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1. Introduction

Consider random variables X and Y following a bivariate standard normal distribu-
tion with correlation ρ, with joint density (pdf)

φ(x, y; ρ) =
1

2π
√

1− ρ2
exp

{

−x2 − 2ρxy + y2

2(1− ρ2)

}

(1)

= φ(x)
1

√

1− ρ2
φ

(

y − ρx
√

1− ρ2

)

, (2)

where φ with a single argument denotes the univariate standard normal pdf. The cor-
responding cdf will be denoted by Φ, i.e. Φ(z) =

∫ z

−∞
φ(ξ)dξ.

It is known that the expectation of the product of the absolute values of X and Y is

E |XY | = 2

π
(ρ arcsin ρ+

√

1− ρ2). (3)

A special case of formula (3) dates back to Helmert (1876), who was concerned with
calculating the variance of the mean absolute deviation D = n−1

∑n
i=1 |Xi − X| for a

random sample from a normal population, where X = n−1
∑n

i=1 Xi. Assuming unit
variance, variables Zi = Xi − X are multivariate normal with mean zero, variance
(n− 1)/n, and Corr(Zi, Zj) = −1/(n− 1) for i 6= j, and so

E(D2) =
1

n2

[

nE(Z2
1) + n(n− 1) E(|Z1Z2|)

]

=
n− 1

n2

[

1 +
2

π

(

arcsin

(

1

n− 1

)

+
√

n(n− 2)

)]

.

In a more recent application in financial econometrics, the expected absolute value
of the product of two zero–mean bivariate normal variables is required to compute the
covariance matrix forecasts implied by a certain multivariate GARCH process (Pelletier,
2006; see Section 3 for a short account).

Nabeya (1951) devised a technique for calculating moments of the form E |XmY n|
for non–negative integers m and n. The calculations involved are rather cumbersome in
particular when both m and n are odd, as in (3). Kamat (1953) suggested a method to
compute the incomplete moments

Im,n(ρ) =

∫

∞

0

∫

∞

0

xmynφ(x, y; ρ)dydx, (4)

from which the absolute moments can be obtained via

E |XmY n| = 2(Im,n(ρ) + Im,n(−ρ)). (5)

Expression (3) was also obtained by Li and Wei (2009) as a special case of a general
formula for the expectation of the absolute value of a Gaussian quadratic form, writing
XY as 1

2
(X, Y ) ( 0 1

1 0 ) (X, Y )′. An alternative (infinite series) representation of E |XY |



was derived by Wellner and Smythe (2002) by writing E |XY | = E{|X|E(|Y | |X )} and
then using the fact that Y 2 given X has a noncentral χ2 distribution.

In this note, an alternative derivation of (3) is provided which is very short and
simple. Like the derivation in Wellner and Smythe (2002), it is based on conditioning,
but rather than using the conditional noncentral χ2 distribution of Y 2, it combines
Kamat’s (1953) use of (4) and (5) with conditional normality of Y .

2. Computation of E |XY |

In the derivation, we use the well–known quadrant probability

Pr(X > 0, Y > 0)
(11)
=

∫

∞

0

φ(x)Φ

(

ρx
√

1− ρ2

)

dx =
arcsin ρ

2π
+

1

4
. (6)

For completeness, a straightforward derivation of (6) as in Owen (1956) is reproduced
in the appendix. We also use the fact that φ′(z) = −zφ(z) and the basic symmetry
relations φ(z) = φ(−z) and Φ(z) = 1− Φ(−z).

From (2), and using the notation in (4),

I1,1(ρ) =

∫

∞

0

xφ(x)

∫

∞

0

y
√

1− ρ2
φ

(

y − ρx
√

1− ρ2

)

dydx,

where the inner integral becomes, upon substituting z = (y−ρx)/
√

1− ρ2, and defining

γ = ρ/
√

1− ρ2, (7)

∫

∞

0

y
√

1− ρ2
φ

(

y − ρx
√

1− ρ2

)

dy =

∫

∞

−γx

(
√

1− ρ2z + ρx)φ(z)dz

=
√

1− ρ2φ(γx) + ρxΦ(γx).

The derivative of the function

ϕ(x) =
√

1− ρ2φ(γx) + ρxΦ(γx)

is
ϕ′(x) = −

√

1− ρ2γ2xφ(γx) + ρΦ(γx) + ργxφ(γx) = ρΦ(γx).

Since ϕ(0) =
√

1− ρ2φ(0) =
√

1− ρ2/
√
2π, integration by parts shows that

I1,1(ρ) =

∫

∞

0

ϕ(x)xφ(x)dx = −ϕ(x)φ(x)|∞0 +

∫

∞

0

φ(x)ϕ′(x)dx

= ϕ(0)φ(0) + ρ

∫

∞

0

φ(x)Φ(γx)dx

(6)
=

√

1− ρ2

2π
+

ρ arcsin ρ

2π
+

ρ

4
. (8)

Finally, since arcsin(−ρ) = − arcsin(ρ), and using (5), we get (3).



Remark 1 Probability (6) is used in (8) to compute the integral
∫

∞

0
φ(x)Φ(γx)dx. Al-

ternatively, a perhaps still more straightforward derivation of this integral is via Azza-
lini’s (1985) skew–normal (SN) distribution, which has density

fSN(z; γ) = 2φ(z)Φ(γz), γ ∈ R,

where γ is the skewness parameter and determines the degree of asymmetry of the den-
sity. It is straightforward to check by differentiation that the cdf is (Azzalini, 1985)

FSN(z; γ) = Φ(z)− 1

π

∫ γ

0

exp
{

− z2

2
(1 + x2)

}

1 + x2
dx,

and so

FSN(0; γ) =
1

2
− 1

π

∫ γ

0

dx

1 + x2
=

1

2
− arctan γ

π

(7)
=

1

2
− arcsin ρ

π
,

and
∫

∞

0

φ(z)Φ(γz)dz = (1− FSN(0; γ))/2 =
1

4
+

arcsin ρ

2π
.

3. Financial applications and nonnormal distributions

Many financial markets are characterized by volatility clustering, i.e. alternating
periods of low and high volatility. This phenomenon is often modeled by specifying a
generalized autoregressive conditional heteroskedasticity (GARCH) model for the unex-
pected shocks to financial returns.

One of the first multivariate GARCH models was the constant conditional correlation
(CCC) GARCH model of Bollerslev (1990), which combines time–varying conditional
variances with a constant conditional correlation matrix, R. An N–dimensional time
series {ǫt} = {(ǫ1t, . . . , ǫNt)

′} generated by a CCC can be written as

ǫt = Dtzt, (9)

where {zt} = {(z1t, . . . , zNt)
′} is an iid series of innovations with zero mean and co-

variance matrix R = [ρij]i,j=1,...,N such that ρii = 1, i = 1, . . . , N . Furthermore, Dt =
diag(h1t, . . . , hNt), where hit is asset i’s conditional standard deviation, i = 1, . . . , N .

In principle, any suitable volatility model can be used to describe the dynamics
of the conditional standard deviations hit. However, as observed by Pelletier (2006),
closed–form multi–step covariance matrix forecasts can be calculated when the volatility
dynamics are specified as an absolute value GARCH (AVGARCH) process,1 the simplest

1 Use of the AVGARCH model of Taylor (1986) instead of Bollerslev’s (1986) specification in terms
of the variances and squared lagged shocks also appears to improve the fit in particular for stock
returns (e.g., Giot and Laurent, 2003; and Lejeune, 2009).



form of which is2

hit = ωi + αi|ǫi,t−1|+ βihi,t−1 = ωi + ci,t−1hi,t−1,

ωi > 0, αi, βi ≥ 0, i = 1, . . . , N,

where cit = αi|zit|+βi. With Et denoting an expectation conditional on the information
up to time t, the τ–step conditional covariance between assets i and j is

hij,t(τ) := Et(ǫi,t+τ ǫj,t+τ )

= E(zi,t+τzj,t+τ ) Et(hi,t+τhj,t+τ )

= ρij Et(hi,t+τhj,t+τ )

= ρij Et[(ωi + ci,t+τ−1hi,t+τ−1)(ωj + cj,t+τ−1hj,t+τ−1)]

= ρij(ωiωj + ωicjhjt(τ − 1) + ωjcihit(τ − 1)) + cijhij,t(τ − 1), (10)

where ci = E(cit) = αi E(|zit|)+βi, hit(τ) = Et(hi,t+τ ) = ωi(1−cτ−1
i )/(1−ci)+cτ−1

i hi,t+1,
and cij = E(citcjt) = αiαj E |zitzjt| + αiβj E |zit| + αjβi E |zjt| + βiβj, which involves
E |zitzjt|. Since hi,t+1 and hj,t+1 are determined by the information up to time t, recursion
(10) provides closed–form multi–step conditional covariances.

Note that we don’t have to assume multivariate normality of zt in (9) to explicitly
calculate cij = E(citcjt) in (10). In fact, due to the leptokurtic shape of most asset return
distributions, it is typically more suitable to assume a thicker tailed distribution, such as
the Student’s t distribution. The t distribution belongs to the class of normal variance
mixtures (e.g., McNeil et al., 2015, Sec. 6.2), which can be written as zt =

√
utηt, where

ηt ∼ N(0,R), and {ut} is a non–negative scalar-valued iid random sequence independent
of {ηt}.3 Result (3) then clearly continues to hold for this class of distributions provided
that ut has finite expectation (scaled to unity).

A major drawback of the CCC is the assumption of constant conditional correla-
tions, which is often rejected in applications to financial markets. To overcome this
drawback, Pelletier (2006) allows the conditional correlation to change according to a
Markov–switching process. The resulting regime–switching model for dynamic corre-
lations (RSDC) still admits the calculation of closed–form covariance matrix forecasts
(Pelletier, 2006; Haas, 2010), and it appears to perform well in empirical applications
(e.g., Pelletier, 2006; Giamouridis and Vrontos, 2007; Haas, 2010; and Charlot et al.,
2016).
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Appendix: Computation of Pr(X > 0, Y > 0)

A detailed derivation of (6) along the lines of Owen (1956) is presented. For alter-
native derivations, see Cramér (1946, p. 290) and McNeil et al. (2015, p. 253).

Define

Φ(x, y; ρ) =

∫

∞

x

∫

∞

y

φ(u, v; ρ)dvdu

=

∫

∞

x

φ(u)

∫

∞

y

1
√

1− ρ2
φ

(

v − ρu
√

1− ρ2

)

dvdu

=

∫

∞

x

φ(u)

(

1− Φ

(

y − ρu
√

1− ρ2

))

du

=

∫

∞

x

φ(u)Φ

(

ρu− y
√

1− ρ2

)

du, (11)

where Φ(z) = 1 − Φ(−z) was used in the last line. The derivative with respect to ρ is
(cf. Sibuya, 1959)

dΦ(x, y; ρ)

dρ
=

∫

∞

x

φ(u)φ

(

y − ρu
√

1− ρ2

)

u− ρy

(1− ρ2)3/2
du

=
1

√

1− ρ2

∫

∞

x

φ(y)φ

(

u− ρy
√

1− ρ2

)

u− ρy
√

1− ρ2
du

√

1− ρ2

=
φ(y)

√

1− ρ2

∫

∞

(x−ρy)/
√

1−ρ2
zφ(z)dz (12)

=
1

√

1− ρ2
φ(y)φ

(

x− ρy
√

1− ρ2

)

(13)

= φ(x, y; ρ),

where φ′(z) = −zφ(z) was used to go from (12) to (13). Therefore (cf. Owen, 1956),

Pr(X > 0, Y > 0) = Φ(0, 0; ρ)

=

∫ ρ

0

φ(0, 0; ξ)dξ + Φ(0, 0; 0)

=
1

2π

∫ ρ

0

dξ
√

1− ξ2
+

1

4

=
arcsin ρ

2π
+

1

4
.


