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Abstract
Modelling under ambiguity in financial and economic models implies a sound characterisation of ambiguity sources.

We expand the seminal work of Kast et al. (2014) who first defined Choquet Random Walks (CRW) and Choquet-

Brownian Motions (CBM). Their work allows modelling in the presence of a single source of ambiguity and is used in

various contexts, such as investment decisions and portfolio choices. As it is often useful (or even imperative) to

introduce multiple sources of ambiguity, we expand the Choquet Brownian model for two correlated sources of

ambiguity. Using properties of correlation, we first establish key results for correlated dynamically coherent Choquet

Random Walks. We extend it to continuous-time for two correlated sources of ambiguity, each represented by a

Choquet-Brownian Motion. Thus, we demonstrate that CBM are sufficiently tractable to adapt to more complex

model settings, in the presence of uncertainty represented through two correlated sources of ambiguity. We apply our

theoretical model to the optimal portfolio choice of traded assets.
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1. Introduction 

Interest in correlated random walks (CRW) goes back to Goldstein (1951) and Klein (1952), who 

considered a symmetric one-dimensional process, which Gillis (1955) expanded to a two-

dimensional process. Subsequently, general correlated random walks have proven very useful in 

physics, biology or chemistry models
1
 (Chen and Renshaw 1994). In a random walk, the 

direction of the next move may depend on time, current position and/or direction of the previous 

move, or even on the move of another random walk (or several). Gillis (1955), Zhang (1992) and 

Chen and Renshaw (1994) have explored some specific properties of correlated random walks
2
, 

such as transition probabilities.  

Prior literature on correlated random walk analyses directionally reinforced random walks in 

economic or business situations, such as simple gambler ruin problems. In addition, authors 

created various financial models in continuous time with correlated Brownian motions, such as 

in Adkins and Paxson (2011), where both revenues and operating costs follow correlated 

stochastic processes in the renewal of assets decision. Models often aim at identifying optimal 

stopping rules under specific assumptions in a random walk or a Brownian motion by 

extension.   

As optimal stopping is often explored under uncertainty, which includes risk and ambiguity 

concepts (Knight 1921; Ellsberg 1961), building an ambiguous random walk introduces an 

interesting feature to economic modelling. Furthermore, building ambiguous Brownian motions 

is fruitful as they are often used in modelling. Modelling ambiguity is often based on multiple-

priors utility frameworks (i.e. maximin or ‘worst case’ criterion, Gilboa and Schmeidler 1989, 

which show that ambiguity distorts the objective probability distribution by impacting the drift of 

stochastic processes of various kinds.  

However, an alternate approach (Kast and Lapied 2010, Kast et al. 2014) not only accounts for 

the presence of ambiguity but also integrates the decision makers’ beliefs in the stochastic 

processes of the underlying assets; relying on the Choquet ambiguity, a single parameter c 

represents the attitude towards ambiguity (level of ignorance or c-ignorance). In contrast to 

multiple-priors models, both the mean and variance of the Choquet stochastic process are 

deformed with a lower drift and volatility than in the classic probabilistic case; this framework is 

‘often less trivial and makes the applications to corporate finance more realistic’ (Agliardi et al. 

2016). We illustrate the various applications of the alternate framework in Section 1.3. 

Kast and Lapied (2010) created this alternate framework to model ambiguous stochastic process 

and it was further developed axiomatically by Kast et al. (2014). They built an ambiguous 

random walk through a ‘Choquet’ version of random walk (CRW) using capacities
3
 instead of 

the standard exact probabilities.  

                                                
1
 There are various contexts of application, such as dispersal of animals or cells, scattering of waves, etc. 

2
 In correlated random walk, the direction chosen at step i+1 may be related to the direction of step i (a phenomenon 

termed ‘persistence’, since Patlak 1953).  
3
 Capacities are a non-additive unit measure used in Choquet Expected Utility models to represent beliefs. 

Capacities act as weighted probability functions, in which decision weights capture decision makers’ subjective 

degrees of confidence about possible outcomes. The decision weights used in the computation of the Choquet 

integral overweight high outcomes if the capacity is concave and superadditive (c > 0.5), while favoring low 

outcomes if the capacity is convex and subadditive (c < 0.5). The special case c = 0.5 corresponds to the traditional 

probabilistic framework and standard Brownian motion used in risk-neutral option pricing. The capacity variable c 

acts as a proxy for decision-makers’ attitudes towards ambiguity; it summarises investors’ ambiguity attitudes 

(aversion or seeking) on future prospects, with 0 < c < 0.5 (m < 0) representing aversion (convex capacities), and 

0.5< c < 1(m > 0) indicating ambiguity-seeking (concave capacities). 



Thus, Choquet Random Walks are defined in discrete time by referring to a binomial tree, in 

which ambiguity is integrated by assigning capacities to represent the likelihood of the next 

move at each node. In a dynamic model, consistency is often an issue, Kast et al. (2014) show 

that a dynamically consistent Choquet Random Walk may be completely defined by a unique 

capacity v. CRW represents the attitude towards ambiguity and the ambiguity perceived by the 

decision makers, sometimes referred to as ambiguity aversion bias.  

In a dynamic setting, CRW were shown to converge in so-called Choquet-Brownian motions 

(Kast et al. 2014), for which an increase in ambiguity decreases both drift and variance (see 

above); hence, a Choquet-Brownian process is a distorted standard Brownian process due to the 

ambiguity aversion bias. In a seminal article, the Kast et al. (2014) model was applied to a model 

of intertemporal portfolio choice. In addition, it was used to deal with real investment decisions, 

as a tool to determine the optimal timing and valuation of real options (Roubaud et al. 2010), 

extending the real options theory and method (Dixit and Pindyck 1994; Trigeorgis 1996) by 

modelling ambiguous cash flows expected from an investment project.  

The model was adapted to determine the optimal timing of environmental policies (Agliardi and 

Sereno 2011), which uses Choquet-Brownian ambiguity to explore optimal taxes and non-

tradable quotas, in the presence of well-known and debated ambiguity on the future costs and 

benefits of such policies.  

The CBM framework was also used in corporate finance valuation, for instance, in Agliardi et al. 

(2015), who model ambiguous earnings before interests and taxes (EBIT) streams into a 

contingent claim model for convertible debt with CBM. They study how the ambiguity biases of 

equity holders and debt holders affect convertible debt valuation and conduct a sensitivity 

analysis of the bond value to changes in attitude toward ambiguity, firm and bond parameters. 

CBM are also sufficiently flexible to deal with complex financial products valuation, as in 

Driouchi et al. (2015a) who use it to price European options with stochastic strikes under 

Choquet uncertainty. They show how swings in investor opinion resulting from ambiguity affect 

option prices and how the notion of ‘fair value’ is relative in presence of ambiguity. 

Furthermore, Driouchi et al. (2015b) study the tendency of option investors to deviate from risk-

neutrality around extreme financial events, such as the subprime crisis. They reveal that in the 

context of the subprime crisis (2006-2008), investors’ option implied ambiguity moderated the 

lead–lag relationship between implied and realised volatility. 

Recently, Agliardi et al. (2016) use the Choquet ambiguity framework for a behavioural 

perspective of the decisions of equity and debt holders. They describe firm value as a Choquet 

Brownian process and show that greater ambiguity leads to earlier decrease in equity, increase in 

debt and financial distress for firms. 

Our study aims to further expand the spectrum of situations where the Choquet-Brownian 

ambiguity may be applied by integrating two correlated sources of ambiguity represented by two 

correlated CBMs; for instance, modelling irreversible decisions often requires dealing with more 

than one source of ambiguity, which is tricky and often complex.  

Adkins and Paxson (2011)—attempting to solve part of this complexity—observed that it may be 

possible to treat the option value as a function of homogeneity of degree one, which simplifies 

the resulting partial differential equation using the ratio of two variables. As discussed by Adkins 

and Paxson (2011), the main limit of this approach is precisely the strong assumption of a 

homogeneity of degree one; however, they maintain that it remains a convenient approach in 

many investment situations. We consider this approach both pragmatic and grounded. 



Consequently, in our model with more than one source of ambiguity, we suggest relating the two 

simultaneous sources of ambiguity through a correlation coefficient; thereby, avoiding the 

intricacy of multidimensional partial differential equations. Note that the adoption of this 

correlation factor is often economic: multiple sources of ambiguity may be subjected to the 

influence of the same « market forces ». Hence, it is possible that their evolution is at least 

partially linked. Many examples have been given to justify adopting correlation in models, such 

as when economic outlook, regulations or technological breakthroughs may impact not only the 

expected cash flows of an asset but also the price that can be obtained from selling it. 

2. Model 

A Choquet-Brownian motion (CBM) is a distorted Wiener process where the distortion may 

derive from individual preferences towards ambiguity (see Section 1). CBM were shown to be 

the continuous time limit of a specific type of random walk: the Choquet Random Walk 

(CRW). The CRWs are binomial lattices with equal capacities c (instead of additive 

probabilities) on the two states at each node. The constant conditional capacity c plays a key 

role in such a setting; it summarises the decision makers’ attitude towards ambiguity. Indeed, 

in a symmetrical CRW, dynamics is described by a discrete time motion, in which probability 

½ is replaced by a constant c (See note 3) that represents the ambiguous weight exerted by the 

decision maker on the event « up » and the event « down » instead of the unambiguous ½. 

To characterise a Choquet Random Walk, Kast and Lapied (2010) impose that for any node st at 

date t (0 ≤ t < T), if su
t+1 and sd

t+1 are the two possible successors of st at date t+1 (for, 

respectively, an ‘up’ or a ‘down’ movement in the binomial tree), the conditional capacity is a 

constant, such as n(st+1
u /st) = n(st+1

d /st) = c, with 0 < c < 1. 

Convergence to a specific kind of Brownian motion in continuous time has been established, 

which may be termed Choquet-Brownian Motions (CBM). Let us recall that in continuous time, 

symmetric random walks—when the up and down movements are of the same magnitude—

converge to general Wiener processes.  

In the case of CBM, a distorted Brownian is obtained, with mean m = 2c–1 and variance s2 = 

4c(1–c).    

This convergence towards a CBM in continuous time allows applications of Choquet-Brownian 

in various settings, such as real option models. We extend this to  two correlated risks, each 

represented by a Choquet-Brownian process.  

2.1 Correlated Dynamically Consistent Choquet Random Walks 

Let Y1 and Y2 be two symmetric Dynamically Consistent Choquet Random Walks. At each date, 

the two processes can take two possible values, +1 and –1, and thus, determine four elementary 

states. 

w1 = {Y1 = +1, Y2 = +1}, w2 = {Y1 = +1, Y2 = –1}, 

w3 = {Y1 = –1, Y2 = +1}, w4 = {Y1 = –1, Y2 = –1}, 

and let 

u1 = {w1, w2} = {Y1 = +1}, d1 = {w3, w4} = {Y1 = –1}, 

u2 = {w1, w3} = {Y2 = +1}, d2 = {w2, w4} = {Y2 = –1}. 

The states are measured by a sub-linear non-additive capacity n such that 

n(u1) = n(d1) = n(u2) = n(d2) = c, with 0 < c < ½. 

The Choquet expected
4
 values are then 

                                                
4
 Let f be a real function such that f = (x

1
,E

1
;…; xm,Em ) , where x1 ≤ x2 ≤ … ≤ xm. 

The Choquet’s expectation of f with respect to n is: 



Eν (Y1) = Y1(s)Δν(s)
s∈{u1,d1}

∑ = 2c −1, Eν (Y2) = Y2(s)Δν(s)
s∈{u2 ,d2}

∑ = 2c −1, 

and the values that correspond to variances in probability theory are defined by the following 

relations: 

Varν (Y1) = [Y1(s) − Eν (Y1)]
2Δν(s)

s∈{u1,d1}

∑ = 4c(1− c), 

Varν (Y2) = [Y2(s) − Eν (Y2)]
2Δν(s)

s∈{u2 ,d2}

∑ = 4c(1− c). 

 

However, a first difficulty appears; we have two candidates for the definition of the covariance 

between Y1 and Y2 in a Choquet framework. 

I = [Y1(ωi ) − Eν (Y1)][Y2(ωi ) − Eν (Y2)]Δ{ν[Y1 =Y1(ωi ) /Y2 =Y2(ωi )]ν[Y2 =Y2(ωi )]}
i=1

4

∑ , 

and 

J = [Y1(ωi ) − Eν (Y1)][Y2(ωi ) − Eν (Y2)]Δ{ν[Y2 =Y2(ωi ) /Y1 =Y1(ωi )]ν[Y1 =Y1(ωi )]}
i=1

4

∑ . 

If the decision maker is dynamically consistent, Kast et al. (2014) state
5
 that for a random 

variable X 

[

i=D,D
C

∑ X(s)Δν i (s)]Δν (i)
s∈S

∑ = X(s)Δν (s)
s∈S

∑        (1) 

where S is the set of states, D and D
C
 the possible information sets 

and the following normalisation of the conditional capacities holds: 

" D Ì S, n(Æ/D) = 0, n(S/D) = 1, " B Ì S, n(B/D) = n(BÇD/D). 

Proposition 1: Under relation (1), " i = 1, …, 4, 
ν[Y1 =Y1(ωi ) /Y2 =Y2(ωi )]ν[Y2 =Y2(ωi )] = ν[Y2 =Y2(ωi ) /Y1 =Y1(ωi )]ν[Y1 =Y1(ωi )] 

= ν{[Y1 =Y1(ωi )]∩ [Y2 =Y2(ωi )]}. 

Proof: We use the following simplified notations. 

For some i, [Y1 =Y1(ωi )]= B  and [Y2 =Y2(ωi )]= D .
6
 

Then, for X = 1BÇD, relation (1) becomes 

[ 1B∩D (s)Δν
i
(s)]Δν (i)

s∈S

∑
i=D,D

C

∑ = 1B∩D (s)Δν (s)
s∈S

∑       (2) 

The left hand of equation (2) is 

[ 1
B∩D (s)Δν

D
(s)]ν (D) =

s∈S

∑ ν (B /D).ν (D) , 

because 

1B∩D (s)Δν
D
C

(s) =

s∈S

∑ ν(B∩D /D
C
) = ν (∅ /DC ) = 0, 

and 

                                                                                                                                                       

f dν
S

∫ = x j ν Ei

i= j

m

∪
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−ν Ei

i= j+1

m

∪
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j=1

m

∑ , where, by convention, Em+1 = Æ. 

5
 In relation (1). 

6
 Notice that B = u1 or B = d1 and D = u2 or D = d2. 



1B∩D (s)Δν
D
(s)

s∈S

∑ = ν(B∩D /D) = ν (B /D) . 

The right hand of equation (2) is 

1B∩D (s)Δν (s)
s∈S

∑ = ν(B∩D) . 

Then, ν(B /D).ν (D) = ν(B∩D). 

QED 

 

With Proposition 1, the covariance between Y1 and Y2 is uniquely given by 

Covn(Y1, Y2) = I = J = [Y1(ωi ) − Eν (Y1)][Y2(ωi ) − Eν (Y2)]Δν{[Y1 =Y1(ωi )]∩ [Y2 =Y2(ωi )]}
i=1

4

∑  

  = 4[– c (1 – c) + c b + (1 – 2c) a],  

with the following notations: a = n(w1), b = n(w1, w4). 

The correlation between Y1 and Y2 is then defined by 

Corν (Y1,Y2) =
−c(1− c) + cb+ (1− 2c)a

c(1− c)
. 

Remark 1: With a ≤ c < ½, it is easy to check that – 1 ≤ Corn(Y1, Y2) ≤ 1. 

Remark 2: As special cases, we have 

- Perfect positive correlation, when a = c and b = 1, Corn(Y1, Y2) = 1, 

- Perfect negative correlation, when a = b = 0, Corn(Y1, Y2) = – 1, 

- Independence corresponds to 

ν(Y1 = y1 /Y2 = y2) = ν (Y1 = y1) , ν(Y2 = y2 /Y1 = y1) = ν (Y2 = y2) , 

and, with proposition 1 

ν(Y1 = y1 /Y2 = y2)ν(Y2 = y2) = ν (Y1 = y1)ν (Y2 = y2) = ν[(Y1 = y1)∩ (Y2 = y2)]. 

This leads to a = c
2
, and in this case, Corn(Y1, Y2) = 0, if and only if b = c

2
 + (1 – c)

2
. 

If b takes this value, then Corν (Y1,Y2 ) =
1− 2c

c(1− c)
(a− c

2
) . 

2.2 Continuous-time limit Choquet-Brownian processes  

Take a time interval [0, T], where the number of periods in the interval is N, and the length of 

each period is h = T/N, and define two processes as Wi(n) = Wi(n – 1) + Xi(n) 

with Wi(0) = 0, and Xi(n) = m h + s h
1/2

 Ui(n), n = 1,…, N, for i = 1, 2, where m and s are two 

parameters, and Ui(n) are two processes with the following properties. 

For any n = 1, …, N, Ui(n), i = 1, 2, can take two possible values, +1 and –1, with probabilities 

½, Ui(n) is independent from Ui(n’), and U1(n) is independent from U2(n’), for n’ = 1,…, N, 

n’ ≠ n. 

For any n = 1, …, N, 

Pr{U1(n) = +1, U2(n) = +1} = Pr{U1(n) = –1, U2(n) = –1} = p, 0 ≤ p ≤ ½, 

Pr{U1(n) = +1, U2(n) = –1} = Pr{U1(n) = –1, U2(n) = +1} = ½ – p. 

We have, " i = 1, 2, " n = 1, …, N: 

E[Ui(n)] = 0, Var[Ui(n)] = 1, Cov[U1(n), U2(n)] = E[U1(n)U2(n)] =  4p – 1, 

and 

Wi (N) = Xi (n)

n=1

N

∑ = Nmh + sh
1/2

Ui (n)

n=1

N

∑ , 

E[Wi(N)] = m N h, Var[Wi(N)] = s
2
 N h, 



Cov[W1(N), W2(N)] = s2hE{[ U1(n)]

n=1

N

∑ [ U2(n)]

n=1

N

∑ } = s
2
NhE[U1(n)U2(n)], " n = 1,…, N 

= s
2
 N h (4p – 1). 

" i = 1, 2, Lim
N→+∞

Wi (N) =Wi (t)  = m t + s Bi(t), where Bi(t) are Brownian motions such that 

Cor[B1(t), B2(t)] = r = (4 p – 1). 

The correspondence with the processes Yi are obtained, if and only if 

m = 2c – 1, s
2
 = 4c (1 – c), ρ =

−c(1− c) + cb+ (1− 2c)a

c(1− c)
. 

3. Application Results 

We apply our theoretical model to the optimal portfolio choice of traded assets using a 

framework from the stationary version of the Intertemporal Capital Asset Pricing Model (Merton 

1969, 1971, 1973). 

Suppose the wealth of an investor (w(t))0≤t≤T, is to be allocated between a riskless asset with 

constant instantaneous rate of return r, r > 0, and two risky assets, the prices of which are driven 

by two (possibly) partially correlated Choquet-Brownian motions.
7
 

       (3) 

with , for i = 1, 2. 

Simultaneously, we express relation (3) for standard Brownian motions and deal with the 

correlation of the two Choquet-Brownian motions. The second point introduces a third Brownian 

motion B3(t), independent of B1(t), for which we have 

, where r is the correlation coefficient between B1(t) and B2(t). 

Then, 

, 

with m = 2c – 1, s
2
 = 4c(1 – c), , 0 ≤ a ≤ b ≤ 1, and a ≤ c ≤ ½, for i = 1, 2, 

and finally 

  (4) 

for i = 1, 2. 

With the following notations: 

,  , for i = 1, 2, we turn back to 

the standard case 

       (5) 

for i = 1, 2. 

With r2
 ≠ 1 and c > 0, the matrix 

 is non-singular, if and only if, the standard matrix  is non-singular. 

We suppose this condition satisfied in the sequel. 

If x1(t) and x2(t) are parts of the capital invested in risky assets at date t, the following stochastic 

differential equation characterises the agent wealth. 

                                                
7
 We propose two generalisations of the standard model: the introduction of Choquet-Brownian motions and the 

possibility of partial correlation between them. 



, 

and with relation (5) 

(6) 

The program of the agent for a time horizon T is to maximise the expected utility of its final 

wealth with respect to relation (6). 

, w(0) = w0 > 0,             (7) 

where u(.) is an increasing and concave utility function and x(t) = (x1(t), x2(t)). 

The well-known solution of this stationary problem, in which w(t) is the one-dimensional state 

variable is given by 

That is                (8) 

where  , 

J(t, w) is the value function of the Bellman’s dynamic programming
8
, and  J(T, w) = u(w), 

, and m – r = (m1 – r, m2 – r). 

We now consider the special case of an iso-elastic utility function 

, a > 0, a ≠ 1. The relative risk aversion coefficient  is the constant a, and 

the value function consistent with this utility function is 

, with  and  I(t, w) = a. 

The solution for the optimal control is a constant 

.                 (9) 

The effect of ambiguity on m and s
2
 is clear because ,   and in the standard case 

(where c = ½), m = 0 and s
2
 = 1. However, even when the Choquet-Brownian motions are 

independent (r = 0), the effect of ambiguity on x1(t) and x2(t) cannot be decided, as it depends on 

the links between the prices of the assets and the standard Brownian motions (sij, i, j = 1, 2). 

4. Conclusion 

Identifying and dealing with sources of uncertainty remains a major challenge for value creation 

in many sectors. Although there is more to financial decision-making than just sophisticated 

mathematical models, integrating flexibility and ambiguity remains intellectually challenging 

and promising in potential implications. Although ambiguity often results in aversion in 

preferences, one cannot reject ambiguity seeking if one is to account for decisions taken in 

various ambiguous situations. The use of Choquet-Brownian ambiguity prevents from radical 

assumptions a priori. Our model of correlated Choquet-Brownian deals with two ambiguity 

sources and can enrich some real option models. There is a rich literature examining the 

interdependence of different options in one project and accounting for the existence of 

interrelated projects. However, in contrast, there are few proposals to apply multiple risk factors 

on one real option. Finally, expanding the Choquet ambiguity applications presented in Section 

1.3 to multiple correlated sources of ambiguity may be useful in complementing other models in 

continuous-time, in very ambiguous environments. 

                                                
8
 I(t, w) is usually interpreted as the relative risk aversion coefficient. 
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