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Abstract
We investigate a two-strategy logit choice coordination game on heterogeneous networks. Degree is a number of links

a vertex has and heterogeneous network is a network whose variance of degree distribution is large. We obtain mean-

field approximate solution. We show that the heterogeneity of a network has an influence on the outcome. The

magnitude of heterogeneity determines the number of stable steady states and the characteristics of the stable steady

states. The network heterogeneity also determines which of the stable steady states is realized and the probability that

a strategy is chosen in a given stable steady state.

Citation: Tomohiko Tomohiko, (2015) ''Network Heterogeneity and a Coordination Game'', Economics Bulletin, Volume 35, Issue 4, pages

2462-2474

Contact: Tomohiko Tomohiko - tomo.konno@gmail.com.

Submitted: September 29, 2015.   Published: November 21, 2015.

 

   



1. Introduction

We investigate a two-strategy coordination game on heterogeneous networks. In reality,
people interact only with their neighbors, which can be represented by networks. Networks
in reality are more heterogeneous than we expect. The heterogeneity of a network is the
magnitude of the variance of its degree distribution. A scale-free network is a representa-
tive of heterogeneous network. Many real networks are scale-free ones. For instance, Konno
(2009) studies the network of inter-firm transactions in Japan, which is a scale-free network
with hierarchic. Since many social networks are heterogeneous, the effect of network hetero-
geneity on the outcome of a model is worth exploring. Konno (2011b), Santos and Pacheco
(2005), and Ohtsuki et al. (2006) (also see reviews by Nowak (2006), and Szabo and Fath
(2007)) study how underlying networks (in particular heterogeneous networks) determine
whether cooperation emerges or not in evolutionary games. Pastor-Satorras and Vespignani
(2001) show that an epidemic spread always occurs on scale-free networks, although it oc-
curs under certain conditions on regular networks and random networks. Diffusion processes
on social networks and underlying networks are discussed by Vega-Redondo (2007), Goyal
(2007), and Jackson (2008). Review on networks are found in Dorogovtesev and Mendes
(2003), S.Bornholdt (2003), Albert and Barabási (2002), Newman (2003), and Boccaletti
et al. (2006). In logit choice games with local interactions on regular networks, the payoff
sensitivity affects the equilibrium configuration, as shown by, e.g., Blume et al. (1993) and
Brock and Durlauf (2001). If the payoff sensitivity is large in the games on regular networks,
then two stable steady states exist. In this paper, we will study a logit choice coordina-
tion game with local interactions on non-regular networks. We will show that the mean
degree of nearest neighbors (the heterogeneity of the network) have decisive influence on the
equilibrium configuration.

2. Model: A Coordination Game on a Heterogeneous Network

Each player is on a vertex and plays games with adjacent players only. The network
structure indicates who plays with whom. A player derives a payoff from each game. We
study a symmetric-payoff coordination game with two strategies, R and P . The payoff matrix
is given by

(

R P

R a b

P 0 d

)

, (1)

where we assume that a+b > d and d > a > b > 0. Strategy R is risk dominant, whereas the
Pareto optimum realizes when all players choose strategy P. A player chooses the strategy by
Logit choice with payoff sensitivity β. After the following transformation (Konno (2011c))
x = a−b+d

4
, y = a+b−d

4
, z = a−b−d

4
, w = a+b+d

4
where we let Si = +1 denote strategy R and let

Si = −1 denote strategy P for player i. The payoff Ui for player i with strategy Si is expressed
in terms of x, y, z, and w as Ui =

∑

j∈∂i(xSiSj + ySi + zSj +w) where ∂i denotes the set of
all players adjacent to player i. By substituting Si = ±1 and Sj = ±1 into Eq. (2), we can
confirm that the payoff Ui reproduces the payoff matrix in Eq. (1). At each time step, one
player is randomly chosen, and this chosen player updates his strategy with logit probability



(Luce (1959); Konno (2011a); Train (2003)). The update processes of the strategies can be
viewed as a contagion of strategies through local interactions, which has been studied by
Ellison (1993), Morris (2000), López-Pintado (2006), Alós-Ferrer and Weidenholzer (2008),
and Galeotti et al. (2010). Unlike these papers, we study logit choice dynamics and stable
steady states because they give us a clear picture and we can use mean-field approximation.
When a player chooses a strategy, he knows the strategies of all the adjacent players. The
idea behind this update rule is that it is not likely that all players change their strategies
simultaneously. In order to take into account the fact that players are not perfectly rational
in reality, a player updates his strategy with logit probability.The probability that player i
chooses strategy Si is given by (Konno (2011c))

Pr(Si) =

exp

[

β
∑

j∈∂i

(xSiSj + ySi)

]

∑

S′

i
=±1

exp

[

β
∑

j∈∂i

(xS ′
iSj + yS ′

i)

] , (2)

where β is a non-negative constant indicating payoff-sensitiveness. Since a player derives
a payoff from each game, his choice is based on the total payoff of each strategy against
his neighbors. If a player has more interactions, then he is likely to have a higher payoff,
as is likely to happen in reality. What the player actually gains is the total payoff, so he
chooses his strategy according to his total payoff. After enough time intervals have passed,
the distribution of the strategies becomes stable. We call such a state a stable steady state,
and we will focus on these states in this paper. We will study how network heterogeneity
affects the fraction of players choosing strategy P. In other words, we will study how network
heterogeneity affects cooperation. The logit update rule in Eq. (2) has been used by Blume
et al. (1993), Arthur et al. (1997), Young (2001), and Brock and Durlauf (2001). The
mathematical structure of this form of logit update probability is equivalent to spin models
in statistical physics on a network (Baxter (1982), Kubo (1965), Greiner et al. (1995), and
Ising (1925)). We will use the mean-field method from statistical physics. Models on non-
regular networks are difficult to solve without approximations expect for few cases. Mean-field
approximation has been used.

3. Network Heterogeneity and a Coordination Game

3.1. The Network Heterogeneity and the Stable Steady State

Let ⟨S(k)⟩ denote the mean strategy of the players with degree k. Let ⟨x⟩ denote E(x),
where x is some stochastic variable. Mean-field approximation is often used to solve a problem
with a network structure, since deriving an exact solution can be difficult, especially when the
network consists of many players as in this paper. In the mean-field approximation method,
the strategies of adjacent players are replaced by their mean ⟨Snn⟩ where “nn” stands for
the nearest neighbors. Further, in this approximation, the degree of any adjacent player
is replaced by the mean degree of nearest neighbors ⟨knn⟩. Mean-field approximation is an
approximation in which the fluctuation of the degree distribution of the nearest neighbors is
neglected. A player with arbitrary degree k is surrounded by players with degree ⟨knn⟩, and



players with degree ⟨knn⟩ are also surrounded by players with degree ⟨knn⟩ in the mean-field
approximation as illustrated in Fig. 1. we have ⟨Snn⟩ = ⟨S(⟨knn⟩)⟩ in the approximation.

<knn>

<knn>

<knn>

<knn>

<knn>

k

<knn> <knn>

<knn><knn>(a) (b)

Figure 1: Mean-field approximation scheme: (a) A player is surrounded by players with degree ⟨knn⟩, which
is the mean degree of his nearest neighbors; (b) A player with degree ⟨knn⟩ is also surrounded by players with
degree ⟨knn⟩.

Note that the mean degree of nearest neighbors ⟨knn⟩ is different from the mean degree ⟨k⟩.
The relation ⟨knn⟩ > ⟨k⟩ always holds true in uncorrelated networks unless the network is a
regular one. Even though the mean degree ⟨k⟩ are the same for two networks, the mean degree
of nearest neighbors can be different. This difference has brought a number of interesting
phenomena in the study of networks. Suppose we have three networks with the same mean
degree, a regular network, a random network, and a scale-free network. The mean degree of
nearest neighbors in a regular network is the smallest, and that of a scale-free network is the
greatest. For some scale-free networks with infinite network size and exponent γ satisfying
2 < γ ≤ 3, the mean degree of nearest neighbors is infinite even if the mean degree is the
same as that of a regular network and a random network. If the network heterogeneity is
large, the mean degree of nearest neighbors is also large. Since the probability that a player
with degree k chooses a strategy is given by the logit probability Eq. (2), we have

⟨S(k)⟩ =

∑

S′(k)=±1

S ′(k) exp [βk(xS ′(k)⟨Snn⟩+ yS ′(k))]

∑

S′(k)=±1

exp [βk(xS ′(k)⟨Snn⟩+ yS ′(k))]
= tanh [βk (x⟨Snn⟩+ y)] , (3)

in the mean-field approximation. From Eq. (3), we obtain ⟨S(k)⟩∀k if we know ⟨Snn⟩. Let us
denote pP(k) and pR(k) the fractions of the players with degree k choosing strategy P and R,
respectively. Let us denote pP and pR the fractions of the players choosing the strategy P and
R, respectively. The problems of players with degree ⟨knn⟩ are symmetric in the mean-field
approximation. Similar to deriving Eq. (3), we have

⟨Snn⟩ = tanh [β⟨knn⟩ (x⟨Snn⟩+ y)] . (4)

The mean strategy of adjacent players ⟨Snn⟩ is the solution of Eq. (4), which is given by the
intersection of the 45 degree line and the RHS of Eq. (4). The hyperbolic tangent function
tanh(s) has the following characteristics; d

ds
tanh(s) > 0. d2

ds2
tanh(s) is less than 0 if s > 0,

it is 0 if s = 0, and it is larger than 0 if s > 0. d
ds

tanh(αs)|s=0 = α. tanh(s) is larger than
0 if s > 0, and less than 0 if s < 0. Hence, there are two cases depending on the parameters
in the RHS of Eq. (4), as illustrated in Fig. 2. Since y/x < 1, x > 0, and y > 0 hold true
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Figure 2: The tangent hyperbolic function and the 45-degree line are illustrated. The intersections are the
steady states. An empty circle indicates an unstable steady state, while a filled circle indicates a stable steady
state.

from the assumptions, the RHS of Eq. (4) intersects the ⟨Snn⟩ axis between −1 and 0. In
case I, there are two stable steady states and one unstable steady state, whereas there is
only one stable steady state in case II. Because of the properties of the hyperbolic tangent
function, Eq. (3), and Eq. (4), the signs of ⟨S(k)⟩ for all k and ⟨Snn⟩ are the same. From
⟨S(k)⟩, we get pP(k). Since pR(k)−pP(k) = ⟨S(k)⟩ and pR(k)+pP(k) = 1 both hold, we have
pP(k) = (1 − ⟨S(k)⟩)/2. Therefore, if ⟨S(k)⟩ < 0 holds true for all k, then pP(k) > pR(k)
holds true as well. Hence, more than half of the players choose strategy P in the state where
⟨S(k)⟩ < 0, and less than half of the players choose the strategy in the state where ⟨S(k)⟩ > 0.
The sign of ⟨S(k)⟩ is the same for all k, as is stated yet. In case I, pR(k) > pP(k) holds for all
k in the stable steady state where ⟨Snn⟩ > 0 and pP(k) > pR(k) holds for all k in the other
stable steady state where ⟨Snn⟩ < 0. In case II, pR(k) > pP(k) holds for all k in the stable
steady state. Hence, the condition when case II occurs and the state converges to the stable
steady state where pP(k) > pR(k) for all k are of interest. If ⟨S(k)⟩ < 0 holds which means
that more than half of the players choose strategy P , a large PP implies the players in the
network have a large average utility. We will study how the probability that a player chooses
strategy P is affected by network heterogeneity.

We will focus on case I for the time being. Because of the properties of the hyperbolic
tangent function, a necessary condition for case I to occur is

∂ tanh [β⟨knn⟩(x⟨Snn⟩+ y)]

∂⟨Snn⟩

∣

∣

∣

∣

x⟨Snn⟩+y=0

> 1, (5)

which yields β⟨knn⟩ > 1. Hence, a sufficient condition for case II to occur is the opposite.
This condition is rewritten as β⟨knn⟩ < 1.

In addition to β⟨knn⟩ > 1, another necessary condition for case I to occur is the following
condition from the properties of the tangent hyperbolic function,

tanh [β⟨knn⟩(x⟨Snn⟩+ y)]|⟨Snn⟩=S′

nn

≤ S ′
nn, (6)



where S ′
nn is the solution of the following conditions

∂ tanh [β⟨knn⟩(x⟨Snn⟩+ y)]

∂⟨Snn⟩

∣

∣

∣

∣

⟨Snn⟩=S′

nn

= 1, (7)

S ′
nn < 0. (8)

Therefore, we have what follows.

Result 1. The conditions for the two stable steady states illustrated in Fig. 2(a) to exist in
the mean-field approximation are given by

β⟨knn⟩ > 1, (9)

cosh−1
(

√

xβ⟨knn⟩
)

+ yβ⟨knn⟩ ≤
√

xβ⟨knn⟩ (xβ⟨knn⟩ − 1). (10)

The signs of ⟨Snn⟩ and those of ⟨S(k)⟩ for all k are opposite in the two stable steady states.
Interpretation of Result 1 If the mean degree of nearest neighbors ⟨knn⟩ is large enough,
then the stable steady state where PP is larger than PR, as illustrated in Fig. 2(a), exists. On
the other hand, if the mean degree of nearest neighbors is small, then such a stable steady
state does not exist and only the stable steady state where PR is larger than PP, as illustrated
in Fig. 2(b), exists.
This mean-field approximation technique does not capture the effect of the increase in mean
degree perfectly. If the mean degree is large enough, case I occurs in numerical simulation.
Not only the mean degree of nearest neighbors, but also the mean degree affects. This is
shortcoming of the mean-field approximation. Every approximation has its limitation and
valid region. However, we can capture how network heterogeneity (and ⟨knn⟩) affects the
outcome by the mean-field approximation. To show how the network heterogeneity affects
the outcome is why we use the mean-field approximation, and the mean-field indeed plays the
role. If the payoff sensitivity β is large, the two stable steady states both exist. On the other
hand, if the payoff sensitivity β is low, only one stable steady state exists. Inequality (10) is
satisfied if β⟨knn⟩ is large. Inequality (6) is the condition that the tangent hyperbolic curve
intersects the 45 degree line with a point where Snn < 0 given that Eq. (5) holds true, and
we have inequality (10) from inequality (6).

In case I, the stable steady state depends on the initial value of PP, which is denoted
by P 0

P. We will discuss case I in terms of ⟨Snn⟩ instead of the initial probability P 0
P since

we have the relation ⟨Snn⟩ = PR − PP. We assume that the initial probability that a player
chooses a strategy is independent of his degree. Let ST

nn denote the unstable steady state
where the RHS of Eq. (4) intersects 45 degree line in the region where ⟨Snn⟩ is negative. If
the initial value of ⟨Snn⟩ is larger than the threshold ST

nn, the stable steady state is ⟨Snn⟩ > 0,
and vice versa. Let σ2 denote the network heterogeneity, which is the variance of the degree
distribution. In uncorrelated networks, we have the following relation

⟨knn⟩ =
⟨k2⟩

⟨k⟩
= ⟨k⟩+

σ2

⟨k⟩
. (11)

The reason the above relation holds in uncorrelated networks is discussed in Appendix B.
Hence, we have∂⟨knn⟩

∂σ2 > 0. Studying the effects of the network heterogeneity σ2 is equivalent
to studying the effects of the mean degree of nearest neighbors ⟨knn⟩.



(a) The x-axis indicates the mean degree of
nearest neighbors, and the y-axis indicates
the probability of strategy P in the stable
steady state

(b) The x-axis indicates the variance of the
degree distribution, and the y-axis indicates
the probability of strategy P in the stable
steady state

Figure 3: Network heterogeneity and the probability of strategy P in the stable steady state.

3.1.1. Numerical Simulation

We will confirm the interpretation of Result 1 with the following numerical simulation.
In this simulation, all the players choose strategy P in the initial state. If there is only one
stable steady state and it is the state where the probability of strategy R is larger than that
of strategy P, as illustrated in Fig. 2(b), then the state converges to the stable steady state.
If two stable steady states exist, as illustrated in Fig. 2(a), then the system converges to the
stable steady state where the probability of strategy P is larger than that of R.
In the simulation, we have scale-free networks where the exponent γ takes different values
ranging from 2.2 to 4 with differences by 0.01, but the mean degree is kept fixed at 8. The
payoff parameters are (a, b, d) = (10, 5, 12) and β = 0.05. The network size is 2000. After
the strategies of players are updated 100, 000 times, the simulation finishes for one scale-free
network. The scale-free networks are constructed using a preferential attachment mechanism
(Barabasi and Albert (1999); Dorogovtsev et al. (2000)). The result is illustrated in Fig. 3.
If the mean degree of nearest neighbors ⟨knn⟩ (the variance of the degree distribution) is
small, there is only one stable steady state, as illustrated in Fig. 2(b). The probability of
strategy P in this stable steady state is small. On the other hand, if the mean degree of
nearest neighbors ⟨knn⟩ (the variance of the degree distribution) is large, two stable steady
states exist, as illustrated in Fig. 2(a), and the probability of strategy P in the stable steady
state is large.

3.2. Network Heterogeneity and the Probability of Strategy P in the Stable Steady State

We study case I, where two stable steady states exist, as illustrated in Fig. 2(a). First, we
focus on the case where ⟨Snn⟩ converges to a positive value at the stable steady state, which
is denoted by ⟨S+

nn⟩ > 0. This stable steady state is where PR > PP holds. Thus, we have

d⟨S+
nn⟩

d⟨knn⟩
=

∂ tanh [β⟨knn⟩ (x⟨S
+
nn⟩+ y)]

∂⟨knn⟩

(

1−
∂ tanh [β⟨knn⟩ (x⟨Snn⟩+ y)]

∂⟨S+
nn⟩

)−1

. (12)



We have

∂ tanh [β⟨knn⟩ (x⟨S
+
nn⟩+ y)]

∂⟨S+
nn⟩

< 1, (13)

because the slope of the RHS of Eq. (4) at the intersection with the 45 degree line is less
than 1. We have

d⟨S+
nn⟩

d⟨knn⟩
> 0. (14)

Let ⟨S(k)+⟩ denote the value of ⟨S(k)⟩ at stable steady state, which is derived from ⟨S+
nn⟩ > 0.

The inequality ⟨S(k)+⟩ > 0 holds for all k, because ⟨S+
nn⟩ > 0 holds true. We have

d⟨S(k)+⟩

d⟨knn⟩
=

∂ tanh [βk (x⟨S+
nn⟩+ y)]

∂⟨S+
nn⟩

d⟨S+
nn⟩

d⟨knn⟩
> 0. (15)

We also have

d⟨S(k)+⟩

dk
> 0. (16)

These properties also hold in case II, where only one stable steady state exists. At the stable
steady state, ⟨Snn⟩ is positive and ⟨S(k)⟩ > 0 holds for all k.

Second, we focus on the case where ⟨Snn⟩ converges to a negative value in the stable steady
state, which is denoted by ⟨S−

nn⟩ < 0. At the stable steady state PP > PR holds true. Let
⟨S(k)−⟩ denote the stable steady state of ⟨S(k)⟩ that is derived from ⟨S−

nn⟩ < 0. ⟨S(k)−⟩ < 0
holds for all k, because ⟨S−

nn⟩ < 0 holds. Similar to the previous case where ⟨Snn⟩ converges
to ⟨S+

nn⟩, we have

d⟨S−
nn⟩

d⟨knn⟩
< 0, (17)

d⟨S(k)−⟩

d⟨knn⟩
< 0, (18)

d⟨S(k)−⟩

dk
< 0. (19)

In case I, the signs of ⟨Snn⟩ and ⟨S(k)⟩ are determined depending on the initial probability
of strategy P P 0

P. If Snn is positive in the stable steady state, we have the following result
from the relations in Eqs. (14), (15), and (16). In case I, if the initial probability for strategy
P P 0

P is below a certain threshold, then Snn at the stable steady state is positive. In case II,
it is always positive.

Result 2. If the mean degree of nearest neighbors ⟨knn⟩ is greater, PP(k) at the stable steady
state is small in the R-type stable steady state in the mean-field approximation. If the degree
k is greater, PP(k) at the stable steady state is smaller in the R-type stable steady state in
the mean-field approximation.

If Snn at the stable steady state is negative, we have the following Result from the relations
in Eqs. (17), (18), and (19). This is the case where the initial probability of strategy P exceeds
a certain threshold in case I.
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Figure 4: (a) The x-axis indicates the mean degree of nearest neighbors, and the y-axis indicates the prob-
ability of strategy P in the stable steady state. The mean degree is the same. (b) The x-axis indicates the
variance of the degree distribution and the y-axis indicates the probability of strategy P in the stable steady
state. The mean degree is the same.

Result 3. If the mean degree of nearest neighbors ⟨knn⟩ is great, PP(k) and the average utility
of the players at the stable steady state are both great in the P-type stable steady state in the
mean-field approximation. If the degree k is great, PP(k) and the average utility of a player
with degree k are both great in the P-type stable steady state in the mean-field approximation.

The effect of network heterogeneity on PP in the stable steady state is opposite depending
on whether the initial probability for the strategy P P 0

P exceeds the threshold or not. If the
initial probability is below the threshold, then PP(k) in the stable steady state decreases as
the network heterogeneity increases. If the initial probability is above the threshold, then
PP(k) increases as the network heterogeneity increases. The network heterogeneity magnifies
the absolute value of Snn at the stable steady state in both cases. If P 0

P exceeds the threshold
and, thus, the probability of strategy P is larger than that of R at the stable steady state,
then the greater the network heterogeneity σ2 (the mean degree of the nearest neighbors
⟨knn⟩ ) is, the greater the average utility of the players on the network is.

3.2.1. Numerical Simulation

We confirm that the probability of strategy P at the stable steady state increases as
the network heterogeneity increases by a numerical simulation. The numerical simulation is
performed in the case where two stable steady states exist, as illustrated in Fig. 2(a), and the
probability of strategy P is larger than that of R in the stable steady state. All the players
choose strategy P in the initial state. Scale-free networks with exponent γ ranging from 2.2
to 3 with difference 0.005 are constructed. But the mean degree is fixed to 8. The network
size is 2, 000. The payoff parameters are (a, b, d) = (10, 5, 12) and β = 0.05. We assume that
the state converges to the stable steady state after the strategies of the players have been
updated 100, 000 times. The result of the simulation is illustrated in Fig. 4. The simulation
shows that the greater the mean degree of nearest neighbors (the network heterogeneity) is,
the greater the probability of strategy P in the stable steady state is.



3.3. Network Heterogeneity and the Threshold Initial Probability
It has been shown that if the initial probability of strategy P is beyond the threshold, then

the probability of strategy P is larger than that of R in stable steady state, and vice versa,
in case I where two stable steady states exist. We see that network heterogeneity lowers the
threshold. Network heterogeneity widens the range of initial probabilities of strategy P that
result in the stable steady state where the probability of strategy P is larger than that of R.
We now consider only case I, where there are two stable steady states. We study the problem
in terms of the threshold initial value of ⟨Snn⟩, which is denoted by ST

nn. An initial probability
of strategy P that is above the threshold probability corresponds to an initial value of ⟨Snn⟩
that is below the threshold ⟨Snn⟩

T , and vice versa. If the initial value of ⟨Snn⟩ is below ST
nn,

then PP is larger than PR in the stable steady state. The threshold initial value ST
nn satisfies

tanh
[

λ⟨knn⟩
(

xST
nn + y

)]

= ST
nn, (20)

∂ tanh
[

λ⟨knn⟩
(

xST
nn + y

)]

∂ST
nn

> 1, (21)

because the tangent hyperbolic curve intersects the 45 degree line at three points and ST
nn is

the point where the slope of the tangent hyperbolic curve is larger than 1. We have

dST
nn

d⟨knn⟩
=

∂ tanh
[

λ⟨knn⟩
(

xST
nn + y

)]

∂⟨knn⟩

(

1−
∂ tanh

[

λ⟨knn⟩
(

xST
nn + y

)]

∂ST
nn

)

. (22)

Therefore, we obtain

dST
nn

d⟨knn⟩
> 0. (23)

We have the following Result.

Result 4. The larger the mean degree of the nearest neighbors (the network heterogeneity
σ2), the wider the range of initial probabilities P 0

P
from which the state converges to the

stable steady state where the probability of strategy P is larger than that of R in mean-field
approximation.

3.3.1. Numerical Simulation

We confirm Result 4 by following numerical simulation. We have a scale-free network
with γ ranging from 2.2 to 3 with difference 0.005. But the mean degree is kept fixed at 8.
The network size is 2000. The payoff parameters are (a, b, d) = (10, 5, 12) and β = 0.05. We
assume that the state converges to the stable steady state after the strategies of the players
are updated 100, 000 times. In Fig. 5, the x-axis indicates the mean degree of the nearest
neighbors, and the y-axis is the threshold probability of strategy P. If the initial probability
of strategy P is less than the threshold probability, the state converges to the stable steady
state where the probability of strategy P is less than that of R. If the initial probability of
strategy P is larger than the threshold probability, the state converges to the stable steady
state where the probability of strategy P is larger than that of R. In the simulation, the
larger the mean degree of the nearest neighbors ⟨knn⟩ is, the smaller the threshold initial
probability of strategy P is. The greater the network heterogeneity is, the wider the range of
initial probabilities of strategy P from which the state converges to the stable steady state
where the probability of strategy P is larger than that of strategy R is.
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Figure 5: Threshold: The x-axis indicates the mean degree of nearest neighbors ⟨knn⟩ and the y-axis indicates
the threshold initial probability of strategy P.

4. Concluding Remarks

We studied a coordination game with logit choice in heterogeneous networks. There are
two strategies, P and R, where strategy R is risk dominant and the Pareto optimal state is
when all players chose strategy P. Real networks are heterogeneous and network heterogeneity
affects the outcomes of models. Hence, games on networks have been studied by a number of
papers. We studied how the probability that a player chooses strategy P in a stable steady
state is affected by network heterogeneity. The case where all players chose strategy P is
studied first. We showed there are two cases. In case I, two stable steady states exist. The
probability of strategy P is larger than that of R in one stable steady state, whereas the
probability of strategy R is larger than that of P in the other stable steady state. In case II,
only one stable steady state exists, in which the probability of strategy R is larger than that
of P. We gave the mean-field conditions where case I occurs and the stable steady state where
the probability of strategy P is larger than that of R exists. Next, we studied the case initial
probability for strategies vary. We showed that if the initial probability of strategy P is
beyond a certain threshold, the probability of strategy P in the stable steady state is larger
than that of R, and vice versa, in case I. We also showed that if the probability of strategy
P is less than that of R at the stable steady state, then what follows holds. The greater the
mean degree of nearest neighbors ⟨knn⟩ is, the smaller PP(k) is in the stable steady state.
The greater the degree k is, the smaller PP(k) is in the stable steady state. On the other
hand, if the probability of strategy P is larger than that of R in the stable steady state, then
what follows holds. The greater the mean degree of nearest neighbors ⟨knn⟩ is, the greater
PP(k) and the average utility of the players are in the stable steady state. The greater the
degree k is, the greater PP(k) and the average utility of the players with degree k are. We
showed that the larger the network heterogeneity is, the wider the range of P 0

P from which
the state converges to the stable steady state where the probability of strategy P is larger
than that of R is. In other words, the larger the network heterogeneity is, the lower the
threshold initial probability of strategy P is. We investigated how network heterogeneity has
influence on the outcome and that which of the stable steady states is realized is determined



by magnitude of the network heterogeneity in the coordination game on a network. If the
network heterogeneity is large, the stable steady state where the probability of strategy P is
larger than that of R emerges.

Appendix A. The Difference between the mean degree and the mean degree of

nearest neighbors

In this appendix, We will demonstrate that ⟨k⟩ and ⟨knn⟩ are indeed different with the
example illustrated in Fig. A.6.

A

B

C

Figure A.6: In this network ⟨k⟩ ̸= ⟨knn⟩.

In the example, the degrees of the vertices are kA = 1, kB = 2, and kC = 1, respectively.
The mean degree is

⟨k⟩ =
1

3
(1 + 2 + 1) =

4

3
. (A.1)

On the other hand, the mean degree of the nearest neighbors is given by

⟨knn⟩ =
1

3

(

kB +
kA + kC

2
+ kB

)

=
1

3

(

2 +
1 + 1

2
+ 2

)

=
5

3
. (A.2)

In fact, ⟨k⟩ ̸= ⟨knn⟩ even in the simple network.

Appendix B. The mean degree of nearest neighbors

In uncorrelated networks, the probability Pnn(k) that the end of a link is attached to a
vertex with degree k is given by

Pnn(k) =
# Ends attached to vertices with degree k

# All ends of links in the network

=
NkP (k)

N
∑

k kP (k)
, (B.1)



where P (k) is the degree distribution and N is the network size. Therefore, we have

⟨knn⟩ ≡
∑

k

kPnn(k)

=

∑

k k
2P (k)

∑

k′ k
′P (k′)

=
⟨k2⟩

⟨k⟩
. (B.2)
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