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1 Introduction

Researchers often face the problem that an important control variable cannot be included in an

empirical model to be estimated. Simply ignoring the problem and omitting the control variable

may lead to biased and inconsistent estimates of the model coefficients of interest. Consistent

estimates may, however, be obtained by using a proxy for the omitted variable or by using

instruments for explanatory variables that might be correlated with the omitted variable (e.g.

Wooldridge 2010, Ch 4 and Ch 5).1

This note examines some cases where proxy and instrumental variable strategies for solving

omitted variable problems may break down. These cases have to the best knowledge of the author

not been discussed elsewhere. One aim of this note is to provide such a discussion. Another

aim is to highlight the usefulness of graphical methods for solving identification problems in

structural models.2

The analysis in this note builds on the graphical framework outlined in Pearl (2009). This

framework has two attractive features that greatly simplify the analysis of structural models:

Firstly, structural models are mapped into graphs that make statistical assumptions and pre-

sumed causal links between variables explicit. Secondly, simple path tracing rules can be applied

to such graphs to check for identification of parameters when the model is linear. The analysis

draws also heavily on Pearl (2013) who analyzes a number of issues in causal modeling within

this graphical framework.

The graphical analysis that follows shows that proxy variable solutions will break down when

the omitted variable has a direct causal link with other explanatory variables. Instrumental

variable (IV) strategies for estimating the direct causal effect of the instrumented explanatory

variable can fail if the explanatory variable causes an omitted mediating variable.

2 Causal graphs and path tracing rules

This section introduces the tools for analyzing the graphs that appear in this note. Pearl (1995),

Pearl (2009), and Chen & Pearl (2014) provide extensive outlines of graphical methods.

Figure 1 shows five graphs. Solid nodes represent observed variables, hollow nodes represent

unobserved variables, solid arrows indicate causal links, and curved dashed bi-directed arrows

1Panel data offer additional options for solving omitted variable problems. This note does not consider panel

data.
2Graphical methods for analyzing causal relationships are well known in computer science and statistics but

largely unknown in economics.
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Figure 1: Confounder (a), collider (b), mediator (c), unobserved cause (d), joint unobserved
causes (e).

indicate covariances that arise from unspecified causes. Thus, all variables in graphs (a), (b),

and (c) are observed, z is unobserved in (d), and x causes y in graph (e) but x and y are also

correlated because of neglected causes.

A path is a sequence of nodes connected by arrows. A path is d-connected if it does not

traverse any collider.3 A variable is a collider on a path if two arrows are pointing into it. Thus,

the paths x → y and x ← z → y in (a) are d-connected. Furthermore, variables like z and y in

(c) are also called descendants of x. The following rules make the concepts of d-separation and

d-connection more precise.

d-separation: A path between two variables x and y can be d-separated (or blocked) by a

set of nodes Z in two ways. Either (1) the path contains a chain x −→ m −→ y or a fork

x ←− m −→ y such that the middle node m is in the conditioning set Z. Or (2) the path

contains a collider x −→ m ←− y such that the middle node m (or any of its descendants) is

not in the conditioning set Z (see Pearl 2009, p16-17).

Thus, the path x ← z → y in (a) becomes d-separated once we condition on z (i.e. know

the value of z). The path x → z ← y in (b) is blocked or d-separated as long as we are not

conditioning on the collider z.

d-connection: A path between x and y is d-connected conditional on a set of nodes Z if (1)

there is a collider-free path between x and y that traverses no member of Z, or (2) a collider (or

one of its descendants) is in the conditioning set Z (see Chen & Pearl 2014, p7).

Hence, x and y are d-connected conditional on z in case (a) in Figure 1 whereas x and y

become d-connected in case (b) once we condition on z.

Two path tracing rules (Wright 1921, 1934) that follow from covariance mathematics yield

analytical expressions for covariances between variables in causal graphs (see also Goldberger

3The d stands for dependence.



(1972) and Bollen (1989), Ch. 2). Let πi = c1 · c2 · ... · cn be the product of the coefficients along

a path i that d-connects two variables x and y. The cj are either structural coefficients like β

in graph (a) or covariances like ρ in graph (e).

The first rule states that the covariance between x and y is σxy = Σiπi, i.e. the sum of the

πi over the different d-connected path between x and y. This rule applies when all variables

have been standardized (i.e. normalized to have zero mean and unit variance).

The second rule states that the product πi associated with a path between non-standardized

variables must be multiplied by the variance of the variable from which the path originates. We

will only need the first rule because we will always work with standardized variables to keep the

algebra simple.

3 Solutions to the omitted variables problem

Let us now consider a structural model

y = βx+ γq + u (1)

where y is determined by the variables x, q, and an error term u. This simple model suffices

to outline the basic issues. We are interested in the coefficient β that measures the effect of x

on y. As just mentioned, we assume for convenience that all variables have been standardized.

Thus, σ2
y = σ2

x = σ2
q = 1. Furthermore, the analysis is in terms of population moments.

3.1 Ignoring the omitted variable

Let us start with the case where x and q in equation (1) can be observed (see also Pearl 2013,

p158-159). Case (a) in Figure 2 shows the corresponding graph. Two paths d-connect x with

y, the direct path x → y, and the “backdoor” path x ← q → y. Conditioning on q blocks this

backdoor path. The ordinary least squares (OLS) formula for β in the regression of y on x and

q is

βyx.q =
σ2
qσxy − σxqσqy

σ2
xσ

2
q − (σxq)2

. (2)

Path tracing yields σxy = β + αγ, σxq = α, and σqy = γ + αβ. Plugging into (2) verifies that

βyx.q =
β + αγ − α(γ + αβ)

1− α2
=

β(1− α2)

1− α2
= β. (3)

Note that here the direction of the causal link between x and q does not matter. Reversing the

causal link between x and q does not change the result.
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Figure 2: Causal graphs for equation (4) when q is (a) observed and (b) unobserved.

In graph (b) the variable q is unobserved and the backdoor path x ← q → y is now unblocked.

The OLS formula for β in the regression of y on x alone is

βyx =
σxy
σ2
x

. (4)

Substituting for σxy shows that βyx = β+αγ. Thus the regression yields inconsistent estimates

for β in large samples when q is omitted unless q is (asymptotically) uncorrelated with x or q is

irrelevant for explaining y.

3.2 Proxies

Let us now consider a proxy p of the form

q = δp + v (5)

where the error v is uncorrelated with p. Substituting for the unobserved variable q in (1) yields

the model

y = βx+ γδp + (γv + u). (6)

Estimating (6) with OLS is appropriate when the proxy p fulfills two statistical requirements

(Wooldridge 2010, Ch 4): First, p must be redundant. Thus, the expectation of y conditional

on x, q and p must not depend on p, i.e. E(y|x, q, p) = E(y|x, q). Second, the omitted variable

q must be uncorrelated with x conditional on p, i.e. E(q|p, x) = E(q|p). A variable that fulfills

both requirements is sometimes called a “perfect” proxy.

Graph (a) in Figure 3 provides an example where p is a perfect proxy. Conditioning on p

blocks the backdoor path x ������ p → q → y. Path tracing yields σxy = β + ρδγ, σxp = ρ, and

σpy = δγ + ρβ. Plugging into the OLS formula for β in the regression of y on x and p

βyx.p =
σxy − σxpσpy
σ2
xσ

2
p − (σxp)2

(7)

shows that βyx.p = β.

In graphs (b) and (c) the variable p violates the second requirement for a perfect proxy. In

(b) the variable x affects y directly and indirectly via q. Conditioning on p does not block the
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Figure 3: Proxy variable solution when x and q are (a) indirectly related, (b) when x causes q,
and (c) when q causes x.

backdoor path x → q → y and path tracing shows that βyx.p = β + αγ captures the total (i.e.

direct + indirect) effect of x on y rather than the direct effect β. In (c) the variable q is a

confounder. Conditioning on p is ineffective because the path x ← q → y remains unblocked.

Path tracing demonstrates that OLS yields βyx.p = β + [αγ(1 − δ2)/(1 − α2δ2)] in this case.

Wooldridge (2010) states (p 68) that a perfect proxy variable p must be “closely enough

related to the omitted variable” so that the other explanatory variables are partially uncorrelated

with the omitted variable once p is included in the equation to be estimated.

The graphical analysis makes this statement more transparent: Proxy variables only work

perfectly when they, as in case (a), block all paths between the explanatory variables and the

omitted variable. In case (b) the proxy p would have to be an intermediate cause of q to work.

In case (c) the proxy as given by equation (5) never works because the proxy cannot block the

direct causal link between the omitted variable and the explanatory variable.

3.3 Instruments

Another way to solve the omitted variable problem is to let the omitted variable q be part of

the error term and to use instruments for explanatory variables that might be correlated with

q. Model (1) becomes

y = βx+ e (8)

where the error e = (γq + u). Let us assume that an instrumental variable z that is correlated

with x but uncorrelated with the error term e is available. The IV formula for β is

βIV
yx =

σzy
σzx

. (9)

Figure 4 shows two cases where an instrument is used to solve the omitted variable problem.

The IV strategy works in case (a) where q is a confounder. Here x becomes a collider that blocks

the path z → x ← q → y. Path tracing yields σzy = δβ and σzx = δ. Plugging into (9) gives

βIV
yx = β.
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Figure 4: Instrument for x when (a) q causes x, and (b) when x causes q.

Consider now case (b). Here x also affects y indirectly via q. No instrument is required if

one is interested in the total effect (i.e. the direct and indirect effect) of x on y. OLS will work.

In certain cases, however, one may be interested in the direct effect of x on y.

Consider an example, where x is years of schooling, y is wages, and q is work experience

which is unobserved (see Morgan & Winship 2015, Ch 10.1). Schooling may have a direct

positive effect on wages and an indirect negative effect via reduced work experience. The goal

may be to quantify the direct positive effect of schooling on wages.

Instrumenting x does not work in case (b). The path z → x → q → y is unblocked. Now

σzy = δβ + δαγ and βIV
yx = β + αγ yields the total effect of x on y and not the direct effect β

that we want to estimate. To obtain the direct effect β one needs either a “perfect” proxy for

q (i.e. a variable p such that x → p → q) or an indicator of q to which an instrument can be

applied. Brito & Pearl (2002) provide graphical rules and further results for IV identification.

3.4 Indicators

Let us now assume that two indicators i = δq + w and z = λq + r for q are available. The

errors w and r are assumed to be uncorrelated. Rearranging yields q = (1/δ)i − (1/δ)w and

substituting for q in (1) gives

y = βx+ (γ/δ)i + (u− (γ/δ)w). (10)

The other indicator z can now serve as an instrument for i. One could of course also use any

other valid instrument for the indicator i.

Figure 5 (a) shows the graph for the multiple indicator strategy when the omitted variable

q is a confounder. The IV formula for β in the regression of y on x and i is

βIV
yx.i =

σziσxy − σxiσzy
σ2
xσzi − σxiσzx

. (11)

Path tracing gives σzi = λδ, σxy = β + αγ, σxi = αδ, σzy = λγ + λαβ, and σzx = λα. Plugging

into (11) shows that βIV
yx.i = β.
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Figure 5: Multiple indicator solution when q causes i and z as in (a), and (b) when i causes q.

Note that this IV strategy does, unlike instrumenting x, not depend on the direction of the

causal link between x and q as long as i depends on q. To see this just replace q → x with x → q

in case (a) in Figure 5.

However, when i causes q instead, i.e. q = δi+ v, then instrumenting i with z yields β only

when q is a confounder. The strategy breaks down when x causes q as in case (b). Then one

obtains the total effect β + αγ. In the later case the strategy fails because z instruments the

ineffective conditioning variable i.

4 Conclusion

The graphical analysis presented in this note discussed some simple examples where proxy vari-

able and instrumental variable strategies to solve an omitted variable problem fail. The examples

demonstrate that the effectiveness of proxy and instrumental variable strategies depends cru-

cially on the causal links between explanatory variables and omitted variables. These links must

be properly taken into account.
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