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1. Introduction

One of the objectives of coalitional game theory is to define solutions (or rules) for
allocating the joint profit arising from cooperation between a group of agents. In this
framework, the first solution concept was introduced by von Neumann and Morgenstern
(1944). There, a stable set is defined to be a subset of imputations satisfying internal
stability and external stability, where the notion of stability is defined by means of a
domination relation that uses the standard order in R. Unfortunately, finding stable sets
is a difficult task and neither existence nor uniqueness are guaranteed. In this note, we
propose to combine the idea of internal and external stability with the Lorenz order. In
this way, a set of imputations V is said to be Lorenz stable if it satisfies internal Lorenz
stability (no element in V is Lorenz dominated by other element in V) and external Lorenz
stability (every element outside V is Lorenz dominated by some element in V). Clearly,
this definition leads to select the Lorenz-maximal allocations in the imputation set. Other
set solution concepts, like the core (Gillies, 1959) or the equal division core (Selten, 1972),
play a role in defining egalitarian solutions (see, for instance, Dutta and Ray, 1989, Dutta
and Ray 1991, Hougaard et al., 2001 or Arin and Iñarra, 2001) but, as far as we know,
the imputation set as a whole has not been considered to make egalitarian comparisons.

With this objective in mind, the paper is organized as follows. In Section 2 we
introduce notation and terminology. Section 3 contains the main results. First we find
that the Lorenz stable set is a singleton and admits an easy formula to be computed. We
also provide an axiomatic characterization similar to the one given by Dutta (1990) to
characterize the weak constrained egalitarian solution of Dutta and Ray (1989). Finally,
in Section 4 we connects the Lorenz stable set with the weak and the strong constrained
egalitarian solutions of Dutta and Ray (1989, 1991).

2. Notation and terminology

The set of natural numbers N denotes the universe of potential players. A coalition is
a non-empty finite subset of N and let N denote the set of all non-empty coalitions of
N. A transferable utility coalitional game (a game) is a pair (N, v) where N ∈ N
is the set of players and v : 2N −→ R is the characteristic function that assigns to each
coalition S ⊆ N a real number v(S), with the convention v(∅) = 0. Given S, T ∈ N , we
use S ⊂ T to indicate strict inclusion, that is S ⊆ T but S 6= T . By |S| we denote the
cardinality of the coalition S ∈ N . From now on we only consider games with at least
two players. Thus, N := {N | ∅ 6= N ⊆ N, |N | ≥ 2}. By Γ we denote the class of all
games with |N | ≥ 2.

Given N ∈ N , let R
N stand for the space of real-valued vectors indexed by N ,

x = (xi)i∈N , and for all S ⊆ N , x(S) =
∑

i∈S xi, with the convention x(∅) = 0. For each
x ∈ R

N and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ R
T . Given two

vectors x, y ∈ R
N , x ≥ y if xi ≥ yi, for all i ∈ N . We say that x > y if x ≥ y and for some

j ∈ N , xj > yj. Moreover, x ≫ y if xi > yi for all i ∈ N . A set π = {P1, . . . , Pm}, where
Pi ⊆ N for all i ∈ {1, . . . ,m}, with m ≤ |N |, is a partition of N ∈ N if the following
conditions hold: (i) Pi 6= ∅ for all i ∈ {1, . . . ,m}, (ii) ∪m

i=1Pi = N and (iii) Pi∩Pj = ∅, for
all i, j ∈ {1, . . . ,m}, i 6= j. Given a game (N, v), a non-empty coalition T is an equity

coalition if v(S)
|S|

≤ v(T )
|T |

for all ∅ 6= S ⊆ T .

The set of feasible payoff vectors of a game (N, v), with N ∈ N , is defined by
X∗(N, v) := {x ∈ R

N | x(N) ≤ v(N)}. A solution on a class of games Γ′ ⊆ Γ, is a
mapping σ which associates with every N ∈ N and every game (N, v) ∈ Γ′ a subset



σ(N, v) of X∗(N, v). Notice that σ is allowed to be empty. A solution σ is single-valued
if for all N ∈ N and all (N, v) ∈ Γ′, |σ(N, v)| = 1. Then, we write x = σ(N, v) instead
of {x} = σ(N, v). The pre-imputation set of (N, v) is defined by X(N, v) := {x ∈
R

N | x(N) = v(N)}, and the set of imputations by I(N, v) := {x ∈ X(N, v) | x(i) ≥
v(i), for all i ∈ N}. A game is essential if it has a non-empty imputation set. The
core of (N, v) is the set of those imputations where each coalition gets at least its worth,
that is C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game is balanced if
it has a non-empty core. A game (N, v) is superadditive if v(S) + v(T ) ≤ v(S ∪ T )
for all S, T ⊆ N with S ∩ T = ∅, and convex (Shapley, 1971) if, for every S, T ⊆ N ,
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Given N ∈ N , for any x ∈ R
N , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained from x

by rearranging its coordinates in a non-increasing order, that is, x̂1 ≥ x̂2 ≥ . . . ≥ x̂n. For
any two vectors y, x ∈ R

N with y(N) = x(N), we say that y weakly Lorenz dominates
x, denoted by y �L x, if

∑k

j=1 ŷj ≤
∑k

j=1 x̂j, for all k ∈ {1, . . . , |N |}. We say that y

Lorenz dominates x, denoted by y ≻L x, if at least one of the above inequalities is
strict. Given a coalition S ∈ N and a set A ⊆ R

S, EA denotes the set of allocations
that are Lorenz undominated within A. That is, EA := {x ∈ A | there is no y ∈
A such that y ≻L x}.

Given a game (N, v), the weak Lorenz core (Dutta and Ray, 1989) is defined in
a recursive way as follows: the weak Lorenz core of a singleton coalition is L({i}, v) =
{v(i)}. Now suppose that the weak Lorenz core for all coalitions of cardinality k or less
have been defined, where 1 < k < |N |. The weak Lorenz core of a coalition S ⊂ N

of size (k + 1) is defined by L(S, v) = {x ∈ R
S | x(S) = v(S), and there is no T ⊂

S and y ∈ EL(T, v) such that y > x|T}. The weak constrained egalitarian solution,
denoted by EL, selects the vectors Lorenz-undominated within the weak Lorenz core. For
(N, v) ∈ Γ, |EL(N, v)| ≤ 1 (Dutta and Ray, 1989). The strong Lorenz core (Dutta
and Ray, 1991) is defined in a similar way, but replacing > by ≫. Dutta and Ray (1991)
show that the strong Lorenz core, denoted by L∗, coincides with the equal division core
when the coalition structure is N and there are no restrictions on coalition formation
(see Selten, 1972 for details). That is, given an essential game (N, v), L∗(N, v) = {x ∈

I(N, v) | for all ∅ 6= S ⊂ N, there is i ∈ S with xi ≥
v(S)
|S|

}. The strong constrained
egalitarian solution chooses the vectors Lorenz-undominated within the strong Lorenz
core. The constrained egalitarian solution, denoted by CE, is a single-valued solution
defined for two person essential games as follows: let (N, v) be an essential game with
N = {i, j} and suppose, w.l.o.g., v(i) ≤ v(j), then

CEj(N, v) = max

{

v(N)

2
, v(j)

}

and CEi(N, v) = v(N)− CEj(N, v). (1)

On the domain of convex games, the weak constrained egalitarian solution of Dutta
and Ray (1989) selects the core allocation which Lorenz dominates every other point in
the core. Moreover, it picks the payoff vector that is obtained by the following algorithm:
Let (N, v) be a convex game and EL(N, v) = {z}.

• Step 1: Define v1 = v. Then find the unique coalition T1 ⊆ N such that for all
T ⊆ N , (i) v1(T1)

|T1|
≥ v1(T )

|T |
, and (ii) if v1(T1)

|T1|
= v1(T )

|T |
and T 6= T1, then |T1| > |T |.

Uniqueness of such a coalition is guaranteed by convexity of (N, v). For all i ∈ T1,

zi =
v1(T1)
|T1|

.

• Step k: Suppose that T1, . . . , Tk−1 have been defined.



• Let Nk = N \ T1 ∪ . . . ∪ Tk−1 and let (Nk, vk) be the marginal game defined as
follows: for all S ⊆ Nk,

vk(S) := v(T1 ∪ . . . ∪ Tk−1 ∪ S)− v(T1 ∪ . . . ∪ Tk−1), (2)

It can be shown that (Nk, vk) is convex. Then find the unique coalition Tk ⊆ Nk

such that for all T ⊆ Nk, (i)
vk(Tk)
|Tk|

≥ vk(T )
|T |

, and (ii) if vk(Tk)
|Tk|

= vk(T )
|T |

and T 6= Tk,

then |Tk| > |T |. For all i ∈ Tk, zi =
vk(Tk)
|Tk|

= v(T1∪...∪Tk)−v(T1∪...∪Tk−1)

|Tk|
.

Given an essential game (N, v), for X ⊆ I(N, v) we denote by Lv(X) the set of all
imputations Lorenz dominated by some imputation of the set X. Formally, Lv(X) =
{y ∈ I(N, v) | ∃ x ∈ X, x ≻L y}. A non-empty set of imputations V ⊆ I(N, v) is a Lorenz
stable set for the game (N, v) if it satisfies the next two conditions:

1. V is internally Lorenz stable: no imputation in V Lorenz dominates another impu-
tation in V . Formally, V ∩ Lv(V) = ∅.

2. V is externally Lorenz stable: any imputation outside the set V is dominated by
some imputation in V . Formally, V ∪ Lv(V) = I(N, v).

3. The Lorenz stable set

On the domain of essential games, we find that the Lorenz stable set is a singleton
and admits a formula similar to that of the constrained equal awards rule for bankruptcy
problems.

Definition 1. Let (N, v) be an essential game. The vector Iv ∈ R
N is defined as

Ivi := max{v(i), λ}, (3)

for all i ∈ N, where λ is chosen so as to achieve efficiency.

Theorem 1. Let (N, v) be an essential game. Then, there is a unique Lorenz stable set
V. Moreover, V = {Iv}.

Proof of Theorem 1. Let (N, v) be an essential game with N = {1, . . . , n}. Define the
game (N, v∗) as follows: v∗(S) =

∑

i∈S v(i) for all S ⊂ N , and v∗(N) = v(N). Notice
that (N, v∗) is convex and C(N, v∗) = I(N, v). Since for convex games the egalitarian
solution Lorenz dominates every other point in the core, we only need to check that
EL(N, v∗) = {Iv}. Assume, w.l.o.g, v(1) ≥ . . . ≥ v(n). If v(1) ≤ v∗(N)

n
, then EL(N, v∗) =

{

Iv =
(

v∗(N)
n

, . . . ,
v∗(N)

n

)}

. Otherwise, take k ∈ {1, . . . , n − 1}, n ≥ 2, and define the

vector yk ∈ R
N as follows,

yk :=
(

v(1), . . . , v(k),
v(N)− (v(1) + . . .+ v(k))

n− k
, . . . ,

v(N)− (v(1) + . . .+ v(k))

n− k

)

.

Observe that Iv = yk
∗
, where k∗ = min{k ∈ {1, . . . , n− 1} | yki ≥ v(i) for all i ∈ N}. Let

P = {S1, . . . , Sm} be the partition of N generated by the Dutta and Ray (1989) algorithm

to compute EL(N, v∗). Denote EL(N, v∗) = {z}. Notice thatm ≥ 2 because v(1) > v∗(N)
n

.
It can be easily checked that zi = v(i) for all i ∈ Sh and all h ∈ {1, . . . ,m − 1}, and

zi =
v(N)−

∑
i∈N\Sm

v(i)

|Sm|
for all i ∈ Sm. Hence, z = yk where k = |S1 ∪ . . . ∪ Sm−1|. Suppose

k > k∗. By the minimality of k∗, we have zi ≤ yk
∗

i for all i ∈ {1, . . . , k∗, . . . , k}. Moreover,
for all i > k, since i ∈ Sm and k ∈ Sm−1, we have zi < zk = v(k) ≤ yk

∗

k = yk
∗

i . Then,
z(N) < yk

∗
(N) = v(N), a contradiction. Hence, k = k∗ and EL(N, v∗) = {Iv}.



From Theorem 1 and the characterization of Lorenz domination given by Hardy et al.
(1934),1 it follows that the Lorenz stable solution selects the allocation in the imputation
set that minimize the Euclidean distance to the equal division payoff vector. Formally,
for all essential game (N, v),

Iv = arg min
x∈I(N,v)

∑

i∈N

(

xi −
v(N)

|N |

)2

. (4)

Next we introduce the properties that we will use to characterize axiomatically the
Lorenz stable set. All of them have been used upon several times in the literature.

Let us denote by Γes the set of all essential games. Let σ be a solution on Γes, we say
that σ satisfies:

• Efficiency (EFF) if for all N ∈ N , all (N, v) ∈ Γes and all x ∈ σ(N, v), it holds
x(N) = v(N).

• Constrained egalitarianism (CE) if for all N ∈ N with |N | = 2, and all
(N, v) ∈ Γes, it holds σ(N, v) = CE(N, v).

• Projection consistency (PCONS) if for all N ∈ N , all (N, v) ∈ Γes, all x ∈
σ(N, v) and all ∅ 6= T ⊂ N , it holds (T, rx(v)) ∈ Γes and x|T ∈ σ(T, rx(v)), where
(T, rx(v)) is the projected reduced game of (N, v) relative to x and T defined as
follows:

rx(v)(S) :=

{

v(S) if S ⊂ T,

v(N)− x(N \ T ) if S = T.
(5)

On the domain of convex games, Dutta (1990) characterizes the weak constrained
egalitarian solution (Dutta and Ray, 1989) by means of constrained egalitarianism and
max-consistency, that is, consistency with respect to the Davis and Maschler (1965)
reduced game. On the domain of essential games, by replacing max-consistency by pro-
jection consistency we characterize the Lorenz stable set.2

Theorem 2. On the domain of essential games, the only single-valued solution satisfying
CE and PCONS is the Lorenz stable set.

Proof of Theorem 2. CE is obvious. Next we prove PCONS. Let N ∈ N , (N, v) ∈ Γes,

x = Iv and (T, rx(v)) be the projected reduced game associated to ∅ 6= S ⊂ N and x.
Since x|T ∈ I(T, rx(v)), we have (T, rx(v)) ∈ Γes. Let y = Irx(v) be the Lorenz stable set of
(T, rx(v)) and suppose y 6= x|T . Then, y ≻L x|T . Now consider the vector z = (x|N\T , y) ∈
R

N . Since z ∈ I(N, v), x ≻L z, which implies x|T ≻L y, a contradiction.3 Hence, x|T = y.
To prove uniqueness, let σ be a single-valued solution on Γes satisfying CE and PCONS.
For |N | = 2, uniqueness follows from CE. Let (N, v) ∈ Γes with N = {1, 2, . . . , n}, n ≥ 3,

1If x and y are two vectors in R
n with

∑n

i=1 xi =
∑n

i=1 yi, the following statements are equivalent:
(a) x Lorenz dominates y; (b) for any strictly concave function U : R −→ R, we have

∑n

i=1 U(xi) >
∑n

i=1 U(yi).
2Projection consistency has been used to characterize, among others, the equal division core (Bhat-

tacharya, 2004) or the undominated core (Llerena and Rafels, 2007).
3Let N be a finite set of players, and let S ⊆ N , S 6= ∅. If xS , yS ∈ R

S , xS(S) = yS(S), and
zN\S ∈ R

N\S , then xS Lorenz dominates yS if and only if
(

xS , zN\S

)

Lorenz dominates
(

yS , zN\S

)

. This
remark is stated in Hougaard et al. (2001) page 153, and it is based on Theorem 108 of Hardy et al.
(1934).



and x = σ(N, v). First observe that CE and PCONS imply EFF, that is, x(N) = v(N).
Let T = {i, j} ⊂ N . By CE and PCONS, x|T = σ(T, rx(v)) = CE(T, rx(v)). Thus,
x ∈ I(N, v). If x1 = . . . = xn, then x = Iv. Otherwise, suppose, w.l.o.g., x1 > . . . >

xk+1 = . . . = xn, for some k ∈ {1, . . . , n − 1}. For i ∈ {1, . . . , k}, let T = {i, i + 1}. By
PCONS, x|T = CE(T, rx(v)). Since xi > xi+1, xi = v(i) for all i ∈ {1, . . . , k}. Now, by

EFF we obtain xi =
v(N)−(v(1)+...+v(k))

n−k
for all i ∈ {k + 1, . . . , n}. Thus, for all i ∈ N,

xi = max{v(i), λ} being λ = v(N)−(v(1)+...+v(k))
n−k

, and x = Iv.

The axioms in Theorem 2 are independent. For instance, the solution σ1 defined, for

all N ∈ N and all (N, v) ∈ Γes, as σ1(N, v) =
(

v(N)
|N |

, . . . ,
v(N)
|N |

)

, satisfies PCONS but not

CE. The solution σ2 defined, for all N ∈ N and all (N, v) ∈ Γes, as σ2(N, v) = CE(N, v)
if |N | = 2, and σ2(N, v) = (v(i))i∈N otherwise, satisfies CE but not PCONS.

4. Connecting the egalitarian solutions of Dutta and Ray (1989, 1991)

Dutta and Ray (1991) characterize the class of superadditive games in which the weak
constrained egalitarian allocation (Dutta and Ray, 1989) and their strong counterpart
(Dutta and Ray, 1991) coincide. Here we show that, on the domain of all games, the
unique weak constrained egalitarian allocation happens to be a strong if and only if the
two set of allocations are singleton containing the Lorenz stable allocation. Consequently,
for superadditive games we find an easy way to check when coincidence occurs.

Theorem 3. Let (N, v) be an game. Then, the following statements are equivalent:

(i) EL(N, v) ∩ EL∗(N, v) 6= ∅.

(ii) EL(N, v) = {Iv}.

(iii) EL(N, v) = EL∗(N, v) 6= ∅.

Proof of Theorem 3. (i) ⇒ (ii): Let EL(N, v) ∩ EL∗(N, v) = {y} and let us assume,

w.l.o.g., that y1 ≥ y2 ≥ . . . ≥ yn. If y1 = yn, then y =
(

v(N)
|N |

, . . . ,
v(N)
|N |

)

and so y = Iv.

If y1 > yn, then T = {i ∈ N | yi > yn} 6= ∅. Let j∗ ∈ T , by Lemma 2 of Dutta and

Ray (1991)4 there exists an equity coalition R containing j∗ and such that v(R)
|R|

= yj∗

and R ⊂ {i ∈ N | yi < yj∗} ∪ {j∗}. If |R| = 1, then yj∗ = v(j∗). Otherwise, if |R| ≥ 2,

then EL(R, v) =
{(

v(R)
|R|

, . . . ,
v(R)
|R|

)}

. Since y ∈ EL(N, v) there exists i∗ ∈ R such that

yi∗ >
v(R)
|R|

= yj∗ , getting a contradiction. Then R = {j∗}. Thus, yi = v(i) for all i ∈ T

and, by efficiency, yi =
v(N)−

∑
j∈T v(j)

|N |−|T |
, for all i ∈ N \ T . We know that

Iv =

(

v(1), . . . , v(k),
v(N)−

∑k

i=1 v(i)

n− k
, . . . ,

v(N)−
∑k

i=1 v(i)

n− k

)

,

where k = min
{

j ∈ N |
v(N)−

∑j
i=1

v(i)

n−j
≥ v(j + 1)

}

. Since y ∈ I(N, v), |T | = t ≥ k.

Suppose t > k. For all i ∈ {1, . . . , k}, Ivi = yi = v(i), for all i ∈ {k + 1, . . . , t}, Ivi ≥

4Lemma 2 in Dutta and Ray (1991) states the following: For some S ⊆ N , let y ∈ EL∗(S, v). For

any i ∈ S, if yi > min
j∈S

yj, then there exists an equity coalition T containing i and satisfying: (i) v(T )
|T | = yi

and (ii) T ⊂ {k ∈ S | yk < yi} ∪ {i}.



v(i) = yi, and for all i ∈ {t+ 1, . . . , n}, Ivi = Ivt ≥ v(t) = yt > yi. But then, v(N) =
Iv(N) > y(N) in contradiction with y(N) = v(N). Hence, k = t and y = Iv.

The implication (ii) ⇒ (iii) follows from L(N, v) ⊆ L∗(N, v) ⊆ I(N, v) and the fact
that Iv Lorenz dominates every other point in the imputation set. Obviously (iii) ⇒
(i).

As a consequence of Theorem 3 we obtain the following corollary for superadditive
games.

Corollary 1. Let (N, v) be a superadditive game. Then, the following statements are
equivalent:

(i) EL(N, v) = EL∗(N, v).

(ii) Iv ∈ C(N, v).

Proof of Corollary 1. Notice first that for superadditive games, EL∗(N, v) 6= ∅. From
Theorem 3, EL(N, v) = EL∗(N, v) 6= ∅ implies EL(N, v) = EL∗(N, v) = {Iv}. On this
domain, both solution coincide when the unique strong constrained egalitarian alloca-
tion belongs to the core (Dutta and Ray, 1991), thus Iv ∈ C(N, v). Conversely, since
C(N, v) ⊆ L(N, v) ⊆ L∗(N, v) and Iv Lorenz dominates every other point in the imputa-
tion set, we have EL(N, v) = EL∗(N, v) = {Iv}.
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