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Abstract
We conduct a field experiment to test if loss aversion behavior can be exploited to improve student performance in an

undergraduate statistics course. In one treatment (gains), student grades were reported as points gained, and in the

other treatment (losses) grades were reported as points lost. When controlling for other factors that affect student

performance, we find that students in the loss treatment earned statistically higher grades than students in the gain

treatment. Although preliminary, the results suggest that a simple manipulation of how grades are framed in the

classroom can be a costless way to exploit loss aversion behavior and lead to higher student achievement.
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1. Introduction 

 

Education opens doors. The more successful students are in school, the more options they will 

have later on in life. Student performance, most often measured by objective test scores, depends 

on a number of factors, one of which is the level of effort students put forth to learn the material. 

Motivating students to work harder in school, therefore, is a worthwhile pursuit. A large 

literature on loss aversion and reference dependent preferences suggests that people are more 

responsive to incentives framed as losses than to incentives framed as gains (Kahneman and 

Tversky 1979; Tversky and Kahneman 1991; Ariely et al. 2005). We conduct a field experiment 

to test if loss aversion behavior can be exploited to improve student performance in an 

undergraduate statistics course.  To do so, we manipulate the framing of the grading scales 

across statistics classes in the same semester. In one treatment, the class starts with zero points 

and students are given the opportunity to gain up to 560 points. In the other, the class starts with 

560 points (100 percent) and students can only incur losses from their performance. Our 

hypothesis, informed by theories of loss aversion and reference dependent preferences (e.g., 

Köszegi and Rabin 2006), is that students that start with 100 percent will exert more effort to 

keep their high grades in comparison to students that start with zero and work their way up from 

low grades. Although we only imperfectly observe effort levels (i.e., attendance), we observe 

outcomes (grades) that depend on effort levels. 

Related behavioral research has explored the use of material incentives (money and 

trophies) to exploit loss aversion related to student performance (Fryer et al. 2012; Levitt et al. 

2012).
1
 In these studies rewards are either paid in response to good student performance (gains) 

or taken away in response to poor performance (losses). The results from Fryer et al. (2012), in 

which teachers earned/lost rewards conditional on student performance, suggest that the 

incentive structure matters; students performed significantly better when teachers were under the 

threat of losing a financial reward compared to the promise of earning an equivalent one. On the 

other hand, Levitt et al. (2012) find no difference in performance when students could either gain 

or lose material rewards. Although our study is closely related to this literature, our experiment 

does not rely on material incentives. The experimental design simply varies the frame in which 

students’ grades are reported throughout a semester. The approach, therefore, has the potential to 

be a very cost-effective method to incentivize students. Our motivating hypothesis is based on 

the idea that preferences, in part, are reference dependent. Our theory presumes that students 

have a prior subjective range of “acceptable grades” in the course, and that when students are in 

this range they will work relatively harder to avoid a lower grade than they will to earn a higher 

one.   

Our overarching hypothesis and experimental design is similar to a recently published 

study by Apostolova-Mihaylova et al. (2015). Their study, like ours, was conducted during the 

2012-2013 academic year.
2
 In contrast to our study, they did not find a significant treatment 

effect between their treatment group (losing points) and the control group (earning points). 

However, they do find a significant difference in how males and females reacted to the 

experimental frame. They show that men in the treatment group scored significantly higher than 

                                                        
1
 A much larger literature explores the effects of material and non-material rewards on student performance without 

appealing to the behavioral economics of loss aversion (e.g., Angrist and Lavy 2009; Azmat and Iriberri 2010; 

Bettinger 2010; Leuven et al. 2010; Fryer 2011, 2013) 
2
 Our study and Apostovola-Mihaylova et al. (2015) were conducted concurrently, but without knowledge of each 

other’s experiment or research agenda. 



men in the control group. Conversely, women earned significantly lower grades in the treatment 

group.   

Our results differ in important ways from Apostolova-Mihaylova et al. (2015). Consistent 

with our hypothesis, we find that students part of the “loss” treatment (starting with 560 points) 

earn statistically higher grades than students in the “gain” treatment (starting with zero points). 

Also consistent with a theory of reference dependent preferences, we observe changes in the 

relative performance between the two treatments over time. Most importantly, students in the 

loss treatment were more likely to attempt the final exam and their average grade on the final 

was statistically higher. We do not observe significant differences across gender.   

 

2. Theory and experimental design 

 

Our hypotheses are derived from the established theory on loss aversion and reference dependent 

preferences from psychology and behavioral economics (Tversky and Kahneman 1991). We, 

therefore, do not offer a formal theory. However, because participants in our experiment start off 

in the extremes of possible outcomes, it is useful to characterize how reference points play a role 

in relative effort levels and, indirectly, student performance. 

 Figure 1 shows a grading scale from zero to 100 percent. Students either work their way 

up from zero or down from 100. The rectangular bars represent the effort levels exerted by 

students within the different grading ranges. Students starting at zero, exert a relatively high level 

of effort to move from failure into their subjective range of acceptable grades (from some lower 

threshold to 100 percent). Once a student that starts from below crosses the threshold into her 

acceptable range her effort level drops. That is, once in the acceptable range she exerts less effort 

to earn a higher acceptable grade than she would to move from an unacceptable to acceptable 

one. Students that start with 100 percent, on the other hand, exert effort to avoid losing their high 

grade. Leaning on the theory of loss aversion, students within the acceptable grade range are 

expected to exert less effort to make gains in their grade relative to the corresponding effort level 

students put forth to avoid losses.  

 

 

Figure 1: Loss aversion and student effort 

 
 

The experiment was conducted during the Fall 2012 academic semester at Appalachian State 

University. The course number (ECO 2200), instructor, materials and assessment activities were 

held constant across the three sections, only the framing of the grading scale varied. The 

assessment activities included quizzes (seven), problem sets (four), exams (four) and active 

participation (iClicker performance). In one class - the gain treatment - students started with zero 

points and earned points up to 560, and in the other two classes - the loss treatment - students 



started with 560 points and lost points conditional on performance. A student’s percentage grade 

was calculated as 100*(Total Points/560). The grading interface was constructed in Excel and an 

active link to the grade book was embedded into the course website. With both grading formats, 

the students’ current number of points (lost or gained), percentage grade and letter grades was 

continuously updated and posted throughout the semester.  

 The 560 points were broken down as follows. There were three in-semester exams and a 

comprehensive final exam that could be used to replace the lowest of the three in-semester 

exams. The three highest exams accounted for 300 points (each about 18 percent of the course 

grade). There were seven quizzes, each worth 20 points, and the lowest quiz grade was dropped. 

Quizzes therefore accounted for 120 points. Four problem sets each accounted for 20 points (80 

in total) and active participation accounted for 60 points. Note that active participation was made 

up of 1/3 attendance and 2/3 performance using classroom clickers. 

 One element of the grading scheme that is particularly important is how the final exam 

plays its role. The final exam is offered during a week after the semester comes to a close, so 

when a student debates whether to take the final exam all other grades have been computed. 

Therefore, students in the gain treatment are shown their semester grade given a final exam score 

of zero. On the other hand, students in the loss treatment are shown their grade given a final 

exam score of 100. Students, in either treatment, could plug in their expected grade for the final 

exam to view their expected course grade. 

 Our sample consisted of 177 business students that each attended one of three statistics 

courses. The duration of the courses was one hour and fifteen minutes and they were held back-

to-back-to back, with start times of 9:30, 11:00 and 12:30. Students were free to register for any 

of the three courses once their registration period opened.
3
 The 9:30 and 12:30 classes served as 

the loss treatments (starting with 560 points), and the 11:00 class served as the gain treatment 

(starting with 0 points). There were 56, 66, and 55 students in the 9:30, 11:00 and 12:30 classes, 

respectively. The same classroom was used for all three courses and spaces remained open in all 

three throughout the semester (registration was capped at 72). In total, 111 students participated 

in the loss treatment and 66 students participated in the gain treatment.  Overall, sixty eight 

percent (121) of the students were Male.
4
  

 

 

3. Results 

 

We want to test whether students that started with 100 percent and received their grading 

feedback framed as losses performed better than students starting with zero and working their 

way up. When analyzing the unconditional results using a pairwise t-test to compare overall 

course grades, we do not find a significant effect across treatments. The average grades were an 

81.7 and an 82.19 in the loss and gain treatments respectively (p = 0.696).
5,6

 The study was 

                                                        
3
 The opening of the registration period was scattered for students depending on how many credit hours they have 

earned. Students with more credits had priority in the sense that their registration period started earlier. All three 

courses had a similar pattern of enrollment throughout the entire registration period and none of the classes reached 

the enrollment cap of 72.     
4
 We recognize that the study would have benefited from more balanced sample sizes between the two treatments. 

Given the teaching assignment constraints this was not possible.  
5
 Apostolova-Mihaylova et al. (2015) report no significant difference in average grades between their control 

(grades framed as gains relative to zero) and their treatment (grades framed as losses relative to 100) when not 



designed, however, to control for other observable factors that could affect performance 

independent of how the grading scheme was framed. We collected data on students’ GPA, SAT 

score, attendance, their numeric grade from their previous statistics course, the number of hours 

they study per week (for all classes combined), gender and whether they attempted the final 

exam.
7
 We did not include a variable for their particular major because our sample is limited to 

business or aspiring business majors and many of them only report intended majors at this stage 

in their academic career.   

          Table I reports the results from linear models regressing a student’s percentage grade for 

the course on the aforementioned variables. From the initial 177 observations, 32 were dropped 

due to missing observations in one or more of the explanatory variables.  Of the remaining 145 

observations, 56 were from the gain treatment and 89 were from the loss treatment (47 and 42 

students in the early and late section, respectively).
8
 The first column of results in Table I is from 

a pooled model (all 145 observations) regressing course grade on the treatment dummy and the 

control variables, excluding the dummy variable whether the student attempted the final. Recall 

that the nature of the final exam in this class is particularly important. Students in the gain 

treatment decided whether to attempt the final knowing it can only improve upon their current 

course grade (replacing lowest grade), whereas students in the loss treatment had a default final 

course grade of 100 before attempting the final, and therefore earning a grade lower than 100 on 

the final would likely lower their current course grade. We run separate models to better isolate 

the effect attempting the final exam has on course grades.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                   

controlling for the interaction between gender and treatment. However, their result is not directly comparable 

because they do not report the results from a two-sample test on the unconditional means.  
6
 The Wilcoxon rank-sum test also indicates that the two samples come from identical populations (p = 0.893).  

7
 GPA, SAT, previous statistics grade and hours studying were self-reported through a survey administered through 

the course website. The number of classes attended was gathered from the iClicker system.  
8
 A t-test comparing the unconditional average grades with the 145 remaining observations again reveals that there is 

no statistical difference between the gain and loss treatment (p = 0.650). Moreover, there is no statistical difference 

in average grades between the two classes (early and late) that make up the loss treatment (p = 0.355). 



Table I: Course grades as a function of treatment and control variables 

 

 Pooled Pooled Gains Losses 

 

Loss Treatment 1.961* 

(1.109) 

2.492** 

(1.103) 

--- --- 

Attendance 0.632*** 

(0.205) 

0.607*** 

(0.200) 

0.407 

(0.427) 

0.698*** 

(0.237) 

GPA 8.089*** 

(1.593) 

6.999*** 

(1.611) 

5.828* 

(2.994) 

7.726*** 

(1.960) 

Stats 1 Grade 0.250*** 

(0.083) 

0.254*** 

(0.081) 

0.343*** 

(0.132) 

0.225** 

(0.106) 

SAT -0.0002 

(0.001) 

-0.000 

(0.001) 

-0.006 

(0.004) 

0.000 

(0.001) 

Hours Studying 0.136 

(0.086) 

0.096 

(0.086) 

-0.094 

(0.148) 

0.210* 

(0.108) 

Female -0.964 

(1.201) 

-0.803 

(1.177) 

0.451 

(1.941) 

-1.346 

(1.541) 

Attempted Final --- -3.036*** 

(1.137) 

-3.634* 

(1.892) 

-2.138 

(1.513) 

Constant 21.857*** 

(7.461) 

27.005*** 

(7.549) 

27.934*** 

(10.079) 

26.523*** 

(9.711) 

N 145 145 56 89 

R-squared 0.414 0.443 0.452 0.472 

F 13.80 13.50 5.65 10.33 

Note: Standard errors are in parentheses and *, **, *** indicate significance at the 0.10, 0.05 and 0.01 levels 

respectively.   

 

 

From the first column in Table I we see that conditioning for other potential factors that affect 

students’ performance, framing grades as losses as opposed to gains leads to statistically higher 

average course grades. The effect is weak, however, only significant at the 0.10 level. We also 

see that attendance, GPA, and Stats 1 grade have a significant and positive effect on performance 

at the 0.01 level.
9
  

 When we include the dummy variable for whether the student attempted the final exam 

(second column in Table I), the qualitative impact of the loss frame remains but with greater 

significance (now at the 5% level). The overall result suggests that a simple, and costless, twist 

to a grading scheme can successfully exploit loss-aversion behavior and lead to improved student 

performance. The estimate from the second model in Table I suggests that students’ grades are 

on average 2.492 percent points higher in the loss treatment compared to the gain treatment, and 

this difference is significant (p = 0.031).  

 We also see that attempting the final exam is associated with significantly lower course 

grades. To explore this result further we estimate regression models stratified by treatment. From 

the third and fourth columns in Table I we observe that attempting the final is associated with 

lower course grades in the gain treatment (at the 0.10 level) but is not associated with a 

significant change in course grades in the loss treatment. Perhaps this is because in the gain 

                                                        
9
 To rule out the possibility of a section effect between the two classes that combine to form the loss treatment, we 

ran an additional regression using only data from the loss treatment. We regressed course grades on the remaining 

explanatory variables along with a section dummy variable. The coefficient was insignificant (p = 0.316) indicating 

the two sections are statistically equivalent.  



treatment those attempting the final are more likely to be struggling students (those trying to 

reach their acceptable grade range) whereas in the loss treatment there is more heterogeneity in 

the types of students attempting the exam. We will explore the final exam further in a moment.   

 As illustrated in Figure 1, we hypothesize that students are more responsive to potential 

losses than they are to gains once they reach their acceptable grade range. Given this conjecture, 

we should expect to see more dramatic differences in effort (and resulting grades) at the end of 

the semester when students that started from zero have potentially crossed the threshold into their 

acceptable grade range. The column headings in Table II contain all of the graded assignments 

given throughout the semester (PS denotes problem sets, Q denotes quizzes and E denotes 

exams). The table includes the average course grades for each assignment by treatment. For each 

assignment we estimated a linear regression using the same treatment and control variables as the 

model presenting in the first column of Table I. Since there are 15 regressions, we chose to 

simplify the exposition and only report on the significance of the dummy variable for the loss 

treatment. The only assignments in which the average grades were statistically higher in the loss 

treatment were Problem Set 3 (second to last problem set), Quiz 7 (last quiz), Exam 3 (last day of 

class) and the Final Exam (finals week). Significance levels are denoted with asterisks.  

 

Table II: Average grades by assignment and treatment 

 

 PS1 PS2 PS3* PS4 Q1 Q2 Q3 Q4 Q5 Q6 Q7** E1 E2 E3*** Final* 

Gains 18.39 16.70 15.39 18.24 16.03 16.39 15.70 15.67 14.79 17.03 17.76 72.39 72.91 75.33 63.74 

Losses 18.23 16.25 16.16 18.09 16.31 15.19 14.22 15.62 15.04 17.55 18.58 69.62 74.38 78.34 68.71 

Notes: Students’ grades for each individual assignment listed in Table II were regressed (using OLS) on the same 

treatment and control variables from the first model in Table I. The symbols *,**,*** indicate that the grades in the 

loss treatment were significantly higher than grades in the gain treatment at the 10, 5 and 1 percent levels 

respectively. The grades for all other assignments were not statistically different between the two treatments. The 

coefficient estimates were suppressed for a cleaner exposition of the main findings.  

 

 

 

We again turn our attention to the final exam. Recall that before students attempt the final they 

have full information regarding all of the other graded assignments. For those in the gain 

treatment, their course grades are posted given a final exam score of zero, while those in the loss 

treatment see their course grades given a final exam score of 100 percent.  

 In total, 73 (66 percent) and 31 (47 percent) students attempted the final in the loss and 

gain treatments, respectively. The two percentages are statistically different at the 0.01 level 

indicating that a larger fraction of students attempted the final when their grades were framed as 

losses as opposed to gains. To check the robustness of this result, we estimate a series of probit 

models where the dependent variable takes on a value of one if the student attempted the final 

(and a zero otherwise). We use the same treatment and controls as the regressions in Table I with 

the addition of a variable containing the student’s total points before attempting the final. The 

first model uses the pooled dataset (145 observations) and the results are contained in Table III. 

We find that students are more likely to attempt the final in the loss treatment (significant at the 

0.01 level). We also see that in the pooled model, the more points a student has earned the less 

likely they are to attempt the final. Again, we stratify the sample by the two treatments and see 

that this effect is qualitatively the same for both treatments. However, it is less significant in the 

loss treatment.  



 

 

 

Table III: Probit regressions on the likelihood of attempting the final exam 

 

 Pooled Gains Losses 

Loss Treatment 1.959*** 

(0.496) 

--- --- 

Attendance 0.006 

(0.054) 

0.302** 

(0.136) 

-0.100 

(0.075) 

GPA -0.600 

(0.379) 

-1.209* 

(0.681) 

-0.471 

(0.493) 

Stats 1 Grade 0.020 

(0.019) 

0.012 

(0.034) 

0.022 

(0.025) 

SAT 0.0001 

(0.0002) 

-0.001 

(0.001) 

0.0002 

(0.0003) 

Hours Studying -0.033 

(0.021) 

-0.004 

(0.042) 

-0.042 

(0.026) 

Female 0.075 

(0.272) 

-0.544 

(0.478) 

0.266 

(0.378) 

Points before final -0.014*** 

(0.004) 

-0.018*** 

(0.007) 

-0.014** 

(0.007) 

Constant 5.674*** 

(1.952) 

5.768* 

(3.319) 

9.069*** 

(3.446) 

N 145 56 89 

chi-squared 42.65 20.88 22.90 

p-value (chi-squared) 0.000 0.004 0.002 

Note: Standard errors are in parentheses and *, **, *** indicate significance at the 0.10, 0.05 and 0.01 levels 

respectively.   

 

 

 

Finally, we regress the final exam scores on the same treatment and control variables from 

Tables I and II. In the first model we include the variables from the initial set of regressions in 

Table I. Here (column one, Table IV) we observe a positive effect on final exam grades from the 

loss treatment, but only at the 0.10 level. When we include the variable for total points earned 

before the final (column two, Table IV), the treatment effect is no longer significant. It appears 

that the loss-treatment effect on final exam scores is weak, and highly sensitive to how well 

students are doing prior to taking the exam. When stratifying by treatment, we see that the more 

points students have before the final exam the better they do on the final, but only in the loss 

treatment.   

 

 

 

 

 

 

 

 

 



 

Table IV: Final exam grade as a function of treatment and control variables 

 

 Pooled Pooled Gains Losses 

Loss Treatment 5.046* 

(2.823) 

-5.857 

(4.752) 

--- --- 

Attendance -0.257 

(0.429) 

-0.644 

(0.433) 

-3.074 

(1.282) 

-0.769 

(0.503) 

GPA 5.381 

(3.878) 

2.443 

(3.858) 

11.479 

(7.837) 

-0.953 

(5.049) 

Stats 1 Grade 0.234 

(0.213) 

-0.005 

(0.221) 

0.141 

(0.522) 

-0.030 

(0.257) 

SAT -0.0002 

(0.002) 

-0.0004 

(0.001) 

-0.003 

(0.012) 

-0.0006 

(0.002) 

Hours Studying 0.304 

(0.252) 

0.200 

(0.244) 

0.125 

(0.509) 

0.228 

(0.308) 

Female 1.727 

(2.877) 

3.018 

(2.792) 

6.009 

(6.413) 

2.492 

(3.448) 

Points before final --- 0.097*** 

(0.035) 

0.079 

(0.064) 

0.109** 

(0.049) 

Constant 29.238* 

(18.022) 

30.332* 

(17.254) 

7.251 

(41.738) 

33.955 

(21.178) 

N 82 82 23 59 

R-squared 0.125 0.209 0.393 0.157 

F 1.50 2.41 1.39 1.36 

Note: Standard errors are in parentheses and *, **, *** indicate significance at the 0.10, 0.05 and 0.01 levels 

respectively.   

 

 

4. Conclusion 

 

We manipulated the grading scheme across multiple statistics classes in the same semester to test 

if loss-aversion behavior can be exploited to improve student performance. Our design consisted 

of two treatments, one in which students started with 100 percent of total points and received 

feedback in “points lost” and another in which students started with zero and received feedback 

in “points earned”. Consistent with our hypothesis we find that when controlling for other factors 

that may affect student performance, students that were part of the loss treatment earned 

statistically higher grades than students in the gain treatment. While robust to different model 

specifications, the difference is only weakly significant (ranging from 0.05 to 0.10 levels).  

 Apostolova-Mihaylova et al. (2015) was the first published study to examine how 

framing grades as gains compared to losses can affect student performance. Our study was 

conducted during the same academic year (without knowledge of each others’ projects) and our 

results differ in meaningful ways. First, we do not observe a gender effect. Second, we observe 

higher average grades when grades are framed as losses compared to gains when controlling for 

other factors that potentially affect performance. Third, we observe a timing effect in which the 

impact of framing grades as losses is more influential later in the semester. Fourth, students in 

the loss treatment were significantly more likely to attempt the final exam, which replaces the 

lowest of the three semester exams. Although preliminary, our results suggest that a simple 

manipulation of how grades are framed in the classroom can be a costless way to exploit loss 

aversion behavior and lead to greater student achievement.  
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