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Abstract
This paper develops bootstrap-based method for addressing the “many instruments” problem in the context of

instrumental variable estimation. We propose a plug-in restricted-efficient-residual-based (plug-in RE) bootstrap for

choosing optimal number of instruments used for two-stage least squares (TSLS) and limited information maximum

likelihood (LIML) estimator. In Monte Carlo experiments, we find that the instrument choice based on our plug-in RE

bootstrap generally yields an improvement in finite sample performance.

Citation: Wenjie Wang and Qingfeng Liu, (2015) ''Bootstrap-based Selection for Instrumental Variables Model'', Economics Bulletin,

Volume 35, Issue 3, pages 1886-1896

Contact: Wenjie Wang - wang.wenjie.2c@kyoto-u.ac.jp, Qingfeng Liu - qliu@otaru.res-uc.ac.jp.

Submitted: June 14, 2015.   Published: September 07, 2015.

 

   



1 Introduction

There have been a considerable interest in the application and properties of instrumental vari-

ables estimators. In practice, empirical researchers can often choose among a large number

of instrumental variables. It is now well known that in finite samples, instrumental variables

estimators behave poorly when there are many instrumental variables (see, e.g., Kunitomo

(1980) [10], Morimune (1983)[11] and Bekker (1994)[2], etc.). In particular, the two stages

least squares (TSLS) estimator, which is most widely used in practice, has a bias that is

proportional to the number of instruments used in the regression. This motivates the use of

instruments selection methods.

In the literature of instruments selection, Donald and Newey (2001)[6] proposed mini-

mizing the asymptotic mean square error (MSE) as a criterion for choosing optimal number

of instruments. Their approximate MSE is like that of Nagar (1959)[12], being the MSE

of leading terms in an expansion of the estimators of interest. However, the formula of the

approximate MSE is quite complicated, and thus could be difficult for empirical researchers

to apply. Moreover, one potential drawback of this method is that the neglected terms in the

expansion may be nonetheless important in finite sample, especially when the sample size is

not large enough for the asymptotic theory to provide a good approximation.

As an alternative to the higher-order expansion of Donald and Newey (2001)[6], this

paper proposes a bootstrap-based method to approximate the asymptotic MSE of instru-

mental variable estimators, and use it as a criterion for instruments selection. The widely

used nonparametric i.i.d. bootstrap can be straightforwardly applied to instruments selec-

tion. However, such bootstrap procedure may not be suitable for the “many instruments”

situation since the instruments are involved in the resample scheme. When the dimension of

the instruments is large the nonparametric i.i.d. bootstrap can behave poorly, as demonstrated

in our simulation results.

In this paper, we propose a plug-in restricted-efficient-residual-based (RE) bootstrap pro-

cedure by extending the idea of Davidson and MacKinnon (2008[3], 2010[4], 2014[5]).

Their RE bootstrap is proposed for hypothesis testing and constructing confidence sets, and

it uses the value of the structural parameter under the null hypothesis when generating the

bootstrap pseudo-data. However, the RE bootstrap cannot be directly applied to instrument

selection since the null value of the parameter is not available. To solve this problem, we use

similar efficient reduced-form estimator as Davidson and MacKinnon (2008, 2010, 2014)

but with some plugged-in preliminary instrumental variable estimator.

A motivating example for the empirical application of many instruments is Angrist and

Krueger ([1])’s study of the returns to schooling. Hansen et al. ([9]) show that using 180

instruments help to obtain more precise estimation result than using the original 3 instru-

ments. In such case with large number of instruments, we expect our plug-in RE bootstrap

to perform better than the nonparametric i.i.d. bootstrap.

We conducted some Monte Carlo simulations to investigate the finite sample perfor-

mance of the plug-in RE bootstrap. For comparison, two kinds of i.i.d. bootstraps and a

standard residual-based bootstrap were investigated as well. Our Monte Carlo experiments

show that for the TSLS estimator, the residual based bootstraps such as the plug-in RE boot-



strap typically outperform the nonparametric bootstrap. The plug-in RE bootstrap tends to

perform best when the number of instruments is quite large and/or when the degree of en-

dogeneity is high. On the other hand, for the LIML estimator, all the bootstrap procedures

have similar performance. In general, estimators using bootstrap-selected instruments al-

ways outperform the estimator without instrument selection, confirming the usefulness of

bootstrap-based methods for instrument selection.

The organization of the rest of the paper is as follows. In Section 2, we describe the

instrument variable model and the TSLS and LIML estimation methods. In Section 3, we

propose the plug-in RE bootstrap-based instrument selection method. In Section 4, we re-

port the results of the Monte Carlo experiments. We conclude in Section 5. The Appendix

contains all the details of the procedures of the other three bootstraps.

2 Instrumental Variable Model and Estimation Methods

We consider the following instrumental variable model

yi = X ′
i β + εi (1)

Xi = f (zi)+ vi (2)

where yi is a scalar outcome variable, Xi is a l × 1 vector of endogenous variables, zi is

a vector of exogenous variables, εi and vi are unobserved random variables with second

moments which do not depend on zi, and f (zi) = E[Xi|zi]. As has been pointed out by Donald

and Newey (2001)[6], this set up is general enough to allow for many types of instrumental

variables. The vector z might be a few continuous variables, in which case f (z) allows

for unknown functional form. Also, z might be many dummy variables, for which f (x)
represents a fully saturated model. Because Xi is endogenous, instrumental variables are

needed for the purpose of estimating β . The set of instrumental variables has the form

Zk ≡ (ψ1(zi), ...,ψk(zi)), where k is the number of instruments, and ψk’s are functions of zi

such that Zk,i is a k× 1 vector of instruments. Let y = (y1, ...,yn)
′and define X ,ε, f , and v

similarly.

The two commonly used estimators for the parameter of interest β are the two stages

least squares (TSLS) estimator and the limited information likelihood (LIML) estimator.

The TSLS estimator using Zk, β̂T SLS(k), is defined as

β̂T SLS(k) =
(

X ′PkX
)−1

X ′Pky

where Pk = Zk(Z
′
kZk)

−1Z′
k, and the limited information maximum likelihood (LIML) estima-

tor, β̂LIML(k), is defined as

β̂LIML(k) =
(

X ′PkX − Λ̂(k)X ′X
)−1 (

X ′Pky− Λ̂(k)X ′y
)

where Λ̂(k) = minβ
(y−Xβ )′Pk(y−Xβ )
(y−Xβ )′(y−Xβ ) .



3 Bootstrap-based Selection of Instrumental Variables

In this section, we propose the plug-in RE bootstrap-based instruments selection method. In-

stead of using analytical formulas, the bootstrap is used to approximate the MSE of the TSLS

and LIML estimators, and then the optimal number of instruments is chosen by minimizing

the bootstrap-based approximate MSE.

Suppose we have estimated the equation (1) and equation (2), and have yielded the resid-

uals for both equations. Then we can generate bootstrap pseudo-data with these residuals

and the observed sample. Particularly, when we use the least square to estimate equation (2),

we call such procedure the standard residual-based bootstrap. The details of the algorithm of

this bootstrap is described in Appendix. However, as pointed out by Davidson and MacKin-

non (2008, 2010, 2014), using the least square estimator is not an efficient way to estimate

the reduced-form equation (2). To improve the performance of bootstrap procedures, when

possible it is desirable to use a more efficient estimator of the reduced-form equation, instead

of using the least square estimator. In addition, for their purpose of testing the hypothesis

H0 : β = β0, one may also generate the bootstrap pseudo-data imposing the null hypothe-

sis. Indeed, their RE bootstrap is implemented using a null-restricted efficient reduced-form

estimator

π̃(β0) =
(

Z′Z
)−1

Z′

(

X − ε(β0)
ε(β0)

′MkX

ε(β0)′Mkε(β0)

)

where ε(β0) = y−Xβ0. Then residuals of the reduced form equation can be obtained by

computing ṽ(β0) = X −Zπ̃(β0) and the bootstrap disturbances are obtained by drawing from

the empirical distribution function of (εi(β0), ṽi(β0))
N
i=1.

However, for our current purpose of approximating the asymptotic MSE of TSLS or

LIML, it is infeasible to impose the null hypothesis since we do not know the true value of

β . Thus, instead of using β0 we suggest to replace β0 in π̃(β0) with a preliminary consistent

estimator of the structural parameter (say, β̃ ) for our instrument selection procedure. The

TSLS/LIML estimator computed with all the available instruments or some preliminarily

chosen instruments can be used as β̃ . Specifically, the algorithm of our plug-in RE bootstrap

based selection procedure is as follows:

Algorithm of the plug-in RE bootstrap based selection procedure

1. Obtain the residuals
(

ε̃i, ṽi(β̃ )
)N

i=1
from ε̃i = y−X β̃ and ṽi(β̃ ) = Xi −Z′

i π̃(β̃ ), where

π̃(β̃ ) =
(

Z̃′Z̃
)−1

Z̃′
(

X − ε̃ ε̃ ′M̃X
ε̃ ′M̃ε̃

)

, ε̃ = y−X β̃ , M̃ = I − Z̃
(

Z̃′Z̃
)−1

Z̃′, Z̃ is some pre-

liminary choice of instruments and β̃ is some preliminary estimator of β .

2. Draw the bootstrap disturbances (ε∗i ,v
∗
i )

N
i=1 from the empirical distribution function of

(de-meaned)
(

ε̃i, ṽi(β̃ )
)N

i=1
.

3. For each number of instrument k, generate the bootstrap DGP:

y∗i (k) = X∗
i (k) · β̂ (k)+ ε∗i , X∗

i (k) = Z′
k,iπ̃(k, β̃ )+ v∗i ,



where π̃(k, β̃ )=
(

Z′
kZk

)−1
Z′

k

(

X − ε̃ ε̃ ′MkX
ε̃ ′Mk ε̃

)

, and β̂ (k) corresponds to β̂T SLS(k) or β̂LIML(k).

Compute the bootstrap analogues of the TSLS/LIML estimator using
(

y∗i (k),X
∗
i (k),Zk,i

)N

i=1
.

4. Repeat Steps 2-3 B times. Note that the same choice of Z̃ and β̃ need to be used for

each replication. Compute the bootstrap-based approximate MSE

BMSE(k) = B−1
B

∑
b=1

(

β̂ ∗
b (k)− β̂ (k)

)2

,

where β̂ ∗
b (k) denotes the bootstrap analogue of the TSLS/LIML estimator derived from

the b-th time of replication, then choose k that minimizes BMSE(k).

4 Monte Carlo Simulations

In this section, we use similar Monte Carlo design as Donald and Newey (2001)[6]. Our data

generating process is the following model: yi = Xiβ + εi and Xi = Z′
iπ + vi for i = 1, ...,N,

where Yi is a scalar, β is a scalar parameter of interest. Zi ∼ N(0, IK), and (εi,vi) is i.i.d.

jointly normal with variance 1 and covariance c. The integer K is the total number of instru-

ments considered in each experiment. We fix the true value of β at 0.1 and examine how

well the various bootstrap-based instruments selection methods perform relative to existing

methods. In this framework, each experiment is indexed by the vector of specifications:

(N,K,c,π). We set N = 100.The largest number of instruments is set to 10 and 30. The de-

gree of endogeneity is controlled by the covariance c and set to c = 0.1,0.5,0.9. The number

of Monte Carlo experiments is set to 1000 and the number of bootstrap replications is set to

399 in all experiments.

We consider the specification of the vector π as used in Donald and Newey (2001)[6].

Let R2
f denote the theoretical R2 of the first-stage regression in equation (2). The kth element

of π is given by

πk = a(K)

(

1−
k

K +1

)4

,

where a(K) is chosen to satisfy π ′π = R2
f /
(

1−R2
f

)

. We use R2
f = 0.1. The strength of the

instruments decreases gradually with k, this case is most relevant for empirical applications

where there is always some information about which instruments are important. And we

choose the optimal number of instruments to be used for estimation based on the plug-in RE

bootstrap-based methods. For comparison, we also perform simulations for two kind of non-

parametric i.i.d. bootstrap-based methods, the pairwise bootstrap and Freedman (1984)’[7]s

bootstrap, and the standard residual-based bootstrap-based method. The details of the al-

gorithms of the two nonparametric i.i.d. bootstrap-based methods are described in the Ap-

pendix.

Tables 1 - 4 report the result of the experiments. Summary statistics are computed for

TSLS and LIML estimators. For each estimator, we compute the median bias (BIAS) and



the median absolute deviation (MAD). We use these “robust” measures of central tendency

and dispersion because of concerns about the existence of moments of of the LIML esti-

mator. “TSLS-all” and “LIML-all” denote the estimators computed using the largest set of

instruments. “Pair”, “Freedman”, “Standard”, and “plug-in RE” denotes the four bootstrap

algorithms presented in the previous section and the Appendix.

For the case of TSLS estimator (Tables 1 - 2), the most commonly used instrumental vari-

able estimator, the pairwise bootstrap and the Freedman’s nonparametric bootstrap typically

have similar performance as TSLS-all. Freedman’s procedure performs slightly better than

the pairwise bootstrap when the endogeinity is high (c=0.9). Both bootstrap procedures tend

to select a large number of instruments. This results in relatively bad performance of these

two procedures since the bias of the TSLS estimator increases considerably when the number

of instruments becomes large. Among the two residual-based bootstrap, the performance of

the standard one is close to that of the nonparametric bootstraps. This is somewhat expected

since the reduced form equation is not estimated efficiently in the standard residual-based

bootstrap. On the other hand, the plug-in RE bootstrap turns out to perform well relative

to other methods. Especially in the case with high endogeneity, both BIAS and MAD are

considerably reduced when the plug-in RE is used. Tables 3 - 4 report the results for the

LIML estimator. Contrary to the case of the TSLS estimator, all the bootstrap procedures

have similar performance with nonparametric bootstraps performing relatively better when

the endogeneity is low and the plug-in RE bootstraps better when the endogeneiry is high.

When K=30, the bootstrap-based methods almost always outperform LIML-all, indicating

that the bootstrap procedures succeed to select only relatively important instruments. Again,

the plug-in RE bootstrap tend to have best performance among all the bootstraps when K=30.

5 Conclusion

In this paper, we propose plug-in RE bootstrap-based method for instrument selection and

we investigate the effectiveness of bootstrap based criteria by Monte Carlo experiments.

Our Monte Carlo experiments show that for the TSLS estimator, the residual based boot-

straps such as the plug-in RE procedure typically outperform the nonparametric bootstrap

procedures. On the other hand, for the LIML estimator, all the bootstrap procedures have

similar performance. Furthermore, estimators using bootstrap-selected instruments almost

always outperform the estimator without instrument selection, confirming the usefulness of

bootstrap-based methods for instrument selection. Overall, the results are encouraging and

should stimulate further research on bootstrap based selection methods, e.g., for general

nonlinear cases where estimators such as the Generalized Method of Moments (GMM) and

Generalized Empirical Likelihood (GEL) are used.

6 Appendix

First, we introduce one of the nonparametric i.i.d. bootstraps, the pairwise bootstrap, in

which each bootstrap sample is drawn from the empirical distribution function of the data.



For the pairwise bootstrap, the ith row of each bootstrap sample is simply one of the row

of the matrix (y : X : Z), chosen at random with probability 1/n. The instruments selection

procedure based on the pairwise bootstrap is as follows:

Algorithm of the pairwise bootstrap

1. For each number of instruments k , draw the bootstrap sample W ∗
k,i =

(

y∗i ,X
∗
i ,Z

∗
k,i

)N

i=1

from the empirical distribution function of the data, F̂k(w) = N−1 ∑N
i=1 I{Wk,i ≤ w}

where Wk,i =
(

yi,Xi,Zk,i

)N

i=1
.

2. Compute the TSLS and LIML estimators using the bootstrap samples for each k. For

example, the bootstrap analogue of the TSLS estimator reads

β̂ ∗
T SLS(k) =

(

X∗′P∗
k X∗

)−1

X∗′P∗
k y∗,

where P∗
k = Z∗

k (Z
∗′

k Z∗
k )

−1Z∗′

k .

3. Repeat Steps 1-2 B times. Compute the bootstrap-based approximate MSE

BMSE(k) = B−1
B

∑
b=1

(

β̂ ∗
b (k)− β̂ (k)

)2

,

where β̂ ∗
b (k) denotes the TSLS/LIML estimator derived from the b-th time of replica-

tion, then choose k that minimizes BMSE(k).

Hahn (1996)[8] shows that under the standard textbook asymptotics (in which the number

of instruments k is assumed to be fixed), the pairwise bootstrap is asymptotically valid in

the sense that the asymptotic distribution of the bootstrap analogue is the same as that of the

original estimator.

However, the pairwise bootstrap can be problematic since under this procedure, the boot-

strap moment condition E∗
[

Z∗
k,i

(

y∗i −X∗′
i β̂ (k)

)]

= 0 does not hold in general; E∗denotes

the expectation induced by the pairwise bootstrap. This is because under current bootstrap

scheme

E∗
[

Z∗
k,i

(

y∗i −X∗′
i β̂ (k)

)]

= N−1
N

∑
i=1

Zk,i

(

y−X
′

i β̂ (k)
)

and there is no value of β̂ that satisfies the condition when the model is over-identified. It is

thus important to also consider the procedure where the moment conditions even hold in the

bootstrap world.

The second nonparametric i.i.d. bootstrap is based on Freedman’s method which is a

modification of the pairwise bootstrap. In this procedure, the residual of the structural form

equation (1) is made orthogonal to the instruments, so that each bootstrap sample can be

drawn from a distribution that satisfies the moment conditions. More precisely, our instru-

ments selection procedure based on Freedman’s bootstrap is as follows:

Algorithm of the Freedman’s bootstrap



1. Let ε̃K = MK

(

y−X β̂ (K)
)

, where β̂ (K) is the TSLS or the LIML estimator based on

the largest set of instruments ZK , and MK = I −ZK (Z′
KZK)

−1
Z′

K .

2. For each number of instruments k, draw the bootstrap sample
(

X∗
i ,Z

∗
k,i,ε

∗
i

)N

i=1
from

the empirical distribution of
(

Xi,Zk,i, ε̃i,K

)N

i=1
. Generate bootstrap pseudo-data y∗i (k)

using the structural form equation (1):

y∗i (k) = X∗′
i β̂ (k)+ ε∗i

Compute the instrumental variable estimators using the bootstrap sample
(

X∗
i ,Z

∗
k,i,y

∗
i (k)

)

.

3. Repeat Steps 2 B times. Compute BMSE(k), the bootstrap-based approximate MSE,

then choose the number of instruments k that minimizes BMSE(k).

Note that for different choices of k, the bootstrap moment condition always holds under

current procedure since E∗
[

Z∗
k,i

(

y∗i −X∗′
i β̂ (k)

)]

= 1
N

(

Z′
kMK(y−X β̂ (K))

)

= 0, by the fact

that MK is constructed in Step 1 from the largest set of instruments.

The advantage of using nonparametric bootstrap is that it does not depend on certain

model specification and it is robust to heterogeneity in the disturbances. However, the instru-

ments Z is also involved in the resampling scheme. This makes the nonparametric bootstrap

potentially unreliable when the dimension of Z becomes large. On the other hand, for our

purpose of selecting instruments, we need a bootstrap procedure that is able to deliver good

finite sample performance even when k, the number of instruments, is relatively large. This

motivates using residual-based bootstrap methods. The standard residual-based bootstrap is

one of such procedures:

Algorithm of standard residual-based bootstrap

1. Using β̃ and π̃ , some preliminary estimator of β and the least square estimator of the

first stage reduced-form, obtain the residuals (ε̃i, ṽi)
N
i=1, i.e.,

ε̃i = yi −X ′
i β̃ , ṽi = Xi − Z̃′

i π̃

where π̃ =
(

Z̃′Z̃
)−1

Z̃′X , and Z̃ is certain preliminary choice of instruments. The TSLS

or LIML estimator β̃ is calculated using Z̃. Then, de-mean the residuals (ε̃i, ṽi)
N
i=1 , to

obtain (ε̄i, v̄i)
N
i=1. For the choice of Z̃, one may use the largest set of instruments as

in Algorithm 2 or using the number of instruments selected by some goodness of fit

criterion for estimation of the first-stage reduced form.

2. Draw the bootstrap disturbances (ε∗i ,v
∗
i )

N
i=1 from the empirical distribution function of

the de-meaned residuals.



3. For each number of instruments k, generate the bootstrap DGP using equations (1) and

(2) with the bootstrap disturbance obtained in Step 2

y∗i (k) = X∗
i (k)β̂ (k)+ ε∗i , X∗

i (k) = Z′
i,kπ̂(k)+ v∗i ,

where π̂(k) =
(

Z′
kZk

)−1
Z′

kX and obtain (y∗i (k),X
∗
i (k))

N
i=1. Then, compute the estimate

of interest using the bootstrap sample.

4. Repeat Steps 2 - 3 B times. Compute BMSE(k), then choose the number of instruments

that minimize BMSE(k).

Note that in Step 3, the instrument Zk is always kept fixed without being re-sampled.
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Table 1. Monte Carlo Results: TSLS, K=10

TSLS-all Pair Freedman Standard plug-in RE

c=0.1

BIAS 0.055 0.058 0.055 0.050 0.052

MAD 0.165 0.157 0.163 0.169 0.176

c=0.5

BIAS 0.226 0.226 0.217 0.226 0.216

MAD 0.238 0.237 0.237 0.239 0.244

c=0.9

BIAS 0.410 0.400 0.349 0.369 0.264

MAD 0.410 0.400 0.352 0.370 0.288

Table 2. Monte Carlo Results: TSLS, K=30

TSLS-all Pair Freedman Standard plug-in RE

c=0.1

BIAS 0.074 0.080 0.076 0.074 0.074

MAD 0.122 0.117 0.119 0.122 0.125

c=0.5

BIAS 0.364 0.375 0.356 0.360 0.354

MAD 0.364 0.375 0.358 0.361 0.357

c=0.9

BIAS 0.651 0.651 0.552 0.622 0.422

MAD 0.651 0.651 0.552 0.622 0.424



Table 3. Monte Carlo Results: LIML, K=10

LIML-all Pair Freedman Standard plug-in RE

c=0.1

BIAS 0.018 0.039 0.029 0.033 0.027

MAD 0.290 0.237 0.257 0.249 0.269

c=0.5

BIAS 0.020 0.048 0.035 0.047 0.010

MAD 0.276 0.225 0.254 0.252 0.267

c=0.9

BIAS 0.023 0.085 0.025 0.026 0.007

MAD 0.216 0.214 0.215 0.210 0.204

Table 4. Monte Carlo Results: LIML, K=30

LIML-all Pair Freedman Standard plug-in RE

c=0.1

BIAS 0.008 0.024 0.035 0.025 0.022

MAD 0.394 0.224 0.303 0.329 0.339

c=0.5

BIAS 0.042 0.132 0.112 0.109 0.058

MAD 0.415 0.256 0.351 0.369 0.359

c=0.9

BIAS 0.006 0.150 0.034 0.033 0.004

MAD 0.280 0.248 0.284 0.278 0.259


