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A comparison of different univariate forecasting models for Spot Electricity 

Price in India 
 

1. Introduction 

Electricity when viewed from an economic perspective is probably the most important 

man-made commodity of human race. Ever since its invention and commercial use in 18th 

century to this day, its contribution to progress, growth, innovation and development to 

mankind has been unequivocal. Electricity markets over the decades have always been 

regional, oligopolistic and vertically integrated. However, in the last few decades, power 

markets world-wide are being transformed from highly regulated Government controlled 

power markets into deregulated and competitive power markets. The traditional vertically 

integrated electric utility structures of yester-years have been replaced by a deregulated and 

competitive market scheme in many countries worldwide (Shahidehpour et al., 2002; Li et 

al., 2007; Weron, 2006, Zareipour, 2008; Aggarwal et al., 2009; Girish et al., 2014; Weron, 

2014; Girish and Vijayalakshmi, 2015). 

The main objective of power market restructuring and deregulation has been to introduce 

competition in the power industry especially in the way electricity and ancillary services are 

traded thereby providing more options for power market participants to choose from (Amjady 

and Daraeepour, 2009; Aggarwal et al., 2009; Weron, 2014; Girish et al., 2015). With the 

deregulation and increased competition, today, participants of power markets are facing new 

challenges. Electricity trading is no more a technical business and it has transformed in to one 

in which, the product is treated similar to any other commodity (Pilipovic, 1998). For 

example in India, short-term power market transactions (i.e. contracts of less than a year) 

accounted for approximately 11% (i.e. nearly 100 billion units) of the total electricity 

generated in India for the year 2012-13 according to the market monitoring report published 

by Central Electricity Regulatory Commission of India. Electricity trading is no more a 

nascent phenomena which can be neglected or ignored. 

Electricity is a very unique commodity which is difficult to be economically stored and 

the end-user demand exhibits very strong seasonality. Events such as non-availability of 

resources (e.g., non-availability of coal for thermal power stations), power plant outages, 

imperfect transmission grid reliability or breakdown of electrical transformers may have 

extreme effects on electricity spot prices (Aggarwal et al., 2009; Weron, 2006; Niimura, 

2006; Mugele et al., 2005; Misiorek et al., 2006; Girish et al., 2013; Weron, 2014). Price 

curve of electricity market exhibits richer structure having multiple seasonality (i.e., daily, 

weekly, monthly, hourly), non-constant mean and variance, high frequency, Calendar effects, 

high levels of volatility and unusual price movements (Karakatsani and Bunn, 2004; Girish 

and Vijayalakshmi, 2014). These characteristics could be attributed to the reasons which 

make electricity different from other commodities such as non-storable nature of electrical 

energy, requirement to maintain a constant balance between demand and supply, possible 

inelastic nature of demand over short time periods, oligopolistic generation sector in certain 

electricity markets and the load and generation side uncertainties (Bunn, 2000; Aggarwal et 

al., 2009; Weron, 2006; Haghi and Tafreshi, 2007; Hickey et al., 2012; Liu and Shi, 2013; 

Girish et al., 2014; Weron, 2014). 

According to Weron (2006); Weron and Misiorek (2005), if classical notion of 

volatility (i.e., standard deviation of returns) is considered and volatility is calculated on the 

daily scale (i.e., for daily prices), then, they find that Treasury bills and notes have a volatility 

of less than 0.5%, Stock indices have moderate volatility of about 1-1.5%, Commodities such 

as crude oil and natural gas have volatilities of 1.5-4%, Highly volatile Stocks have 

volatilities not exceeding 4% and Electricity prices exhibits extreme volatility of up to 50%. 

In a power market, for both spot markets and long-term contracts, price models and forecasts 



 

are necessary input so that power market participants can develop effective bidding strategies 

or negotiation skills to maximize their own profit (Weron, 2014; Kristansen, 2012; Girish et 

al., 2014; Vijayalakshmi and Girish, 2015). 

In this study we compare different univariate forecasting models for Indian spot 

electricity price which has never been done before to the best of our knowledge. The results 

of the study would provide crucial insights about spot electricity price behaviour and help 

electricity producers and consumers to forecast prices more accurately. The rest of the paper 

is structured as follows: In section 2, we introduce Indian electricity market and review 

literature on spot electricity price forecasting. In Section 3 we emphasize on the data used for 

our study, models used for forecasting. In Section 4 we present our empirical findings and 

discuss our results. In Section 5 we conclude our study with scope for future research in this 

area. 

 

2. Literature Review 

Electricity price models for forecasting in literature can be broadly classified under the 

following five categories namely (Weron 2006, 2014): a) Equilibrium or Multi-agent models 

comprising of Nash-Cournot framework models (Vives, 1999; Ruibal and Mazumdar, 2008; 

Rubin and Babock, 2013), Supply function equilibrium models (Bolle, 2001; Holmberg, 

Newbery and Ralph, 2013), Strategic Production cost models (Batlle, 2002; Batlle and 

Barquin, 2005) and Agent based Simulation models (Sun and Tesfatsian, 2007; Guerci et al., 

2010) where in the objective is simulating and matching operation of heterogeneous 

generating units interacting with each other and building the price process based on supply 

and demand matching. b) Fundamental models which focus on capturing electricity price 

dynamics by incorporating and modeling impact of all the potential physical factors and 

economic factors which play a role in electricity price (Weron and Misiorek, 2008; Gonzales 

et al., 2012; Liebl, 2013) and Parsimonious Structural models (Coulon and Howison, 2009; 

Aid et al., 2013). c) Reduced form models (Weron, 2006) including jump-diffusion models 

(Cartea and Figueroa, 2005; Keles et al., 2012; Benth et al., 2012; Bhar et al., 2013) and 

regime-switching models (Bierbrauer et al., 2007; Janczura and Weron, 2009; Karakatsani 

and Bunn, 2010) with an objective of describing statistical properties of electricity price 

series with respect to time having relevance in valuation of derivatives and for risk-

management purpose. d) Statistical, econometric models and/or technical analysis approach 

including Similar-day exponential smoothing method (Shahidehpour et al., 2002; Nogales et 

al., 2002; Contreras et al., 2003; Conejo et al., 2005; Jonsson et al., 2013) Regression models 

(Koopman et al., 2007; Karakatsani and Bunn, 2008; Azadeh et al., 2013) AR, AR-X models 

(Cuaresma et al., 2004; Weron and Misiorek, 2005; Misiorek et al., 2006; Tan et al., 2010; 

Kristiansen, 2012), Threshold AR model (Robinson, 2000; Weron and Misiorek, 2008; 

Gonzales et al., 2012), GARCH type models (Knittel and Roberts, 2005; Diaongue et al., 

2009; Liu and Shi, 2013). e) Computational Intelligence approaches such as feed-forward 

neural networks (Zhang and Luh, 2005; Mandal et al., 2006; Mori and Awata, 2007; 

Pindoriya et al., 2008; Shafie-khah et al., 2011; Chen et al., 2012; Chaabane, 2014), 

Recurrent neural networks (Fan et al., 2007; Niu et al., 2010; Sharma and Srinivasan, 2013), 

Fuzzy neural networks (Wang and Fu, 2005; Meng et al., 2009; Azadeh et al., 2013) and 

Support vector machines (Sansom et al., 2002; Yan and Chowdhury, 2010; Zieba et al., 

2014).    

It has been observed in literature that Statistical models and Computational Intelligence 

based models/approaches are handy for spot electricity price modeling and forecasting 

(Weron, 2006; Aggarwal et al., 2009; Girish et al., 2014; Weron, 2014). It has also been 



 

observed that electricity market participants belonging to auction-type spot electricity 

markets
1
 are particularly concerned with forecasting of electricity prices for short-term (a 

day-ahead, week-ahead or term-ahead) where the participants need to communicate their bids 

quoting the price for buying/selling along with the requisite quantities (Misiorek et al., 2006). 

It must be mentioned beforehand that results obtained for one country/electricity market 

may/may not be relevant or valid to other country since political, economic, energy policies 

along with market microstructure of a particular energy exchange plays an equal role 

(Aggarwal et al., 2009; Girish and Vijayalakshmi, 2013; Girish et al., 2014).  

The Indian electricity market has been broadly divided into five regions namely Western, 

Northern, Eastern, Southern and North-Eastern region as seen in Fig 1. The structure of 

power industry in India is as shown in Table 1.There are two power exchanges in India 

namely: Indian Energy Exchange (IEX) and Power Exchange of India Limited (PXIL). IEX 

has over 92% market share based on volume of electricity traded in the financial year 2013-

14. Market clearing spot electricity price in a power exchange having two-sided auction is 

given by the “intersection of total demand curve and the total supply curve, for a given 
particular hour, for each region of the electricity market” {Weron, 2006; Girish et al., 2014}. 

Figure 1:Indian Electricity Market  

 

Source: Girish et al. (2013) 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 In spot electricity markets (buy/sell)(bid/ask) orders are accepted in order of (increasing/decreasing) prices 

till (total demand/total supply) has been met. 

 



 

 

Table 1:Structure of Power Industry in India 

 Centre State/Private  

Policy Ministry of Power 

State Government 

 

Plan 
Central Electricity 

Authority (CEA) 

Regulations 

Central Electricity 

Regulatory 

Commission (CERC) 

and Central 

Government 

Appointed Committee 

(CAC) 

State Electricity 

Regulatory 

Commission 

(SERC) and State 

Government 

Appointed 

Committee (SAC) 

Generation 

Central Generating 

Stations (CGS) and 

Mega Power Projects 

Generation 

Companies 

(Gencos) and 

Independent Power 

Producers (IPP) Private 

Licensees in 

Ahmedabad, 

Kolkata, 

Delhi, 

Mumbai, 

Noida and 

Surat 

System 

Operations 

National Load 

Dispatch Centre 

(NLDC) and Regional 

Load Dispatch Centre 

(RLDC) 

State Load 

Dispatch Centre 

(SLDC) 

Transmission 

Central Transmission 

Utilities (CTU) and 

Transmission 

licensees 

State Transmission 

Utilities (STU) and 

Transmission 

licensees 

Distribution Distribution Licensees 

Trading 

Power Exchanges (i.e. 

Indian Energy 

Exchange (IEX) and 

Power Exchange 

India Limited (PXIL)) 

and Trading 

Licensees 

Trading Licensees 

 

Appeal Appellate Tribunal 

Source: Girish et al. (2013); Girish et al. (2014) 

 

 

3. Research Methodology 

3.1 Data 

Market clearing Spot electricity price is obtained by “Intersection of total demand 
curve and the total supply curve, for each hour and each region of a particular electricity 



 

market” (Weron, 2006; Girish et al., 2013). Enforcement and execution of Central Electricity 

Regulatory Commission Power Supply Regulations (2010), Indian Electricity Grid Code 

Regulations (2010) and Central Electricity Regulatory Commission Power Market 

Regulations (2010) encouraged us to choose average daily market clearing spot electricity 

price data from January 1, 2010 to December 31 2015 for all five regions of the Indian 

electricity market which are publicly available given by CERC and IEX for investigating the 

forecasting performance of different univariate models.  

3.2 Models 

3.2.1. ARFIMA and AUTO-ARIMA models 

ARIMA models are very common in forecasting macroeconomic variables, but the 

order selection process for these models can be considered as subjective. However, this 

selection can be made using unit root tests. Usually the ARIMA model is specified as an 

ARIMA(p,1,0). Nevertheless, a distinction must be made between seasonal and non-seasonal 

series. For a non-seasonal series, Hyndman and Khandakar (2008) show that an 

ARIMA(p,d,q) process is given by:                             (1a) 

where:   is the time series,      is a white noise process with 0 mean and    variance,   is 

the backshift operator,   is difference parameter, and      and      are polynomials of order   and   respectively. 

For a seasonal ARIMA (p,d,q)(P,D,Q)m process, we have: 

                                                     (1b) 

where:      and      are polynomials of orders   and   respectively, with no roots inside 

the unit circle. If     there is an implied polynomial of order     in the forecast 

function. 

An Autoregressive Fractionally Integrated Moving Average (ARFIMA) model shares 

the same form of representation as the ARIMA(p,d,q) process. However, in contrast to the 

ordinary ARIMA process,  is allowed to take non-integer values. Hyndman and Khandakar 

(2008) propose also an automatic forecasting approach (AUTO-ARIMA), where the 

appropriate model order (the values p, q, P, Q, D, d) is selected based on AIC information 

criteria, such as:                                           (1c) 

where:     if     and 0 otherwise. 

3.2.2. Taylor’s (2003) Double-Seasonal Holt-Winters model 

Another popular automatic forecasting framework is based on the exponential smoothing. 

The robustness and accuracy of exponential smoothing methods has led to their large use in 

applications with a large number of series. Exponential smoothing methods where developed 

progressively, but a noteworthy extension is that of Taylor (2003), who adapted the Holt-

Winters exponential smoothing formulation so that it can accommodate a second seasonality. 

Thus, if    and    are the periods of the seasonal cycles and    is a white-noise random 

variable representing the prediction error, while the components    and   represent the level 

and the trend of the   series at time  , the seasonal components       become:                                        (2a) 



 

                                                  (2b) 

and                                              (2c)                                    (2d)                                (2e) 

where: the coefficients           are the soothing parameters and                           

and                     are the initial state variables.  

Finally, the seasonal equations are given by:                                              (2f)                                                         (2g) 

where:    is a time series consisting of repeated sequencesfor each season in the smaller 

cycle. 

3.2.3. Exponential smoothing state space (ETS) model 

Hyndman et al. (2002) and Hyndman and Khandakar (2008) propose a different approach 

to automatic forecasting based on an extended range of exponential smoothing, namely the 

exponential smoothing state space models for additive and multiplicative errors. The so 

called ETS model, refers to refers to the three components: error, trend and seasonality. 

For additive errors, the state space model is:                                    (3a)                                     (3b)                                                      (3c) 

where                 denote the one-step forecast of   considering that the values of 

all parameters al known, and          is the one-step forecast error in time  . 

For multiplicative errors, the state space model becomes:                                        (3d)                                         (3e)                                                     (3f) 

where:              , so that    is the relative error.  

 

3.2.4. Theta forecast 

The “Theta method” of forecasting was introduced by Assimakopoulos and 

Nikolopoulos (2000) and simplified by Hyndman and Billah (2003). The proposed method 

decomposes the original time series into two or more different Theta-lines, extrapolated 

separately, while the subsequent forecasts are combined. 

Assimakopoulos and Nikolopoulos (2000) construct from a           observed 

univariate time series, a new series               , such that: 



 

                                          (4a) 

where:     denotes the second difference of    and        is the second difference of      . 

The above equation is a second-order difference equation and has the solution:                                                  (4b) 

where:    and    are constants, and       is the “theta line”. 
The forecasts from the Theta method proposed by Assimakopoulos and Nikolopoulos (2000) 

for    and   , are obtained through the weighted average of       forecasts, for 

different values of  . Accordingly:                                              (4c) 

Hyndman and Billah (2003) generalize these results, and show that for large  , we have:                                               (4d) 

where:       is the simple exponential smoothing of the series     . 
 

4. Empirical Findings 

The forecasting performance of each model is evaluated based on standard metrics: 

the mean error (ME), the root mean squared error (RMSE), the mean absolute error (MAE), 

mean percentage error (MPE), the mean absolute percentage error (MAPE) and the mean 

absolute scaled error (MASE).The results for the accuracy fit are differentiated for different 

variables of Spot Electricity Price in India (Table 1). Appendix A shows the forecasting 

performance of Univariate models for North-Eastern region of Indian Electricity Market, 

Appendix B shows the forecasting performance of Univariate models for Eastern region of 

Indian Electricity Market, Appendix C shows the forecasting performance of Univariate 

models for Northern region of Indian Electricity Market, Appendix D shows the forecasting 

performance of Univariate models for Southern region of Indian Electricity Market, 

Appendix E shows the forecasting performance of Univariate models for Western region of 

Indian Electricity Market and Appendix F shows the forecasting performance of Univariate 

models for Overall market clearing Spot electricity prices  of Indian Electricity Market.  

In the case of North-Eastern region, Table 1 and Appendix A shows that ARIMA 

model predicts spot electricity prices better with lowest values of error statistic (i.e., RMSE, 

MAE and MASE
2
 statistics) compared to other models. For Eastern region, Table 1 and 

Appendix B shows that exponential smoothing state space model (ETS model) and Nile theta 

forecast model predicts spot electricity prices better with lowest values of error statistic (i.e., 

MAE, MPE, MASE, ACF1 and MASE statistics) compared to other models. For Northern 

region, Table 1 and Appendix C shows that exponential smoothing state space model (ETS 

model) predicts spot electricity prices better with lowest values of error statistic (i.e., ME, 

MAE, MAPE, ACF1 and MASE statistics) compared to other models. For Southern region, 

Table 1 and Appendix D shows that exponential smoothing state space model (ETS model) 

and Nile theta forecast model predicts spot electricity prices better with lowest values of error 

statistic (i.e., ME, MAPE and MASE statistics) compared to other models. For Western 

region, Table 1 and Appendix E shows that ARIMA model predicts spot electricity prices 

better with lowest values of error statistic (i.e., RMSE, MAE and MASE statistics) compared 

                                                           
2
 MASE statistic has been used to infer the best forecasting model 



 

to other models. For overall market clearing spot electricity prices of Indian electricity 

market, Table 1 and Appendix F shows that Nile theta forecast model predicts spot electricity 

prices better with lowest values of error statistic (i.e., ME and MASE statistics) compared to 

other models. 

Table 1. Comparison of the accuracy fit of models forecasting the Spot Electricity Price 

in India 

  
ME RMSE MAE MPE MAPE MASE ACF1 

North-

East 
ARFIMA 6.21E-05 0.762454 0.542257 -1561.82 4581.752 3.742994 -0.9704 

 
ARIMA 0.000682 0.133369 0.09501 104.6749 210.2834 0.655817 -0.01401 

 
ETS -2.83E-05 0.137142 0.09521 99.96402 100.5219 0.6572 -0.10353 

 
SES 0.003238 0.139029 0.096326 106.4723 120.3827 0.6649 -0.09606 

 
NILE -7.80E-06 0.137142 0.095211 99.96734 100.4676 0.657205 -0.10353 

East ARFIMA 1.30E-05 0.85621 0.575542 -3099.48 6875.84 4.047826 -0.97714 

 
ARIMA 0.000746 0.137437 0.094173 104.8147 232.0569 0.662322 -0.00173 

 
ETS -0.00028 0.141943 0.093792 99.86454 101.2467 0.659644 -0.15726 

 
SES 0.000226 0.145608 0.096317 106.0598 130.6709 0.677403 -0.13236 

 
NILE -0.00028 0.141943 0.093792 99.86454 101.2467 0.659644 -0.15726 

North ARFIMA 7.67E-05 0.199345 0.147126 154.5886 724.7036 1.174455 0.499804 

 
ARIMA 0.000287 0.125102 0.084978 122.809 143.427 0.678345 0.001288 

 
ETS -4.57E-05 0.126365 0.083921 99.65165 99.82469 0.669911 -0.14067 

 
SES 0.000795 0.126521 0.084154 97.47857 105.2357 0.671768 -0.13822 

 
NILE -4.57E-05 0.126365 0.083921 99.65165 99.82469 0.669911 -0.14067 

South ARFIMA 0.000445 1.073247 0.723419 -33167.9 74187.2 5.089865 -0.98604 

 
ARIMA 0.00107 0.136445 0.089225 -766.391 1250.896 0.627772 0.001777 

 
ETS -0.00024 0.141552 0.088431 155.0208 164.5965 0.622188 -0.21964 

 
SES 0.00059 0.142102 0.089149 544.1993 652.1607 0.627238 -0.21097 

 
NILE -0.00024 0.141552 0.088431 155.0208 164.5965 0.622188 -0.21964 

West ARFIMA 2.55E-05 0.150748 0.1117 169.1087 691.1357 0.919148 -0.18771 

 
ARIMA -0.00012 0.108421 0.078594 163.3707 273.0242 0.646723 0.035843 

 
ETS -8.98E-06 0.115217 0.082637 99.88809 100.3068 0.679996 -0.02433 

 
SES 0.001449 0.132675 0.092667 67.00512 277.3273 0.762533 -0.15163 

 
NILE -5.69E-06 0.115217 0.082637 99.88967 100.3008 0.679997 -0.02433 

MCP - 

Overall 
ARFIMA 0.000445 1.073247 0.723419 -33167.9 74187.2 5.089865 -0.98604 



 

 
ARIMA 0.000432 0.10847 0.08018 21.32884 190.4968 0.685629 -0.00134 

 
ETS 4.58E-06 0.115454 0.084591 101.6369 103.149 0.672017 -0.00376 

 
SES -0.00111 0.121184 0.087895 136.5834 177.3099 0.698264 0.013342 

 
NILE -3.18E-06 0.115454 0.084591 101.6505 103.1846 0.672014 -0.00376 

 

5. Conclusions 

Power markets world-wide are being transformed from highly regulated Government 

controlled power markets into deregulated and competitive power markets. In a power 

market, for both spot markets and long-term contracts, price models and forecasts are 

necessary input so that power market participants can develop effective bidding strategies or 

negotiation skills to maximize their own profit (Weron, 2014; Kristansen, 2012; Girish et al., 

2014).In this study we compare different univariate forecasting models for Indian spot 

electricity price which has never been done before to the best of our knowledge. 

We evaluate the out-of-sample forecasting performance of five models on Indian spot 

electricity prices. There is no clear evidence regarding one model outperforming the rest for 

each of the five regions of the Indian electricity market. All in all, the models provide mixed 

results. However, based on MASE statistic the ARIMA model, Nile theta forecast model and 

ETS models present smaller forecasting errors and thus better accuracy. The forecasting 

performance results of different univariate forecasting models provides crucial insights about 

Indian spot electricity price behaviour and helps electricity producers and consumers of 

Indian electricity market to forecast prices more accurately. 

Future research in this area may be directed to employ models of GARCH family like 

APARCH, CGARCH etc. for modelling and forecasting volatility over a longer horizon. 
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Appendix A: Forecasting Performance of Univariate Models for North-Eastern Region of 

Indian Electricity Market
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Appendix B: Forecasting Performance of Univariate Models for Eastern Region of Indian 

Electricity Market
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Appendix C: Forecasting Performance of Univariate Models for Northern Region of Indian 

Electricity Market
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Appendix D: Forecasting Performance of Univariate Models for Southern Region of Indian 

Electricity Market
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Appendix E: Forecasting Performance of Univariate Models for Western Region of Indian 

Electricity Market
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Appendix F: Forecasting Performance of Univariate Models for Overall Market Clearing 

Spot Electricity Prices of Indian Electricity Market
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