
   

 

 

 

Volume 36, Issue 4

 

Does Asymmetry or Incomplete Information on Firms' Costs Yield Spatial

Agglomeration?

 

Sung-chi Lin 

Department of Economics, National Taipei University

Hsiao-chi Chen 

Department of Economics, National Taipei University

Shi-miin Liu 

Department of Economics, National Taipei University

Abstract
This paper extends Hotelling's (1929) spatial game by allowing firms to have asymmetric costs or incomplete

information about their rivals' costs. In both cases, there exist equilibria under specific conditions. At the equilibria, the

cost-efficient firm will locate at the center of the market and earn positive profit, but the less efficient firm may or may

not locate at the market center and produces zero output. Thus, our results do not support the findings of Hotelling

(1929) and d'Aspremont et al. (1979).

The first author is a Ph.D. candidate, and the last two authors are Professors in the Department of Economics at National Taipei University,

151, University Road, San-Shia District, New Taipei City 23741, Taiwan, ROC. We would like to thank Associate Editor Parimal Bag and an

anonymous referee for their valuable comments.

Citation: Sung-chi Lin and Hsiao-chi Chen and Shi-miin Liu, (2016) ''Does Asymmetry or Incomplete Information on Firms' Costs Yield

Spatial Agglomeration?'', Economics Bulletin, Volume 36, Issue 4, pages 2010-2027

Contact: Sung-chi Lin - s89761104@webmail.ntpu.edu.tw, Hsiao-chi Chen - hchen@mail.ntpu.edu.tw, Shi-miin Liu -

shimiin@mail.ntpu.edu.tw.

Submitted: July 06, 2016.   Published: November 09, 2016.

 

   



 

 
 

1. Introduction 

This paper expands Hotelling’s (1929) spatial game by allowing firms to have asymmetric costs 

or incomplete information about their rivals’ costs. We find that the equilibria will exist under 

specific conditions. At the equilibria, the cost-efficient firm will locate at the market center and 

capture the entire market with positive profits, while the less efficient firm may or may not locate at 

the market center and produces zero output. Our results suggest neither Hotelling’s (1929) nor 

d’Aspremont et al.’s (1979) equilibrium existent in spatial games if firms have asymmetric costs 

and/or incomplete information about their rivals’ costs. 

The relationships between this study and the relevant literature are as follows. Hotelling (1929) 

introduces a spatial variable into a duopoly model and constructs a location-then-price game. He 

claims that the two firms would agglomerate at the market center, set product prices higher than their 

marginal costs, and have positive profits, which differ from Bertrand’s (1883) outcomes. However, 

d’Aspremont et al. (1979) prove that Hotelling’s (1929) equilibrium does not exist because the 

agglomeration will result in a tougher price competition and firms’ location dispersion. Hotelling’s 

(1929) paper assumes that consumers are uniformly distributed over a line with unit length and buy 

only one unit goods from one firm, the transport cost is a linear function of distance, and firms 

produce homogeneous products and compete in prices. To show the existence of Hotelling’s (1929) 

equilibrium, the subsequent researchers relax these assumptions and obtain equilibria similar to 

Hotelling’s (1929) or not. For instance, d’Aspremont et al. (1979) replace the linear transport cost 

function with a quadratic one, and show that both firms would survive with positive profits and 

locate at the opposite ends of a line. Hamilton and Thisse (1989), Anderson and Neven (1991), and 

Pal (1998) demonstrate that when competing in quantities, the firms would agglomerate at the 

market center at equilibria. Assuming price competition and circle location, Eaton and Wooders 

(1985), Kats (1995), and De Frutos et al. (2002) display that firms would locate at equal distance in a 

circle at equilibria. All the models above presume that firms’ cost are the same and known to 

everyone, but we consider asymmetry and/or incomplete information about firms’ costs.   

On the other hand, the works of Dastidar (1995), Spulber (1995), Wang and Yang (2004), Neary 

(1994), Clarke and Collie (2006), and Lofaro (2002) explore the impacts of firms’ asymmetric costs 



 

 
 

or incomplete information about firms’ costs under various set-ups. In contrast, we explore the same 

issue in spatial games.  

 

2. The Model 

We consider a typical Hotelling (1929) model on a line with length one and firms A and B 

producing a homogeneous product. Firm A’s marginal cost, 1c , is common information, while firm 

B’s marginal cost is known to itself only. Firm A can perceive that firm B’s marginal cost is either 

H
c2  with probability   or 

L
c2  with probability  1 , where  1 ,0 . Without loss of generality, 

we assume 0212  LH
ccc . If 0  or 1 , then our model has complete information with 

asymmetric costs of firms, while the model has incomplete information for (0,1)  . 

Firm A locates at distance a  from the left end of the line, firm B with 
H

c2  and 
L

c2  locates 

respectively at distances H
b  and L

b  from the right end of the line, where 0 ,  , 1 2H La b b  . 

Consumers are evenly distributed along the line. Each consumer purchases one unit of the 

homogeneous product in per unit time from the seller offering a lower delivered price, which equals 

the product price plus the transportation cost. The transportation cost is a linear function of the 

distance, and 0t   represents the transportation rate per unit distance. 

When firm A and firm B with 
H

c2  locate at the same point, i.e., 1H
a b  , the demand 

functions faced by them are respectively 

  1 2

1

1 2

0  if  ,
1

1   if  ,

H

H H

H

p p
q a b

p p


  







 and   2 1

2

2 1

1   if  ,
1

0   if  ,

H

H H

H

p p
q a b

p p


  







      (1) 

where 
1

p  and 
2

H
p  are the product prices set by firm A and firm B with 

H
c2 . As in Jehle and Reny 

(2011, p.190), if two firms with different costs set the same product price, the entire market will 

belong to the efficient one. However, if equally efficient firms set the same product price, they will  

share the market equally.
1
 By contrast, if firm A and firm B with 

H
c2  do not locate at the same point, 

i.e., 1 Hba , firm A will serve all the consumers at the left of point a  and those with length 

0Hx  at the right of point a . Similarly, firm B with 
H

c2  will serve all the consumers at the right 

                                                       
1
The tie-breaking rule is crucial in obtaining the equilibria. If firms with all kinds of cost levels set the same product 

prices, then they will share the market equally and no equilibrium exists. The proofs are available upon request. 



 

 
 

of point Hb  and those with length 0
H

y   at the left of point Hb . A consumer will be indifferent 

to buying from firm A or firm B with 
H

c2  if conditions  

1 HHH
byxa  and 1 2

H H H
p t x p t y                         (2) 

hold. Solving (2) yields  

 
t

ppbat
x

HH
H

2

1 21 
  and 

 
t

ppbat
y

HH
H

2

1 21 
 .           (3) 

Accordingly, equations in (3) imply that the demand functions for firm A and firm B with 
H

c2  are 

   
t

ppbat
baq

HH
HH

2

1
1 21

1


  and                             (4) 

   
t

ppbat
baq

HH
HH

2

1
1 21

2


 , respectively.                     (5) 

Similarly, when firm A and firm B with 
L

c2  locate at the same point, i.e., 1 Lba , the 

demand functions faced by them are respectively 

  1 2

1

1 2

0  if  
1

1   if  

L

L L

L

p p
q a b

p p


  







 and   2 1

2

2 1

1   if  
1

0   if  ,

L

L L

L

p p
q a b

p p


  







         (6) 

where 
L

p2  is the product price set by firm B with 
L

c2 . If firm A and firm B with 
L

c2  do not locate at 

the same point, i.e., 1 Lba , the demand functions faced by them are respectively 

   
t

ppbat
baq

LL
LL

2

1
1 21

1


  and                              (7) 

   
t

ppbat
baq

LL
LL

2

1
1 21

2


 .                                 (8) 

Thus, the (expected) profit functions of firm A, firm B with 
H

c2  and firm B with 
L

c2  are 

 

 

     
     
     
     

1 1

1 1

1 1 1

1 1

1 1

1 1 1

1 1 1
E

1 1 1

1 1 1 ,

H H L L

H H L L

H H L L

H H L L

q a b q a b

q a b q a b
p c

q a b q a b

q a b q a b

 

 


 

 

       

       
  

       

       









               (9) 

 
 
 

2

2 2 2

2

1

1

H H

H H H

H H

q a b
p c

q a b


 
  

 





 and                                (10) 



 

 
 

 
 
 

2

2 2 2

2

1

1 ,

L L

L L L

L L

q a b
p c

q a b


 
  

 





 respectively.                           (11) 

Based on the above, our two-stage Bayesian game for (0,1)   proceeds as follows. In the 

first stage, the two firms choose locations  ***  , , LH bba  to maximize their (expected) profits 

independently and simultaneously. Given the locations, both firms then choose prices  *

2

*

2

*

1  , , LH ppp  

to maximize their (expected) profits independently and simultaneously in the second stage. The 

concept of Bayesian Nash equilibrium (BNE) is adopted to characterize firms’ equilibrium behaviors. 

By contrast, if 0   or 1  , the two-stage game remains the same, but the concept of subgame 

perfect Nash equilibrium (SPNE) will be employed. All the equilibria are derived in the next section 

by backward induction.  

3. The Equilibria 

Given locations  LH bba  , , , firm A, firm B with 
H

c2 , and firm B with 
L

c2  will choose 

 *

2

*

2

*

1  , , LH ppp  to solve the following problems in the second stage. 

111

*

1   s.t.  E max   arg
1

cpp p   ,                                     (12) 

HHH

p

H
cpp H 222

*

2   s.t.    max  arg
2

  , and                               (13) 

LLL

p

L
cpp L 222

*

2   s.t.    max  arg
2

  ,                                    (14) 

where 1E , 
H

2  and 
L

2  are defined in equations (9)-(11), respectively.  

After deriving  *

2

*

2

*

1  , , LH ppp  and substituting them into firms’ (expected) profit functions, 

these firms will choose  *
,  ,  

H L
a b b
 

 to solve the problems of   

*

1
1
2arg    max  E   s.t.  0aa a   ,      

*

2
1
2

arg    max    s.t.  0H

H H H

b
b b   , and                                           

*

2
1
2

arg    max    s.t.  0L

L L L

b
b b   ,  

in the first stage. The equilibria under asymmetric costs and incomplete information are presented in 

Proposition 1 and Proposition 2, respectively. Their proofs are provided in Appendix.    

 



 

 
 

Proposition 1. Suppose 1 . If    *

12 5.2 HH btcc   holds, the subgame perfect Nash equilibria 

are     * *

1 2 2

*
1 21.5

2

1 1
,  0, 

2 2
,  ,  ,  ,  ,  H H H

H Ht b c c

a b p p c
 

 
 
 

                  
 with firms’ equilibrium outputs 

   0 ,1 , *

2

*

1 Hqq  and equilibrium profits  *

2

*

1  , H
*

1 21.5

2
0,  0

H Ht b c c 
 
 

   
   
 

. By contrast, if 0  , 

the subgame perfect Nash equilibria are     * *

1 2
,  ,  ,  

L L
a b p p
    

*
1 2

1

1.5

2

1 1
0, ,

2 2
,  ,

Lt a c c

c

 
 
 

                 
  with firms’ equilibrium outputs    * *

1 2
,  0,1L

q q   and 

equilibrium profits  * *

1 2,  L 
*

2 11.5

2
0, 0

Lt a c c 
 
 

   
   
 

 when    *

21 5.2 atcc
L   holds.  

Under Hotelling’s (1929) set-up with asymmetric costs of firms, Proposition 1 shows the 

existence of SPNEs if the marginal cost of firm B is larger than that of firm A. At equilibria, the 

efficient firm will locate at the market center and capture the entire market with positive profit, while 

the less efficient firm will not locate at the market center and produce zero output. This is explained 

below. If    *

12 5.2 HH btcc   holds, the product price set by firm A, *

1

*
1 21.5

2

H Ht b c c

p

 
 
 

  
 , is the 

equilibrium price consisting of the marginal cost (
1c ) and a mark-up 

*
1 21.5

2

H Ht b c c 
 
 

   
  
 

. Thus, the 

delivered price of firm A,  * *1
2

*
1 22.5 3

2
H

H Ht b c c

p t b

 
 
 

  
   , is lower than firm B’s marginal cost 

( Hc2 ) due to  *

2 1( ) 2.5H H
c c t b   , wherever firm B’s location is. Obviously, firm A will capture 

the entire market and firm B will exit the market. Condition  *

2 1( ) 2.5H H
c c t b    is needed, 

otherwise both firms can earn positive profits by setting product prices larger than their marginal 

costs. That is because different locations allow the firms to conduct not fierce price competition, 

hence their profits will strictly increase as their locations approach the market center. Accordingly, it 

is optimal for both firms to locate at the market center. This will violate the hypothesis of 1 Hba , 

and result in no equilibrium. 

 



 

 
 

Proposition 2. Suppose (0,1)  . If  *

2 1( ) 2.5H H
c c t b    holds, the Bayesian Nah equilibria are

    * * * * * *

1 2 2 2

* *
1 2 1 21.5 1.5

2 2

1 1 1
,  0, ,  

2 2 2
,  ,  ,  ,  ,  ,  ,  ,  H L H L H

H H H Ht b c c t b c c

a b b p p p c

   
   
   

                     
. 

Firms’ equilibrium outputs    1 ,0 ,0 , , *

2

*

2

*

1 LH qqq   and equilibrium profits  * * *

1 2 2,  ,  H L     

*
1 2 21.5 2

2
0,  0,  

H H Lt b c c c 
 
 

     
      

  will occur with probability (1 ) , and firms’ equilibrium outputs 

   0 ,0 ,1 , , *

2

*

2

*

1 LH qqq  and equilibrium profits  * * *

1 2 2

*
1 21.5

2
,  ,  ,  0,  0H L

H Ht b c c

  
 
 
 

   
   
 

 will occur 

with probability  . 

 

Under Hotelling’s (1929) set-up with one firm’s cost being private information, Proposition 2 

displays the existence of BNEs if firm B with a large enough 2

H
c . At equilibria, firm A and firm B 

with 
2

L
c  will still agglomerate at the market center, but firm B with 2

H
c  will choose any location 

except the market center. Moreover, firm B with 2

H
c  will set the product price equal to its marginal 

cost, while firm A and firm B with 
2

L
c  will set the product price lower than 2

H
c  but higher than 

1c . 

The intuition is as follows. Given firm A’s product price 
1p , it is optimal for firm B with 

2

L
c  to 

choose the same product price, i.e., 2 1

L
p p . That is because it will get zero profit if choosing

2 1

L
p p , and obtain non-negative profit  2 2 2

0
L L L

p c     if choosing 2 2 1
,  

L L
p c p   . Thus, 

2 1

L
p p  is the best reply of firm B with 

2

L
c . Then, our incomplete-information game is equivalent to 

the complete-information one with firm A and firm B having 2

H
c . As shown by Proposition 1, firm A 

will locate at the market center and set the product price higher than 
1c , while firm B with 2

H
c  will 

not locate at the market center and produce zero output. Although firm B with 
2

L
c  will choose the 

same location and product price as firm A’s, firm A will still earn zero profit because it is less 

efficient than firm B with 
2

L
c .  

In sum, Propositions 1 and 2 show that only the efficient firm will survive in the market at the 

equilibria of spatial games if firms have asymmetric costs or incomplete information about their 

rivals’ costs. Thus, neither Hotelling equilibrium nor d’Aspremont et al.’s equilibrium is supported 



 

 
 

by our models.   

4. Extensions 

In this section, we extend our model by allowing firm A’s cost unknown to firm B as well. Let 

both firms’ marginal costs be either 2

H
c  with probability   or 

2

L
c  with probability (1 )  with 

(0,1)  . A two-stage game similar to that in Section 2 can be constructed. In the first stage of the 

game, firms A and B choose respective locations  * *,  H L
a a  and  * *,  H L

b b to maximize their 

expected profits independently and simultaneously. Given the locations, firms A and B choose 

respective prices  * *

1 1,  H L
p p  and  * *

2 2,  H L
p p  to maximize their expected profits independently and 

simultaneously in the second stage of the game. The associated results are presented below and their 

proofs are available upon request.  

 

Proposition 3. In a location-then-price game with both firms having incomplete information about 

their rivals’ marginal costs, there exists no Bayesian Nash equilibrium.  

  

The intuition of Proposition 3 is simple. Under the current set-up, firm A will regard firm B’s 

marginal cost as 
2 2( ) (1 )H L

E c c c    , and so will firm B regard firm A’s. Then, our game is 

equivalent to a typical Hotelling model with two firms having the same marginal cost. Thus, the 

arguments of d’Aspremont et al. (1979) apply and no equilibrium exists. However, if firm A’s 

marginal cost is 
1

H
c  or 

1

L
c  and firm B’s marginal cost equals 

2

H
c  or 

2

L
c  with unequal 

expectations, i.e.,
1 1 2 2( ) (1 ) ( ) (1 )H L H L

A B
E c c c E c c c          , then some equilibria as shown in 

Proposition 2 may exist.  

  

5. Conclusions 

This paper extends Hotelling’s model by letting firms have asymmetric costs or incomplete 

information on their rivals’ costs. Our results support neither Hotelling (1929) equilibrium nor 

d’Aspremont et al.’s (1979) equilibrium.  

 



 

 
 

Appendix 

Proof of Proposition 1: If 1 , our game has complete information with firm A having marginal 

cost 
1c  and firm B having 2

H
c . According to whether 1 H

ba , there are two cases as follows. 

(i) If 1 H
ba , then the firms’ profit functions are respectively 

 
 

1 1 1 2

1

1 1 1 2

0  if  

1   if  

H

H

p c p p

p c p p


  


  





 and 
 
 

2 2 2 1

2

2 2 2 1

1   if  

0  if  

H H H

H

H H H

p c p p

p c p p


  


  





 

by (1), and (9)-(10). Since both firms locate at the same point, they will conduct a traditional 

Bertrand competition with equilibrium prices    * *

1 2 2 2
,  ,  

H H H
p p c c  and equilibrium profits 

    * *

1 2 2 1
,  0,  0

H H
c c     .  

However, given 
*

1 2a   and 
*

1 2

H
p c , it is better for firm B with 2

H
c  to locate at any point 

 0,  1 2
H

b  , to set product price 2 2 2

H H H
p c c    with 

 1 2

20,  
Ht b


  

 
, and to earn positive 

profit      * * * *

2 2

1 2 2

4
1 1 0H H H H

Ht b

t
a b a b


 

 
       .

2
 Thus, no SPNE exists in this case. 

(ii) If 1 Hba , then the firms’ profit functions are respectively 

    
t

ppbatcp HH

2

1 2111
1


  and                            (A1) 

    
t

ppbatcp HHHH
H

2

1 2122
2


                              (A2) 

by (4)-(5) and (9)-(10). Let 
     1 1 1

1 1 1 2

1

1

2

H Hp c t a b p p

t
c pL 

 
  

     
   be the Lagrange function of 

problem (12) with 1  defined in (A1), where 1  is the associated Lagrange multiplier. Then, the 

first-order conditions are 

 
0

2

21
 1

211

1

1 




 

t

ppcbat

p

L HH

 and                         (A3) 

0  ,0  ,0 11

1

1
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1

1 





 


L

cp
L

.                                 (A4) 

Let 
     2 2 2

2 2 1 2

2

1

2
H H H

H H H H

H
p c t a b p p

t
c pL 

 
  

     
   be the Lagrange function of the problem (13) with 

2

H  defined in (A2), where 
2

H  is the associated Lagrange multiplier. Then, the first-order 

                                                       
2  Substituting 21* a ,  21 ,0H

b , 
H

cp 2

*

1  , and  HH
cp 22 into (5) yields 

     042211*

2  tbtbaq
HHH   and      042211*

2  tbtba
HHH  by   221 H

bt  .  



 

 
 

conditions are 

 
0

2

21
2

212

2

2 




 H

HHH

H

H

t

ppcbat

p

L   and                       (A5) 

0  ,0  ,0 22

2

2
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2

2 





 HH

H

H
HH

H

H L
cp

L 


.                             (A6) 

Based on whether the constraints in (A4) and (A6) bind or not, there are four possible product-price 

pairs, which are grouped into three sub-cases below.  

Case 1: Suppose 11 cp   and 2 2

H H
p c . Then we have 1 2

0
H   , and (A3) and (A5) become 

 
0

2

21
 211

1

1 






t

ppcbat

p

L
HH

 and 
 

0
2

21 212

2

2 






t

ppcbat

p

L
HHH

H

H

. 

Solving these two equations yields equilibrium prices
 *

1

1 2

1

3 2

3

H Ht a b c c

p c
   

   and 

 *

2

1 2

2

3 2

3
H

H H
H

t a b c c

p c
   

  . Substituting  * *

1 2
,  

H
p p  into (A1) and (A2) yields firms’ equilibrium 

profits      
2 2

1 2 1 2* *

1 2

3 3

18 18,  ,  
H H H H

H
t a b c c t a b c c

t t
 

   
      

        
 
 
 

. 

Since the equilibrium profits of firm A and firm B with 
H

c2  are strictly increasing functions of 

a  and 
Hb , respectively, the optimal locations should be 

* *
1 2

H
a b  , which violates the  

hypothesis of 1
H

a b  . Thus, no SPNE exists in this case. 

Case 2: Suppose 11 cp   and 2 2

H H
p c . Then we have 

1
0   and 2

0
H  , and (A3) and (A5) 

become   

 
0

2

21
 211

1

1 






t

cpcbat

p

L
HH

 and 
 

0
2

1
2

12

2

2 




 H

HH

H

H

t

pcbat

p

L  . 

Solving these two equations yields equilibrium prices  * *

1 2
,  

H
p p

  1 2

2

1

2 ,  
H H

H
t a b c c

c
      

 
 and 

 *

2

1 23

4 0H
H Ht a b c c

t


   
   . To make 

*

2
0

H   hold, condition  

 HH
batcc  312                                              (A7) 

is needed. Note that (A7) also guarantees the output of firm B with 
H

c2  being zero and firm A’s 

being one. Substituting  * *

1 2
,  

H
p p  into (A1) and (A2) yields firms’ equilibrium profits  * *

1 2
,  

H 



 

 
 

  1 21

2 ,  0
H Ht a b c c      

 
. 

Since 
*

1  is strictly increasing with a  and 
*

2

H  is independent of Hb ,  * *
,  

H
a b

  21 ,0 ,21  are firms’ optimal locations. Here 
*

1 2
H

b   is ruled out to meet the requirement of 

1**  Hba . Substituting  * *
,  

H
a b  into equilibrium prices and (A7) generates Proposition 1. 

Case 3: Because the proofs for  1 1 2 2
,  

H H
p c p c   and  1 1 2 2

,  
H H

p c p c   are similar, we 

demonstrate the former. Then, we have 
1

0   and 2
0

H  . Accordingly, equations (A3) and (A5) 

become 

 
0

2

1
 1

21

1

1 




 

t
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p

L
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 and 
 

0
2
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2

2 






t

pccbat

p

L
HHH

H

H

. 

Since   01  Hbat  by 0t  and  ,  0,  1 2
H

a b  , 2 1
0

H
p c   by 2 2 1

H H
p c c  , and 01  ; 

we must have 
1 1

0L p   , which contradicts 
1 1

0L p   . Thus, no SPNE exists in this case. 

We can apply the same arguments to case 0 , and obtain the equilibria in Proposition 1.   

 

Proof of Proposition 2: If (0,1)  , our game has incomplete information with firms A and B. 

According to whether 1 Hba  and 1 Lba , there are four cases as follows. 

(i) Suppose 1 Hba  and 1 Lba . Then firms’ (expected) profit functions are  

       
 
 
   
 

1 1 1 1 1

1 1 1 2 1 2

1 1 1 2 1 2

1 1 1 2 1 2

1 1 1 2 1 2

E 1 1 1

0  if    and  

  if    and  
       

1   if    and  

1  if    and  ,

H H L L

H L

H L

H L

H L

p c q a b q a b

p c p p p p

p c p p p p

p c p p p p

p c p p p p

  





        

   

   


    

   

  








              (A8) 

   
 
 

2 2 2 1

2 2 2 2

2 2 2 1

1   if  
1

0   if  

H H H

H H H H H

H H H

p c p p
p c q a b

p c p p


  
    

  

 


 and         (A9) 

   
 
 

2 2 2 1

2 2 2 2

2 2 2 1

1   if   
1

0   if  

L L L

L L L L L

L L L

p c p p
p c q a b

p c p p


  
    

  

 


               (A10) 

by (1), (6) and (9)-(11). We first show the following lemma.   



 

 
 

Lemma A: Given firm A’s product price 1p , the best reply of firm B with 2

L
c  is to choose 1p  as 

well. 

Proof. Given 1p , we have 
2 2 2 1 20 ( ) ( )L L L L

p c p c      for all 
2 1

L
p p  by 

2 2

L L
p c  and (A10). 

By contrast, for 
2 1

L
p p , we have  LLL cp 2220    Lcp 21   by (A10) again. The two 

inequalities above suggest that the best strategy of firm B with 2

L
c  is to choose 

2 1

L
p p . 

 Based on Lemma A and 2 1 2

L H
c c c  , we have unique price equilibrium 

   * * *

1 2 2 2 2 2
,  ,  ,  ,  

H L H H H
p p p c c c  in the second stage. Suppose *

1 2 1

H
p c c  . By (A9), firm B with 2

H
c  

will get negative profit by choosing 
2 1 2

H H
p p c  , and get zero profit by choosing 

2 1 2

H H
p p c  . 

Thus, we have *

2 2

H H
p c , and firm A will get higher profit by choosing 1 2 2

,  
H H

p c p   than 

choosing 
1 2

H
p c . This contradicts hypothesis *

1 2

H
p c . By contrast, if *

2 2

H H
p c , firm A will get 

1 1
( )p c   by choosing 

1 1 2( , ]H
p c c , and get zero profit if choosing 

1 2

H
p c  by (A8) and Lemma 

A. Thus, we have *

1 2

H
p c . Then the equilibrium price pair is    * * *

1 2 2 2 2 2
,  ,  ,  ,  

H L H H H
p p p c c c  in the 

second stage. Moreover, firms’ (expected) equilibrium profits are  * * *

1 2 2
E ,  ,  

H L   

    2 1 2 2
0,  0,  0

H H L
c c c c    . 

However, given    * * *

1 2 2 2 2 2
,  ,  ,  ,  

H L H H H
p p p c c c , it is better for firm B with 2

H
c  to locate at any 

point  21 ,0Hb , to set product price 
2 2 2

H H H
p c c    with 

 1 2

20,  
Ht b


  

 
, and to earn 

positive profit      * * * *

2 2

1 2 2

4
1 1 0

H
H H H H

t b

t
a b a b


  

 
         as argued in footnote 2. Thus, 

no BNE exists in this case.   

(ii) Suppose 1 Hba  and 1 Lba . Then, firms’ (expected) profit functions are 

       1 1 1 1 1E 1 1 1H H L L
p c q a b q a b               

      1 1 1 2 21 1 1

2

H L H L
p c t a b b p p p

t

              ,          (A11) 

       2 2 1 2

2 2 2 2

1
1

2

H H H H

H H H H H
p c t a b p p

p c q a b
t


             and   (A12) 



 

 
 

       2 2 1 2

2 2 2 2

1
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2

L L L L

L L L L L
p c t a b p p

p c q a b
t


                   (A13) 

by (4)-(5), (7)-(8), and (9)-(11). Let 
      1 1 1 2 2

1

1 1 1

2

H L H Lp c t a b b p p p
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L

    
          

  111 pc   be the 

Lagrange function of problem (12) with 1E  defined in (A11), where 1  is the associated 

Lagrange multiplier. Then, the first-order conditions are 

    
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0  ,0  ,0 11

1

1
11

1

1 





 


L

cp
L

.                                 (A15) 

Let 
     2 2 2

2 2 1 2

2

1

2
H H H

H H H H
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t
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    
   be the Lagrange function of problem (13) with 

2
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defined in (A12), where 
H

2  is the associated Lagrange multiplier. Then, the first-order conditions 
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Let 
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defined in (A13), where 
L

2  is the associated Lagrange multiplier. Then, the first-order conditions 

are 
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Based on whether the constraints in (A15), (A17) and (A19) bind or not, there are eight possible 

product-price pairs, which are grouped into three sub-cases below.  

Case (iia): Because the proofs for    1 1 2 2 2 2 1 1 2 2 2 2
,  ,  ,  ,    and  H H L L H H L L

p c p c p c p c p c p c       are 



 

 
 

similar, we demonstrate the former. Then, we have 0221  LH  , and (A14), (A16) and (A18) 

can be reduced to  
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Solving these equations yields equilibrium prices
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Substituting  * * *

1 2 2
,  ,  

H L
p p p  into (A11)-(A13) yields firms’ (expected) equilibrium profits  

    2

1 2 2*

1

3 1 1

18
E 0

H L H Lt a b b c c c

t

   


 
        

  , 
        2

1 2 2*

2

6 2 3 1 2 3 1

72
0

H L H L

H
t a b b c c c

t

   


 
          

   and 

    2

1 2 2*

2

6 2 2 2 2

72
0

H L H L

L
t a b b c c c

t

   


 
        

  . It is easy to see that 

1E , 

*

2

H  and 
*

2

L  are strictly 

increasing functions of , Ha b , and Lb , respectively. These imply that all firms will locate at the 

market center, which contradicts the hypotheses of 1 Hba  and 1 Lba . Thus, no BNE 

exists in this case.  

Case (iib): Because the proofs for    1 1 2 2 2 2 1 1 2 2 2 2
,  ,  ,  ,    and  H H L L H H L L

p c p c p c p c p c p c       are 

similar, we demonstrate the former. Then, we have 01  , 02 H  and 02 
L . Accordingly, 

equations (A14), (A16) and (A18) become  

    
0

2

1211
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2211

1
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
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L
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, respectively. 



 

 
 

Solving these equations yields equilibrium prices  *

2

*

2

*

1  , , LH ppp
   1 2 1 2

1

1 1

2 2,  ,  
H H L Lt a b c c t a b c c

c
          

 
 

and 
   1 2 2*

1

3 1 1

4

H L H Lt a b b c c c

t

   


 
         

  . Substituting  *

2

*

2

*

1  , , LH ppp  into (4)-(5) and (7)-(8) yields 

equilibrium outputs  * * * *

1 1 2 2,  ,  ,  H L H L
q q q q     1 2 1 23 3

4 40,  max 0, 0,(
H H L Lt a b c c t a b c c

t t

          
 

   1 2 1 21 1

4 4
,  0)

H H L Lt a b c c t a b c c

t t

       
 . To make 0*

1   and HH cp 2

*

2   hold, the following conditions are 

needed.  

      1 2 1 2[ (3 ) ] (1 )[ (3 ) ]

4
0

H H L Lt a b c c t a b c c

t

             and  

 2 1)( 1H Hc c t a b    .                        (A20) 

The second condition in (A20) guarantees *

2 0H
q  . However, the first condition in (A20) will not 

hold because 
       1 2 1 2 * *

1 1

3 1 3

4 4 1 0
H H L L

H L
t a b c c t a b c c

t t
q q

 
 

   
      

        
      by *

1 0L
q  , 0*

1 Hq , and 

 1 ,0 . Accordingly, no BNE exists in this case. 

Case (iic): Because the proofs for price pairs  1 1 2 2 2 2
,  ,  

H H L L
p c p c p c   , 

     1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2
,  ,  ,  ,  ,  ,  ,    and  H H L L H H L L H H L L

p c p c p c p c p c p c p c p c p c         are similar, 

we demonstrate the first pair. Then, we have 01  , 02 H  and 02 
L , and (A14), (A16) and 

(A18) become  

    
0

2

1211
 2211

1

1 
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
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t
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L
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, 

 
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2

21 212

2

2 






t
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p

L
HHH

H

H

 and 

 
0

2

1
2

12

2

2 




 L

LL

L

L

t

pcbat

p

L  , respectively. 

Since   01  Lbat  by 0t  and  21 ,0 , Lba , 
1 2( ) 0L

p c   by Lccp 211  , and 
2 0L  ; 

we must have 
2 2

0
L L

L p   , which contradicts 
2 2

0
L L

L p   . Thus, no BNE exists in this case. 

(iii) Suppose 1 Hba  and 1 Lba . Then, by (4)-(6) and (9)-(11), firms’ (expected) profit 

functions are 



 

 
 

       

   

     

1 1 1 1 1

1 2

1 1 1 2

1 2

1 1 1 2

E 1 1 1

1.5
 if  

2

       
1.5

1   if  ,
2

H H L L

H H

L

H H

L

p c q a b q a b

t b p p
p c p p

t

t b p p
p c p p

t

  



 

           
    
    
     

   
     
   

          (A21) 

        1 2

2 2 2 2 2 2

0.5
1

2

H H

H H H H H H H
t b p p

p c q a b p c
t


   
       
  

 and     (A22) 

   
 
 

2 2 2 1

2 2 2

2 2 2 1

2

1   if  
1

0   if  .

L L L

L L L L

L L L

L
p c p p

p c q a b
p c p p


  

  
  

   


               (A23) 

Let      1 1 1 1 1

1 2

1

1.5

2  
H Ht b p p

t
p c c pL  

  
 

     
 be the Lagrange function of problem (12) with 

1E  defined in (A21), where 1  is the associated Lagrange multiplier.
3
 Then, the first-order 

conditions are 

  1 1 21
1

1

1.5 2
 0

2

H H
t b c p pL

p t
 

   
   


 and                        (A24) 

0  ,0  ,0 11

1

1
11

1

1 





 


L

cp
L

.                                 (A25) 

Let      1 2

2 2 2 2 2

0.5

2 2

H H

H H H H H
t b p pH

t
p c c pL 

  
     

 be the Lagrange function of problem (13) with 

H

2  defined in (A22), where 
H

2  is the associated Lagrange multiplier. Then, the first-order 

conditions are  

 
0

2

25.0
2

212

2

2 




 H

HHH

H

H

t

ppcbt

p

L   and                       (A26) 

0  ,0  ,0 22

2

2
22

2

2 





 HH

H

H
HH

H

H
L

cp
L 


.                            (A27) 

Since the profit of firm B with 
L

c2  in (A23) is the same as that in (A10), firm B with 
L

c2  will 

choose 
2 1

L
p p  given firm A’s price 

1
p  by Lemma A. Then, according to whether the constraints 

                                                       
3  Since 12 pp

L   by Lemma A, firm A’s expected profit function is the first part of (A21). 



 

 
 

in (A25) and (A27) bind or not, there are four possible product-price pairs, which are grouped into 

three sub-cases below. 

Case (iiia): Suppose 11 cp  , 
2 2

H H
p c  and 

2 1

L
p p . Then we have 

1 2
0

H   , and (A24) and 

(A26) become   

  1 1 21

1

1.5 2
 0

2

H H
t b c p pL

p t


   
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
 and 

 
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2

2 
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
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
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p

L
HHH

H

H

, respectively.  

Solving these two equations yields equilibrium prices  * * *

1 2 2
,  ,  

H L
p p p

     1 2 1 2 1 23.5 2 2.5 2 3.5 2

3 3 3,  ,  
H H H H H Ht b c c t b c c t b c c           

 
 . Substituting  * * *

1 2 2
,  ,  

H L
p p p  into (A21)-(A23) 

yields firms’ (expected) equilibrium profits  * * *

1 2 2
E ,  ,  

H L     

     
2 2

1 2 1 2 1 2 2
3.5 2.5 3.5 2 3

18 18 3,  ,  
H H H H H H Lt b c c t b c c t b c c c

t t

    
      

          
 
 
 

. 

Since 
*

2

H  is a strictly increasing function of 
H

b , we have 
*

1 2
H

b  , which violates the 

hypothesis of  0,1 2
H

b  . Thus, no BNE exists in this case. 

Case (iiib): Suppose 11 cp  , 
2 2

H H
p c  and 

2 1

L
p p . Then, we have 01   and  

2
0

H  , and  

(A24) and (A26) become   

  1 1 21
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
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2
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2 




 H

HHH

H

H

t

cpcbt

p

L  , respectively. 

Solving these two equations yields equilibrium prices  * * *

1 2 2
,  ,  

H L
p p p

   1 2 1 2

2

1.5 1.5

2 2,  ,  
H H H H

H
t b c c t b c c

c
        

 
 and 

 
2

1 22.5

4 0H
H Ht b c c

t


  
   . To make 

*

2
0

H   hold, the 

following should hold. 

 2 1( ) 2.5H H
c c t b                                                 (A28) 



 

 
 

Condition (A28) also guarantees the output of firm B with 
H

c2  being zero. Substituting 

 * * *

1 2 2
,  ,  

H L
p p p  into (A21)-(A23) yields firms’ (expected) equilibrium profits  * * *

1 2 2
E ,  ,  

H L   

   1 2 1 2 2
1.5 1.5 2

2 2,  0,  
H H H H Lt b c c t b c c c  

  
       

 
 

. 

Since the equilibrium profits of firm A and firm B with 2

L
c  are independent of their locations, 

* *
1 2

L
a b   can be optimal location. Similarly,  *

0,1 2
H

b   can be optimal location because 

*

2
0

H   is independent of 
H

b . However, we should rule out 
*

1 2
H

b   to make 
* *

1
H

a b   hold. 

Thus, firms’ optimal locations are     * * *
,  ,  1 2 ,  0,  1 2 ,  1 2

H L
a b b  . Substituting 

 * * *
,  ,  

H L
a b b  into equilibrium prices and (A28) generates Proposition 2. 

Case (iiic): Because the proofs for    1 1 2 2 2 1 1 1 2 2 2 1
,  ,  ,  ,   and H H L H H L

p c p c p p p c p c p p       are 

similar, we demonstrate the former. Then, we have 01   and 02 H , and (A24) and (A26) can be 

reduced to  

  1 21
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1
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2
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

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t
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L
HHH

H

H

, respectively.  

Since  0,  1 2
H

b  , 0t , 
2 2 1

H H
p c c  ,  0,  1   and 01  , we have 011  pL , which 

contradicts 011  pL . Thus, no BNE exists in this case. 

(iv) Suppose 1Ha b   and 1La b  . The proofs are similar to those in Cases (iiia) and (iiic). 

Thus, they are omitted and available upon request.  
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