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1. Introduction

Predicting volatility of financial assets is an important task for the purposes of asset
pricing, portfolio allocation and risk management. There is a long-standing discussion
about what volatility measures predict the future volatility more efficient in various sce-
narios. Concerning option pricing GARCH models are usually compared with implied
and historical volatility, but still no consensus is reached.

Another fundamentally different way of volatility modeling is developed in stochastic
volatility models (SV). The main difference between them and GARCH-type models is
that the former contains an additional innovation term for volatility dynamics, which
may or may not be related to the returns’ innovations. Moreover stochastic volatility
models require more sophisticated estimation techniques based on simulations because
the closed-form solution is rarely exists. The examples of comparison of GARCH with
SV models can be found in (Danielsson, 1994) and (Shephard, 1996).

In more recent study of (Chuang et al., 2013) the above-mentioned volatility measures
(except SV) are compared with Markov switching multifractal model (MSM) introduced
in (Calvet and Fisher, 2004). Unlike GARCH or implied volatility the multifractal struc-
ture of MSM is able to capture not only the clustering feature of volatility process but
also the outliers and long-memory behavior of volatility. As a result the authors recognize
that MSM do outperforms the implied volatility in the out-of-sample performance.

Notably that like SV model MSM also incorporates uncertainty in the volatility pro-
cess but completely in different way than in SV (for details see Section 2). This resulted in
the fact that MSM belonging to the stochastic volatility class has a closed-form likelihood
function and can be estimated via usual optimization procedure.

The paper is aimed at the comparison of two stochastic volatility models which both
model the volatility via random process but substantially differ in terms of computational
efforts. However, GARCH models are used as a traditional benchmarks in volatility
estimation and forecasting.

The paper is organized as follows. Section 2 describes the set of models to be com-
pared. Section 3 presents the data and parameter estimates for the chosen models.
Section 4 considers the goodness-of-fit and forecast performance issues and discuss the
results. Section 5 concludes.

2. Models’ description

From more than three hundred ARCH-type models (Hansen and Lunde, 2005) we pick
four: ordinary GARCH, exponential GARCH, Glosten-Jagannathan-Rünkle model (GJR)
and threshold ARCH. For all these models we estimate simple specification with one
ARCH and one GARCH terms. The choice of the models is induced by the prevalence of
this specifications in the financial literature, especially when it comes to the applicability
of the results in practice.

We also take original stochastic volatility (or as adopted in literature—the stochastic
volatility) and Markov switching multifractal.



2.1 GARCH

All GARCH-type model have similar set up, distinguishing on the volatility equations.
Firstly we have a time series xt of T daily log returns:

xt = E(xt|Ft−1) + yt , t = 1, . . . , T,

where E(xt|Ft−1) is a conditional mean of daily returns xt at time t conditional on all
available at t − 1 information Ft−1, yt are usually called innovations. Returns xt are
calculated as a logarithm of today price divided by the price yesterday: xt = log( Pt

Pt−1

).

Conditional mean E(xt|Ft−1) is modelled by ARMA(p,q), see (1).

E(xt|Ft−1) = ω +

p∑

i=1

αixt−i +

q∑

j=1

βjεt−j , (1)

where parameters αi and βj are the ith-order autoregressive (AR) and jth-order moving
average (MA) terms. Consequently innovations yt have zero mean and a time-dependent
variance σ2

t , which is modeled by (2) and (3).

yt = σtηt , ηt ∼ N(0, 1) (2)

σ2
t = c+

k∑

i=1

κiy
2
t−i +

m∑

j=1

µjσ
2
t−j , (3)

where parameter κi represents ith-order ARCH term, µj—the jth-order GARCH term,
ηt are standardized innovations or standardized residuals, which are normally distributed
with zero mean and unit variance. ARCH term in (3) allows to capture the effects of
volatility clustering and GARCH term is responsible for volatility autocorrelation esti-
mated by µj.

Exponential GARCH (Nelson, 1991) also allows to capture the leverage effect (i. e.
the asymmetric volatility response to negative and positive returns) and ensure simpler
evaluation of shock persistence (4).

ln(σ2
t ) = c+

k∑

i=1

(κiηt−i + γi (|ηt−i| − E(|ηt−i|))) +
m∑

j=1

µj ln(σ
2
t−j), (4)

where ηt = yt/σt are standardized innovations, γi estimates the leverage effect.
The GJR model (Glosten et al., 1993) solves the same problem of leverage effect

modeling via the use of the indicator function I(·) (5).

σ2
t = c+

k∑

i=1

(
κiy

2
t−i + γiI(yt−i)y

2
t−i

)
+

m∑

j=1

µjσ
2
t−j, (5)

where function I takes the value of 1 if yt−i ≤ 0 and 0 otherwise, γi again estimates the
leverage effect.

The difference of TARCH model (Zakoian, 1994) is in the fact that it’s formulated for



standard deviations σt (6).

σt = c+
k∑

i=1

κi (|yt−i| − γiyt−i) +
m∑

j=1

µjσt−j. (6)

This specific form allows different reactions of the volatility to different signs of the lagged
innovations yt−i

1.
In order to cover the case where volatility demonstrates non-stationary behavior, we

include integrated GARCH (IGARCH, (Engle and Bollerslev, 1986)) in our comparison
list. This model assumes that the persistence of volatility implementing the following
coefficient restriction to (3):

1−
k∑

i=1

κi −

m∑

j=1

µj = 0 (7)

The estimation issues of IGARCH has been discussed in (Engle et al., 1987; Bollerslev
et al., 1988).

In GARCH-type models there is only one source of uncertainty, ηt, which drives the
dynamics of both returns and volatility. It seems more naturally to include another
random term for volatility and state it as an autoregressive process. The subsection 2.2
describes this idea in details.

2.2 Stochastic volatility

The set up for the basic stochastic volatility model, see (Tsyplakov, 2010), is the follow-
ing: (8) and (9).

yt = exp(σt/2)ηt, (8)

σt = δ + φσt−1 + σεεt, (9)

where σt is the logarithm of variance, δ is its level, φ estimates the persistence, σε is the
variance of log-variance, yt and ηt have the same meaning as before. The process σt is
unobserved and usually interpreted as the latent time-varying volatility process. One of
the main difficulties in estimating this model is the impossibility of obtaining the closed-
form likelihood function. Parameters can be estimated by applying numerical methods
such as Markov Chain Monte Carlo simulations.

2.3 Markov switching multifractal

In Markov Switching Multifractal model (further MSM), introduced in (Calvet et al.,
1997), volatility also has its own source of uncertainty and consists of several volatility
components which follow a first-order Markov process, i. e. in each moment the volatility
component is equal to its previous value or is drawn from some fixed distribution with

1Smooth Transition GARCH, developed by (González-Rivera, 1998), can be considered as the gener-
alization of the threshold GARCH in the sense that the former allows more than two states of volatility.
We think that threshold GARCH is more appropriate to the Russian financial market because on in-
tegrated markets the prices dynamics is assumed to be smoother and on segmented markets the prices
usually evolve more discontinuously due to lower level of liberalization (Bekaert and Harvey, 1997)



a probability which is unique for each volatility component. The main difficulty a re-
searcher faces is the estimation of transition probability matrix for the Markov process
(for example, if a volatility component can take only two values, then k volatility com-
ponents generally needs to be parameterized by 22k variables). In MSM this problem is
solved by introducing model restrictions taken from multifractal literature. Due to them
the number of parameters to be estimated is only five. Moreover closed-form likelihood
function and standard procedure of maximum likelihood estimation are available.

The dynamics of volatility is described in (10).

σ2
t = σ2

(
k̄∑

k=1

Mk,t

)
, (10)

where σ is a positive constant, Mk,t are nonnegative, statistically independent volatility
components, k̄ is the number of volatility components which is considered as the order of
MSM model. Due to their Markov chain nature each component can be in its previous
state with probability 1− γk or switch with probability γk, (11).

Mk,t =

{
M with probability γk

Mk,t−1 with probality 1− γk
, (11)

where k = 1, . . . , k̄, M should be nonnegative and have unit mathematical expectation.
In the simplest case distribution of M is a sum of two Dirac delta functions δ(·) (12).

f(M) = 0.5δ (M −m0) + 0.5δ (M −m1) ,m1 = 2−m0, (12)

Each component has its own switching probability γk defined by (13).

γk = 1− (1− γ1)
bk−1

, (13)

where γ1 ∈ (0, 1), b ∈ (1,∞). This means that γk < 1 for all k = 1, . . . , k̄ and all γk are
ordered as follows: γ1 < γ2 < · · · < γk̄. Hence component M1,t has the lowest switch-
ing probability and Mk̄,t–the highest. Components with low switching probabilities are
called low-frequency components and capture the most persistence variations of volatility,
while high-frequency components capture short-run dynamic of volatility. This feature
distinguishes MSM from many other models where short-run and long-run variations of
volatility are modeled separately.

The details of estimation of MSMmodel by pseudo maximum likelihood method, small
sample properties of the estimator and simulation results are exhaustively discussed in
(Calvet and Fisher, 2004).

3. Empirical results

We apply MLE to the GARCH and MSM models and MCMC estimator to the stochastic
volatility model and obtain the preferred specifications for three financial time series—two
stocks and an exchange rate.



3.1 Data description

The empirical analysis uses daily prices of Aeroflot company stocks (AFLT), Gazprom
company stocks (GAZP) and exchange rate for ruble against US dollar (USD/RUB),
taken from (Yahoo! Finance 2015). Data covers the period from 01.01.06 to 16.05.12 and
includes 5153 observations.

The choice of the assets is determined by the specifics of Russian financial market, and
Russian stock market in particular, which belongs to developing markets. As we wrote
above, the character of asset price movement is connected with the degree, to which the
financial market is integrated in the global market. We chose Gazprom and Aeroflot
since they, in our opinion, can be considered as one of the assets, which are closest to the
global financial market. And so they can successfully be used in GARCH and stochastic
volatility modeling.

3.2 Estimation results

The parameter estimates of four GARCH-type models are presented in Tables I, II and
III. The log returns conditional mean, see Equation (1), for all series is modeled as
an autoregressive process of order 1. Each volatility equation includes one ARCH and
one GARCH term and a term for measuring the leverage effect when it’s available, see
Equations (3), (4), (5), (6) and (7). µ1 for IGARCH has no standard error since µ1 is
calculated from restriction (7).

Table I: GARCH parameter estimates for Aeroflot

GARCH EGARCH GJR TARCH IGARCH

ω 0.0004 0.0000 0.0000 −0.0001 0.0004
(0.0008) (0.0002) (0.0008) (0.0006) (0.0007)

α1 0.0926∗ 0.0990∗∗ 0.1012∗∗ 0.0806∗ 0.0980∗∗∗

(0.0480) (0.0435) (0.0454) (0.0419) (0.0369)
c 0.0002∗∗ −1.2932 0.0002∗∗ 0.0030 0.0001∗∗∗

(0.0001) (0.7995) (0.0001) (0.0040) (0.0000)
κ1 0.4648∗∗∗ −0.0675 0.3306∗ 0.2744∗∗ 0.4232∗∗∗

(0.1368) (0.0532) (0.1871) (0.1278) (0.0906)
µ1 0.3582∗∗ 0.8222∗∗∗ 0.3869∗∗ 0.6864∗∗∗ 0.5768

(0.1617) (0.1070) (0.1850) (0.2515) (.−)
γ1 0.5189∗∗∗ 0.2253 0.1212

(0.1178) (0.1735) (0.1375)

LL 2543.4536 2556.3991 2545.9232 2552.2372 2539.5482
AIC −5076.9072 −5100.7982 −5079.8464 −5092.4743 −5071.0964
BIC −5051.9836 −5070.8899 −5049.9381 −5062.5660 −5051.1575
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

We begin by examining the conditional mean equations. The lagged log returns co-
efficients are significant only for Aeroflot data, meaning that Gazprom and the exchange
rate exhibit negligible autocorrelation in conditional mean. On the other hand the auto-
correlation in volatility tends to be strongly significant (at 5% level or less) in all cases



Table II: GARCH parameter estimates for Gazprom

GARCH EGARCH GJR TARCH IGARCH

ω 0.0005 −0.0003 0.0000 −0.0005 0.0005
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007)

α1 −0.0042 0.0007 0.0020 0.0005 −0.0048
(0.0310) (0.0301) (0.0301) (0.0298) (0.0325)

c 0.0000∗∗ −0.1420 0.0000∗∗∗ 0.0007∗∗∗ 0.0000∗∗∗

(0.0000) (0.0269) (0.0000) (0.0002) (0.0000)
κ1 0.1066∗∗∗ −0.0546 0.0586∗∗∗ 0.1129∗∗∗ 0.1179∗∗∗

(0.0261) (0.0250) (0.0185) (0.0234) (0.0185)
µ1 0.8784∗∗∗ 0.9794∗∗∗ 0.8719∗∗∗ 0.8902∗∗∗ 0.8821

(0.0189) (0.0037) (0.0264) (0.0218) (.−)
γ1 0.2072∗∗∗ 0.0965∗∗ 0.2876∗∗

(0.0377) (0.0480) (0.1276)

LL 2410.1991 2407.5094 2416.5774 2408.8917 2408.6767
AIC −4810.3982 −4803.0188 −4821.1548 −4805.7833 −4809.3534
BIC −4785.5164 −4773.1607 −4791.2967 −4775.9252 −4789.4480
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table III: GARCH parameter estimates for USD/RUB

GARCH EGARCH GJR TARCH IGARCH

ω −0.0003 −0.0002 −0.0002 −0.0002 −0.0003∗∗∗

(0.0004) (0.0001) (0.0032) (0.0000) (0.0001)
α1 0.0408 0.0371 0.0441 0.0367 0.0405

(0.0640) (0.0368) (0.1839) (0.0298) (0.0288)
c 0.0000 −0.0473 0.0000 0.0000 0.0000∗∗∗

(0.0000) (0.0076) (0.0001) (0.0000) (0.0000)
κ1 0.0760 0.0648∗∗∗ 0.0974 0.0616∗∗∗ 0.0772∗∗∗

(0.4479) (0.0187) (2.1944) (0.0134) (0.0090)
µ1 0.9229∗∗ 0.9944∗∗∗ 0.9367 0.9498∗∗∗ 0.9228

(0.4056) (0.0006) (1.8292) (0.0133) (.−)
γ1 0.1364∗∗∗ −0.0729 −0.5741

(0.0214) (0.1725) (0.1852)

LL 6097.4303 6106.4104 6109.6509 6101.5368 6097.6928
AIC −12184.8606 −12200.8207 −12207.3018−12191.0736 −12187.3856
BIC −12158.2978 −12168.9454 −12175.4264−12159.1983 −12166.1354
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



Table IV: Stochastic volatility parameter estimates for three assets

AFLT GAZP USD/RUB

δ −8.2330 −7.9188 −11.0047
(0.1082) (0.4202) (0.2241)

φ 0.8132∗∗∗ 0.9818∗∗∗ 0.9669∗∗∗

(0.0304) (0.0076) (0.0124)
σε 0.7278∗∗∗ 0.1906∗∗∗ 0.2981∗∗∗

(0.0626) (0.0276) (0.0526)
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

except GJR model for USD/RUB. We also observe substantial leverage effect, estimated
by EGARCH model, in all three series. According to Schwarz information criterion re-
ported in the last row of Tables I–III, GJR model provides the highest goodness of fit for
Gazprom stocks and USD/RUB exchange rate, EGARCH—for Aeroflot stocks.

The parameter estimates for the stochastic volatility model in Equation (9) are pre-
sented in Table IV. We use MCMC sampler described in detail in (Kastner and Frühwirth-
Schnatter, 2014). Following the recommendations in (Frühwirth-Schnatter and Wagner,
2010) we define the prior distribution of δ as a Gaussian distribution with mean equals
to -10 and variance equals to 1. The prior for persistent coefficient φ is beta distribution
with parameters 20 and 1.1.

The latent volatility processes for the three series appear to be highly persistent due
to the φ coefficient is significant and close to one. The larger φ the lower σε is, meaning
that near unit root volatility process has lower unconditional variance in the estimated
model.

The estimation is held for eight different specifications of MSM(k̄) model with k̄ ranges
from 1 to 8. Interestingly, if k̄ = 1 one obtains a usual Markov model, where volatility
takes only two values: m0 and 2−m0. When k̄ > 1 number of volatility states grows as
2k̄ and reaches 256 in our calculations.

Table V contains the parameter estimates of MSM(k̄) model and the value of log
likelihood function, labeled as ”LL“.

We begin by examining the Aeroflot data. The multiplier parameter m0 tends to
decline with k̄ (with some exceptions) because when the number of volatility components
increases, they are able to capture the fluctuations in volatility without much variability in
themselves. The estimates of σ vary across k̄ with no particular pattern. As the switching
probability γbark is concerned its reciprocal characterizes the average length of the shortest
volatility cycle. When k̄ = 1 the only Mt,1 has a duration of approximately two months.
As k̄ increases γbark tends to grow until the shortest volatility cycle declines to about
a day and a half. The frequency parameter b increases with k̄ but not monotonically,
implied that the spacing between switching probabilities becomes larger, when number of
volatility components grows. The other assets generate parameters with similar behavior.
m0 tends to decrease with k̄ in all cases, the magnitude of m0 varies in approximately
the same range for all assets.

For stock log returns the log likelihood function reaches its maximum if k̄ = 4. In
case of currency rate the log likelihood function tends to grow with k̄, what is compatible



Table V: MSM parameter estimates

k̄ 1 2 3 4 5 6 7 8

AFLT

b 2.4990 1.0100 4.2670 4.8864 9.7742 5.7669 5.7971 5.8032
γk̄ 0.0164 0.1330 0.5683 0.6457 0.3381 0.7070 0.7093 0.7098
m0 1.9994 1.7811 1.6553 1.6173 1.7119 1.6205 1.6205 1.6205
σ 0.8760 0.0304 0.0250 0.0332 0.1546 0.0891 0.1448 0.2351
LL 3719.38 3965.91 3973.23 3978.79 3971.78 3976.35 3975.64 3974.94

GAZP

b 2.5046 2.6766 2.9058 4.3465 3.5778 4.6400 4.3450 3.9919
γk̄ 0.0143 0.0225 0.0458 0.1349 0.0479 0.0612 0.0579 0.1545
m0 1.9993 1.6481 1.6124 1.4933 1.6142 1.6153 1.6155 1.4618
σ 0.8768 0.0469 0.0378 0.0409 0.0986 0.1622 0.1274 0.0195
LL 3484.92 3708.28 3725.70 3729.22 3723.39 3722.79 3723.66 3727.51

USD/RUB

b 2.5093 1.0100 8.4035 3.5970 4.0528 3.7041 2.5883 4.3180
γk̄ 0.0131 0.3030 0.7893 0.8763 0.6887 0.9900 0.9557 0.9900
m0 2.0000 1.8039 1.7021 1.6379 1.7258 1.7009 1.4798 1.5031
σ 0.8763 0.0062 0.0064 0.0058 0.0140 0.0068 0.0054 0.0046
LL 7638.10 8019.33 8102.25 8097.64 8084.44 8092.40 8117.16 8125.73

with the results in (Calvet and Fisher, 2004).
After estimating MSM models of different orders we need to choose one of them for

each asset. The usual way to compare models in-sample is comparing them by information
criteria, but it’s correct if considerated models are nested. MSM with different k̄ are non-
nested, therefore we implement model selection procedure presented in (Vuong, 1989).
Vuong test for model selection resulted in final sets of parameters for all three financial
assets.

The null hypothesis of Vuong test is in the fact that two non-nested models fit the
data equally well.

We take MSM(k̄) with the highest log likelihood as the alternative. Table VI repre-
sents the results of model selection procedure.

For AFLT stocks the null hypothesis is rejected on 5% level for models with k̄ =
1, 2, 6, 7 and 8. It means that MSM(4) with the highest log likelihood outperforms the
above mentioned specifications. The situation with GAZP is slightly different. Only MSM
with k̄ = 1 and 2 reveal poorer performance than the best for GAZP MSM(4) model. As
for USD/RUB the hypothesis of equal goodness of fit is rejected for all k̄, what leads us to
the fact that the more volatility components are in the model specification for currency
rate, the better this model explains the data.

Willing to decrease the computational costs we choose for each asset the model with
minimum possible order which performs at least not worse than the model with maximum
value of likelihood function. To sum up, the selected specifications are MSM(3) for
Aeroflot and Gazprom and MSM(8) for the exchange rate.



Table VI: Results of Vuong test

k̄ 1 2 3 4 5 6 7 8

AFLT

V −6.5241 −0.3239 −0.1396 − −0.1762 −0.0612 −0.0792 −0.0967
p-value 0.0000 0.0499 0.1656 − 0.0542 0.0318 0.0201 0.0117

GAZP

V −6.1615 −0.5281 −0.0889 − −0.1471 −0.1621 −0.1401 −0.0432
p-value 0.0000 0.0023 0.2380 − 0.1105 0.0711 0.1191 0.3126

USD/RUB

V −10.9038 −2.3792 −0.5251 −0.6282 −0.9233 −0.7452 −0.1916 −
p-value 0.0000 0.0000 0.0045 0.0014 0.0000 0.0030 0.0371 −

4. Models comparison

In the previous section we estimate four GARCH models, a stochastic volatility model
and pick out MSM model specifications by Vuong test. We can not run likelihood ratio
or similar tests to implement in-sample comparison, because the considered models are
non-nested. But it’s possible to use probability integral transform (PIT) in this case,
(Swanepoel and Van Graan, 2002).

4.1 In-sample analysis

PIT is based on a simple idea that If U0 is a uniformly distributed random variable (with
values in [0,1]), then the random variable X = F−1(U) has the cumulative distribution
function F . Vice versa if X has the cumulative distribution function F , random variable
F (X) is uniformly distributed on the interval [0,1]: F (X) ∼ U(0, 1).

A common assumption in all the models in our paper is that the log returns are
distributed normally with zero mean and some time-dependent variance. According to
PIT applying Gaussian cumulative distribution function with zero mean and estimated
variance to the log returns we should obtain the uniformly distributed random variable.
Using Kolmogorov-Smirnov test we check how close the obtained random variable is to
the uniform distribution. Table VII presents the results.

The first column contains the name of the volatility model (the first four are GARCH
models, the last two—stochastic volatility models). The second and the third columns
present the Kolmogorov-Smirnov test statistics and its p-value respectively. Evidently,
GARCH models fail to fit the assumption of normally distributed log returns. On the
other hand, stochastic volatility models exhibit much better performance according to
KS statistics and the null is not rejected for the log returns of stocks in case of basic
stochastic volatility model.

4.2 Out-of-sample analysis

We now investigate the out-of-sample performance of the competing models over 1-day
forecasting horizon. For each asset we estimate six models and leave 500 observations
(or about one third of the sample) for out-of-sample comparison. The comparison is



Table VII: Kolmogorov-Smirnov test for probability integral transform

stand exp gjr thresh integr msm stochvol

AFLT

KS 0.9910 0.9878 0.9904 0.9857 0.0930 0.1216 0.0320
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2177

GAZP

KS 0.9856 0.9795 0.9817 0.9790 0.0492 0.0970 0.0250
p-value 0.0000 0.0000 0.0000 0.0000 0.0111 0.0000 0.5154

USD/RUB

KS 0.9637 0.9631 0.9642 0.9877 0.0777 0.0898 0.0889
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

held in two ways. The first one uses such classical forecast performance measures of log
returns and the second one employs Mincer-Zarnowitz regression in order to evaluate the
volatility forecast accuracy directly.

Out-of-sample comparison is conducted using such measures as mean squared error
(MSE), mean absolute error (MAE) and directional accuracy (DA) of log returns. The
latter is calculated as percent of cases when the signs of real and predicted log returns
match: DA = 1/T

∑T

t=1
I(sgn(yt) = sgn(ŷt)). Evidently, better models reveal lower MSE

and MAD and higher DA.

Table VIII: Comparing forecast accuracy

stand exp gjr thresh integr msm stochvol

AFLT

MSE 0.6631 0.6159 0.6515 0.6225 0.6864 0.3167 0.3311
MAD 0.5005 0.4882 0.4977 0.4838 0.5061 0.4009 0.2772
DAC 0.3106 0.3186 0.3267 0.3166 0.3327 0.9238 0.7555

GAZP

MSE 0.5950 0.5748 0.5752 0.5720 0.6045 0.5463 0.5039
MAD 0.4344 0.4303 0.4329 0.4304 0.4437 0.5787 0.3541
DAC 0.2966 0.2926 0.3287 0.2946 0.2966 0.8116 0.5912

USD/RUB

MSE 0.0062 0.0061 0.0061 0.0061 0.0062 0.0046 0.0049
MAD 0.0421 0.0432 0.0423 0.0419 0.0423 0.0262 0.0354
DAC 0.3046 0.3046 0.3146 0.3206 0.3046 0.9038 0.6192

According to Table VIII MSE is substantially lower for stochastic volatility than for
GARCH models. MAD shows similar results except for Gazprom stock returns forecast



where MSM demonstrates higher MAD than GARCH models. As for directional accu-
racy GARCH models match the actual sign of returns in about 30% of cases, what is
essentially lower than approximately 65% and 87% for original stochastic volatility and
MSM correspondingly.

The idea of Mincer-Zarnowitz regression is pretty simple: using ordinary least squares
we estimate the linear projection of squared log returns on the constant and one-day
forecasts, Equation (14).

y2t = α + βσ2
t (14)

Here squared log returns y2t are proxies for volatility. Unbiased forecasts yield α = 0
and β = 1. Standard errors of α and β are corrected by HAC variance estimator (Newey
and West, 1987).

Table IX: Mincer-Zarnowitz regression

stand exp gjr thresh integr msm stochvol

AFLT

α 0.0002∗∗∗ 0.0001∗ 0.0002∗∗∗ 0.0001∗∗ 0.0002∗∗∗−0.0006∗∗∗−0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)
β 0.3582∗∗∗ 0.4931∗∗∗ 0.3988∗∗∗ 0.4493∗∗∗ 0.3367∗∗∗ 1.4419∗∗∗ 1.9981∗∗∗

(0.0844) (0.0944) (0.0817) (0.1011) (0.0760) (0.0472) (0.0742)

R2 0.0349 0.0520 0.0456 0.0381 0.0379 0.6517 0.5926
R2

adj 0.0330 0.0501 0.0437 0.0362 0.0360 0.6510 0.5918

GAZP

α 0.0001 0.0000 0.0000 0.0000 0.0001∗∗ −0.0008∗∗∗−0.0002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
β 0.5762∗∗∗ 0.7294∗∗∗ 0.7420∗∗∗ 0.7803∗∗∗ 0.5102∗∗∗ 1.5348∗∗∗ 1.7679∗∗∗

(0.1429) (0.1325) (0.1353) (0.1391) (0.1265) (0.0817) (0.1607)

R2 0.0316 0.0574 0.0570 0.0595 0.0316 0.4149 0.1954
R2

adj 0.0297 0.0555 0.0551 0.0576 0.0297 0.4137 0.1938

USD/RUB

α 0.0000∗∗ 0.0000 0.0000∗∗ 0.0000 0.0000∗∗ −0.0001∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.6267∗∗∗ 0.6692∗∗∗ 0.6436∗∗∗ 0.7196∗∗∗ 0.6176∗∗∗ 4.3389∗∗∗ 1.9082∗∗∗

(0.1448) (0.1449) (0.1341) (0.1569) (0.1427) (0.1198) (0.1311)

R2 0.0362 0.0411 0.0442 0.0405 0.0363 0.7248 0.2985
R2

adj 0.0343 0.0392 0.0423 0.0386 0.0343 0.7242 0.2971
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table IX reports the results. For all assets α is either statistically insignificant or
very close to zero, what provides evidence of unbiased forecasts. On the other hand, the
slope coefficient β is significant in all cases and does not equal to one. Interestingly, that
GARCHmodels tend to overestimate volatility due to β < 1 for all GARCH specifications.



Stochastic volatility models on the contrary give understated forecasts. Consequently it
could be more appropriate to use GARCH when one wants to estimate the upper bound
of tomorrow volatility and stochastic volatility otherwise.

5. Conclusion

The article proposes the thorough investigation of in-sample and out-of-sample per-
formance of four GARCH and two stochastic volatility models. We apply maximum
likelihood method and Markov Chain Monte Carlo simulation to estimate the parame-
ters and obtain one-day forecasts of ordinary GARCH, exponential GARCH, Glosten-
Jagannathan-Rünkle model, threshold ARCH, Markov switching multifractal and the
stochastic volatility models. Using probability integral transform, traditional forecast
performance measures (MSE, MAD and DAC) and Mincer-Zarnowitz regression we com-
pare the above mentioned models and come to the conclusion that in most cases stochastic
volatility models outperform GARCH both in explanation and prediction aspects. One
of the most important results is that original stochastic volatility model is the only model
where the log returns normality assumption is not rejected. We also demonstrate that
GARCH models tend to overestimate the volatility forecasts in contrast to stochastic
volatility, where the forecasts are understated. The research perspectives could imply
involving multi-step forecasts in evaluating the out-of-sample performance of volatility
models and expanding the set of assets under consideration.
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