.1575% 0.0000% CHILE 1.3514% 0.0000% 0.0000%

CPA 1.3514% 0.0000% 0.0000% ECL 1.3514% 2.4090% 2.6111%

ENE 1.3514% 0.0000% 0.0000% QUINENCO 1.3514% 7.2326% 6.6484%

SID 1.3514% 4.3319% 2.9674% SONDA 1.3514% 1.6157% 1.6104%

CAS 1.3514% 1.6279% 0.0000% RIPLEY 1.3514% 1.6133% 1.7923%

ALI 1.3514% 6.3709% 2.2057% EMBONOR 1.3514% 3.4058% 3.1618%

ELEKTRA 1.3514% 2.0411% 1.8352% FALABELLA 1.3514% 0.1309% 0.6187%

GFNORTE 1.3514% 0.0170% 0.0000% COLBUN 1.3514% 0.3957% 0.8770%

BIMBO 1.3514% 0.1828% 0.0000% BANMEDICA 1.3514% 2.6679% 2.0208%

LIVEPOL 1.3514% 1.3754% 1.0916% SALFACORP 1.3514% 3.4802% 2.7973%

FEMSA 1.3514% 0.5575% 0.4631% AESGENER 1.3514% 0.2056% 0.3264%

GCARSO 1.3514% 0.0266% 0.0128% AGUAS 1.3514% 0.0000% 0.0000%

GRUMA 1.3514% 2.7059% 1.8877% BCI 1.3514% 0.7500% 1.1582%

GFINBUR 1.3514% 0.8940% 1.3137% SECURITY 1.3514% 3.0332% 2.6901%

WALMEX 1.3514% 0.6887% 1.2868% CMPC 1.3514% 2.7448% 3.1825%

AMXL 1.3514% 2.2461% 1.9706% LAN 1.3514% 0.0000% 0.0000%

KIMBER 1.3514% 0.7033% 0.7024% COPEC 1.3514% 0.0000% 0.0000%

TLEVISA 1.3514% 3.3200% 3.0715% SK 1.3514% 0.0000% 0.0000%

CEMEX 1.3514% 1.2482% 0.9526% BUPACL 1.3514% 0.0000% 0.0000%

ALSEA 1.3514% 0.8364% 1.0315% SQM 1.3514% 2.8764% 2.9136%

ALFA 1.3514% 3.4273% 4.6507% CAP 1.3514% 0.0000% 0.0000%

CLH 1.3514% 0.7798% 0.7026% ENDESA 1.3514% 0.7808% 0.5016%

Mean 0.0218% 0.0293% 0.0297%

Standard Deviation 0.5231% 0.0184% 0.0140%

Coefficient of Variation 23.9736 0.6267 0.4719

Portfolio B Portfolio CTicker Portfolio A Portfolio B Portfolio C Ticker Portfolio A


