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Abstract
This work proposes a likelihood ratio test to assist in the selection of the Beta-Skew-t-EGARCH model with one or

two volatility components. To improve the performance of the proposed test in small samples, the bootstrap-based

likelihood ratio test and the bootstrap Bartlett correction are considered. The finite sample performance of the tests are

assessed using Monte Carlo simulations. The numerical evidence favors the bootstrap-based test. The tests are applied

to the DAX log-returns. The results demonstrate the practical usefulness of the proposed two-component tests.
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1 Introduction

The Beta-Skew-t-EGARCH model (Harvey and Sucarrat, 2014) was proposed to model
the volatility of financial returns. In part, the model is appealing because of its robustness
to outliers and volatility jumps in addition to accommodating the conditional asymmetry,
the leverage effect, and heavy tails. The model also enables to decompose the volatility
into short- and long-term components (Harvey and Sucarrat, 2014, Sucarrat, 2013). The
two-component structure of the model improves the adjustment quality, as it is capable
of mimicking the long memory pattern present in the autocorrelations of absolute values
(Harvey and Sucarrat, 2014).

In this paper, a likelihood ratio (LR) test is proposed to test whether the data
series should be modeled through the Beta-Skew-t-EGARCH model with one or two
volatility components. The proposed test is referred to as the two-component test. Un-
der the null hypothesis and under sufficient regularity conditions and assumptions, the
test statistic has an asymptotic chi-squared distribution (Canepa and Godfrey, 2007).
However, in small samples, the approximation of the null distribution of the test statistic
by the chi-squared limiting null distribution is limited and can render distorted null re-
jection rates (Ferrari et al., 2005, Canepa and Godfrey, 2007, Kascha and Trenkler, 2011,
Stein et al., 2014, Bayer and Cribari-Neto, 2013). As an alternative, the bootstrap-based
LR test (Efron, 1979) and bootstrap Bartlett correction (Rocke, 1989) are considered to
improve the performance of the LR test in small samples. At the end of the work, an ap-
plication to the log-returns of the German stock index DAX is presented. The numerical
results confirm the good performance of the proposed tests, thus validating its practical
usefulness.

This paper unfolds as follows. Section 2 presents one-component and two-
component specifications of Beta-Skew-t-EGARCH model. In Section 3 we introduce
the two-component test. We also present the bootstrap-based LR test and bootstrap
Bartlett correction of LR statistic. In Section 4 Monte Carlo simulation results are pre-
sented and discussed. Section 5 presents an application of the Beta-Skew-t-EGARCH
model and of the two-component tests to the log-returns of the DAX index. Section 6
concludes the paper.

2 Beta-Skew-t-EGARCH model

Beta-Skew-t-EGARCH model is a particular case of dynamic conditional score (DCS)
models (Harvey, 2013), also known as generalized autoregressive score (GAS) (Creal
et al., 2013), wherein the time-varying parameters are based on the score function at
time t (Creal et al., 2013). The main advantage of this models is that the score function
explores the complete structure of the density, rather than just the mean and higher
moments (Harvey, 2013). By utilizing the conditional score it is possible to reduce the
prediction error (Creal et al., 2011). In addition, it can insert asymmetry and long
memory extensions easier than other class of models (Harvey, 2013).

Let yt be a financial return at instant t, with t = 1, . . . ,n, where n is the sample
size, the martingale difference version of the first order one-component Beta-Skew-t-
EGARCH model is given by (Harvey and Sucarrat, 2014, Sucarrat, 2013):

yt = exp(λt)εt = σtεt, εt ∼ st(0,σ2
ε ,ν,γ), ν > 2, γ ∈ (0,∞),



λt = ω + λ†
t , (1)

λ†
t = φ1λ

†
t−1 + κ1ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |φ1| < 1,

where σt is the conditional scale or volatility of yt, sgn(·) is the sign function, and εt
is the conditional error. Further, ω is interpreted as the long-term log-volatility, φ1 is
the GARCH parameter, κ1 is the ARCH parameter, κ∗ is the leverage parameter, ν
corresponds to the degrees of freedom, γ is the asymmetry, and ut is the conditional
score defined by the derivative of the log-density of yt in relation to λt, see expression
(5) (Harvey and Sucarrat, 2014, Sucarrat, 2013). Skewness is introduced into the model
using the method developed by Fernández and Steel (1998).

The martingale difference version of the first order two-component Beta-Skew-t-
EGARCH model is defined by:

yt = exp(λt)εt = σtεt, εt ∼ st(0,σ2
ε ,ν,γ), ν > 2, γ ∈ (0,∞),

λt = ω + λ†
1,t + λ†

2,t, (2)

λ†
1,t = φ1λ

†
1,t−1 + κ1ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |φ1| < 1,

λ†
2,t = φ2λ

†
2,t−1 + κ2ut−1, |φ2| < 1, φ1 6= φ2, (3)

where λ†
1,t is the short-term component, and λ†

2,t is the long-term component, φ1 and κ1

are, respectively, GARCH and ARCH parameters for the short-term component, and φ2

and κ2 are GARCH and ARCH parameters for the long-term component.
The log-likelihood function of the model is defined by:

ℓ(θ) =
n∑

t=1

ln fy(yt),

where θ = (ω,φ1, φ2, κ1, κ2, κ
∗, ν,γ) is the parameter vector of the model and ln fy(yt) is

the log-density of yt, given by (Harvey and Sucarrat, 2014):

ln fy(yt) = ln 2− ln(γ + γ−1) + ln Γ((ν + 1)/2)−
1

2
ln π − ln Γ(ν/2)−

1

2
ln ν

− λt|t−1 −
ν + 1

2
ln

(
1 +

(yt − µ)2

γ2sgn(yt−µ)νe2λt|t−1

)
, (4)

where µ is a location parameter of yt. The θ̂ = (ω̂,φ̂1, φ̂2, κ̂1, κ̂2, κ̂∗, ν̂,γ̂) values that
maximize the log-likelihood function ℓ(θ) are the maximum likelihood estimators (MLEs)
of θ. Numerical methods are required to obtain θ̂ (Sucarrat, 2013).

The conditional score of the martingale difference version can be written by
(Harvey and Sucarrat, 2014, Sucarrat, 2013):

∂ ln fy(yt)

∂λt

= ut

=
(ν + 1)[y2t + ytµε∗ exp(λt)]

ν exp(2λt)γ2sgn(yt+µε∗ exp(λt)) + (yt + µε∗ exp(λt))2
− 1, (5)

where ε∗ is an uncentred skewed variable with mean µε∗.



3 Two-component tests

In this section, we introduce the two-component test and its corrected versions for small
sample sizes. The issue of interest is to test whether the parameters φ2 and κ2 in (3) are
null; that is:

{
H0 : (φ2, κ2) = (0, 0),

H1 : (φ2, κ2) 6= (0, 0).
(6)

Under H0, the adequate model is the one-component Beta-Skew-t-EGARCH model of
the volatility in (1), and under H1, the two-component model in (2) must be adjusted.

To perform this test, the likelihood ratio statistic is initially considered, given
by:

LR = 2
[
ℓ(θ̂1)− ℓ(θ̂0)

]
, (7)

where θ̂1 represents the MLEs under an alternative hypothesis, and θ̂0 corresponds to the
restricted MLE vector (under H0). The LR statistic under the null hypothesis follows an
asymptotic chi-squared distribution with two degrees of freedom (Cordeiro and Cribari-
Neto, 2014), subject to appropriate assumptions. However, in small samples, the test can
present distorted null rejection rates.

3.1 Bootstrap-based LR test

A common approach to reduce the small size distortion of the LR test is the bootstrap
(Efron and Tibshirani, 1993). The steps used to implement the bootstrap-based test
(LRb) can be summarized by the following algorithm (Efron and Tibshirani, 1993, Canepa
and Godfrey, 2007):

1. Generate, under H0, B bootstrap resampling y∗1, y∗2, . . . , y∗B of the model using
parametric bootstrapping, i.e, replacing the model parameters by the estimates in
H0 using the original sample;

2. For each resample y∗b, where b = 1, 2, . . . ,B, the following statistic is computed

LR∗b = 2
[
ℓ(θ̂∗b1 )− ℓ(θ̂∗b0 )

]
,

where θ̂∗b0 and θ̂∗b1 are the maximum likelihood estimators under H0 and H1, respec-
tively;

3. Repeat steps 1 and 2 a large number of times B;

4. Compute the bootstrap p-value by:

p∗ =
#{LR∗b ≥ LR}

B
,

where # denotes the cardinality of the set.

H0 will be rejected if p∗ is smaller than the desired significance level (usually
0.05) (Canepa and Godfrey, 2007).



3.2 Bootstrap Bartlett correction

The performance of the LR test can be also improved in small samples by considering
the Bartlett correction of the LR statistic (Bartlett, 1937, Lawley, 1956):

LRBartllet =
LR

c
,

where LR is the usual likelihood ratio statistic, c = E(LR)/g is Bartlett’s correction
factor, and g = 2 is the number of restrictions imposed by H0. The distribution of
the corrected LRBartllet test statistic converges faster to the chi-squared limiting null
distribution, thereby decreasing the test size distortions introduced by small samples
(Bayer and Cribari-Neto, 2013, Rayner, 1990). However, the analytical derivation of
Bartlett’s correction factor involves cumulants and mixed cumulants up to the fourth
order of the log-likelihood function. Such analytical derivation can be cumbersome or
even unfeasible in some model classes (Bayer and Cribari-Neto, 2013), particularly in the
Beta-Skew-t-EGARCH model, where even the first derivatives, useful in the process of
maximizing ℓ(θ), are numerically obtained (Sucarrat, 2013).

Alternatively, Bartlett’s correction factor is obtained using the bootstrap method
(Rocke, 1989), as follows:

1. Bootstrap resampling y∗1, y∗2, . . . , y∗B is generated underH0 using parametric boot-
strapping;

2. For each resample y∗b, where b = 1, 2, . . . ,B, the following statistic is computed

LR∗b = 2
[
ℓ(θ̂∗b1 )− ℓ(θ̂∗b0 )

]
,

where θ̂∗b0 and θ̂∗b1 are the maximum likelihood estimators under H0 and H1, respec-
tively;

3. The bootstrap Bartlett correction of LR is obtained by:

LRB =
2LR

LR
∗ ,

where LR
∗
= B−1

∑B

b=1 LR
∗b.

4 Numerical evaluation

We evaluate the finite sample performance of the proposed two-component tests, LR,
LRb, and LRB, using Monte Carlo simulations. The number of Monte Carlo replications
was set at 1000, and the number of bootstrap resamples was B = 500. The same number
of Monte Carlo replications was utilized by Omtzigt and Fachin (2002) in bootstrap and
Bartlett-corrected tests in cointegrating vectors and by Luger (2012) for hypothesis tests
in GARCH models. In the works of Omtzigt and Fachin (2002) and Stein et al. (2014)
they also used 500 bootstrap resamples for adjusted LR statistic.

The considered sample sizes are n = 250, 500, and 1000. All computational im-
plementations were conducted using R programming language (R Core Team, 2017), and
the package used to estimate the model parameters was betategarch (Sucarrat, 2013).



An R function has been provided at www.ufsm.br/bayer/dois-componentes-boot.zip
to perform the proposed tests.

For the analysis of the null rejection rate (size) of the tests, nominal levels equal
to 1%, 5%, and 10% were considered. This analysis evaluated the experiments presented
in Table 1. The results are listed in Table 2.

Table 1: Considered experiments.

Experiment ω φ1 κ1 κ∗ ν γ Characteristic

1 0.1 0.95 0.05 0.02 10 0.8 benchmark
2 0.1 0.98 0.05 0.02 10 0.8 greater persistence
3 0.1 0.95 0.10 0.02 10 0.8 greater response to shocks
4 0.1 0.95 0.05 0.02 5 0.8 greater kurtosis
5 0.1 0.95 0.05 0.02 10 1.2 right-skewed

Table 2: Null rejection rates (%) of the proposed tests.

1% 5% 10%
Experiments n 250 500 1000 250 500 1000 250 500 1000
1 LR 1.9 2.6 1.5 7.2 8.2 6.5 14.0 15.3 12.9

LRb 1.2 1.1 1.0 4.8 5.3 5.4 9.8 12.7 10.8
LRB 2.1 1.8 1.2 5.8 7.0 5.9 12.5 13.6 12.0

2 LR 2.0 2.4 1.4 9.0 9.8 7.1 15.5 17.6 13.0
LRb 0.7 1.5 0.8 4.4 4.9 4.9 10.6 10.8 9.5
LRB 1.2 1.8 1.1 6.1 6.4 5.7 12.6 13.7 11.0

3 LR 2.6 2.4 1.4 8.7 9.2 6.7 15.7 16.7 13.1
LRb 0.8 1.0 0.7 5.4 5.6 4.3 10.1 11.5 9.3
LRB 1.3 1.1 0.8 6.7 6.1 4.6 11.6 11.8 10.1

4 LR 2.8 1.3 1.0 10.2 7.3 5.6 16.9 13.7 11.2
LRb 1.4 0.6 0.5 6.1 4.4 4.3 11.3 10.5 9.4
LRB 2.3 0.8 0.6 7.6 6.0 5.1 13.2 11.3 10.3

5 LR 2.3 1.7 1.1 7.8 7.0 6.7 14.4 12.5 13.1
LRb 1.3 1.1 0.5 5.0 4.7 4.3 10.3 9.8 9.4
LRB 1.6 1.2 0.6 5.4 5.2 5.4 11.6 10.7 10.6

An analysis of the results in Table 2 verifies that the two-component test based
on the LR statistic is more liberal than the tests based on LRb and LRB statistic. The
biggest distortion in null rejection rate of LR is observed for the nominal level 1% and
n = 250 and 500. For example, in Experiment 3 and n = 250, the null rejection rate of
LR is 2.6%. For n = 250 and n = 500, the LRb and LRB tests considerably decreases the
test size distortions, thereby exhibiting null rejection rates close to the nominal levels.
For instance, in Experiment 5 with n = 250, the null rejection rates of the LR, LRb, and
LRB were equal to 2.3%, 1.3%, and 1.6%, respectively.

We note that generating processes with higher kurtosis (Experiment 4) affect the
performance of the LR test in the smaller sample sizes. In this experiment, the biggest



distortions are observed for n = 250. For example, for the nominal level equals to 5%
the null rejection rates of the tests are 10.2 %, 6.1 %, and 7.6 % for the LR, LRb, and
LRB, respectively. In general, the bootstrap-based test presents better performance for
controlling size distortion. Similar results are identified in Canepa and Godfrey (2007)
for the quasi-likelihood ratio test in ARMA models and in Canepa (2016) for the LR test
for linear restrictions on the cointegrating vectors. For larger sample sizes, it is clear that
tests feature adequate rejection rates.

Our results indicate that the adjusted tests present similar performance, although
they do have different features. Despite presenting similar results, the bootstrap Bartlett
correction is computationally more efficient, requiring a lower number of bootstrap resam-
ples than the usual bootstrap-based test (Rocke, 1989, Bayer and Cribari-Neto, 2013).

We considered a simulation study to evaluate the non-null rejection rates (power)
of the tests. To a fair comparison, we must ensure that the tests have the same size. For
this end, we ran a previews simulation in order to calibrate the null rejection rates (size)
equal to 5% for all tests. Here we considered the Experiment 1 and n = 1000. Than we
computed the rejection rates under the alternative hypothesis H1 : (φ2,κ2) = (δ,δ/30),
for values of δ ranging from -0.96 to 0.96 by 0.16. We do not show the entire results by
brevity. In general, we observed that the LR test is a little more powerful. This result
was expected, because it is the most liberal one. Besides, we note that as δ gets away
from zero the performance of the tests tends to be equal. For example, when δ = −0.96
and δ = 0.16 the non-null rejection rates were 70.20% and 28.20% for LR, 68.50% and
18.60% for LRb, and 68.90% and 20.30% for LRB, respectively.

Overall, based on the results, it is verified a good performance of the bootstrap-
based test in small samples. The use of corrected tests can helps in the choice of the
appropriate model, and consequently reduce model risk1. Therefore, we recommend its
use in empirical analysis.

5 Illustrative example

This section presents an application to actual data of the Beta-Skew-t-EGARCH model
and proposed tests. The data used are related to the German stock index DAX. The
sampling period ranges from December 14, 2011 to April 2, 2015, totaling 840 daily
observations (adjusted closing price). For the analysis, the log-returns were calculated,
as follows: yt = lnPt − lnPt−1, for t = 1, · · · , 840, where Pt is the price in t. Diagnostic
tests and descriptive statistics of the DAX log-returns indicate that the returns present
asymmetry and heavy tails. This can also be observed when analyzing the fitted model
(Table 3). These results favor the use of the Beta-Skew-t-EGARCH model.

Considering a 5% significance level, the proposed two-component tests were per-
formed. The uncorrected test (LR) resulted in p-value ≃ 0.002, thus rejecting the null
hypothesis. On the other hand, the LRb resulted in p-value ≃ 0.072 and LRB presented
p-value ≃ 0.904, indicating that the one-component model (under H0) is adequate. These
results are described in the Table 3. Note that the inference conclusions change when
the different tests are considered. Because a moderate sample size for a financial series is
being considered, namely n = 839, the bootstrap tests are assumed to be more accurate,

1Although there is no consensus in the literature to model risk definition, for Hull and Suo (2002),
Giannetti et al. (2004), and Barrieu and Ravanelli (2015), model risk refers to the risk of the use of an
inadequate or incorrect model.



Table 3: Fitted Beta-Skew-t-EGARCHmodels applied to the DAX log-returns and results
of two-component tests proposed.

One-component Beta-Skew-t-EGARCH model

ω̂ φ̂1 φ̂2 κ̂1 κ̂2 κ̂∗ ν̂ γ̂

Coefficients -4.607 0.947 0.057 0.063 5.281 0.873
Standard error 0.089 0.017 0.012 0.012 0.969 0.036

BIC -6.327
Ljung-Box10 ε̂2t 5.153 (p-value = 0.881)
Lagrange multiplier test10 ε̂t 4.930 (p-value = 0.896)

Two-component Beta-Skew-t-EGARCH model

ω̂ φ̂1 φ̂2 κ̂1 κ̂2 κ̂∗ ν̂ γ̂

Coefficients -4.568 0.977 0.928 0.066 -0.035 0.078 5.437 0.866
Standard error 0.146 0.023 0.016 0.059 0.064 0.011 1.031 0.036

BIC -6.326
Ljung-Box10 ε̂2t 5.423 (p-value = 0.862)
Lagrange multiplier test10 ε̂t 5.461 (p-value = 0.858)

Two-component tests

LR p-value ≃ 0.002
LRb p-value ≃ 0.072
LRB p-value ≃ 0.904

ε̂t = standardized residuals

and this is corroborated by diagnostic analysis. The one-component model exhibited a
lower Bayesian information criterion (BIC) (Schwarz, 1978), and at the usual significance
levels, the κ̂1 and κ̂2 estimates were not significant in the two-component model.

The estimates and some diagnostic measures of the fitted models, such as the
Ljung-Box (Ljung and Box, 1978) test applied to the squared standardized residuals
and Lagrange multiplier (Engle, 1982) test applied to the standardized residuals2, are
presented in Table 3. The tests indicated the goodness of the fitted models. Figure 1
presents the estimated conditional deviation and a series of DAX log-returns.

6 Final considerations

We proposed a likelihood ratio test and adjusted versions using the bootstrap Bartlett
correction and bootstrap-based test to assist in the selection of the Beta-Skew-t-EGARCH
model. For the proposed tests, the numerical results showed that larger sample sizes
performed well, although the bootstrap-based test had produced less distorted results
with smaller samples. An application to daily DAX log-returns also confirms the adequacy
of the adjusted tests. On the basis of these results, one can ascertain that the proposed
two-component tests are good alternatives for the selection of the Beta-Skew-t-EGARCH
model in practical applications.

2Ljung-Box test applied to the squared standardized residuals and Lagrange multiplier test applied
to the standardized residuals are recommended to analyze the presence of conditional heteroskedasticity
in the residuals. For more details see Tsay (2014).
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Figure 1: Fitted conditional standard deviation of the one-component model and two-
component model and DAX log-returns.
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