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Abstract
In this work we want to clarify, via a Monte Carlo experiment, if (and when) for an integer-valued time series it is

really recommended to adopt the coherent forecasting methods from INAR models or if equivalently good predictions

can be obtained from the simpler AR models. Results show that INAR models should be preferred.
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1. Introduction

Recently, also in economic research there has been a growing interest in studying non-
negative integer-valued time series and, in particular, time series of counts. Examples
of this kind of series are the weekly number of guests in a hotel, the daily number of
visitors of a website, the daily number of traded stocks. In some cases, the discrete values
of the time series are large numbers and may be analysed by using continuous-valued
models such as the traditional ARIMA ones with Gaussian errors. However, according to
Chatfield (2000), a good model for time series should be consistent with the properties
of the data and be unable to predict values which violate known constraints. This means
that, when series consists of small non-negative values, like in case of counting data,
we have to consider a model that is forecast-coherent and a method of forecasting that
produces integer values. In the light of this requirement the well-known linear ARMA
processes are of limited use for modeling and especially for forecasting purposes. To
take this peculiar feature into account, McKenzie (1985) and Al-Osh and Alzaid (1987)
introduce the integer-valued autoregressive process (INAR).

The theoretical properties of INAR models have been extensively studied (e.g. Silva
and Silva, 2009; Freeland and McCabe, 2004a), but forecasting from these models is quite
a controversial issue. In particular, given the integer nature of INAR models, only integer
forecasts of the count variable should be produced. As a coherent method, i.e. capable to
preserve the integer nature of the data in obtaining the forecasts, Freeland and McCabe
(2004b) suggest to use the median of the k−step-ahead conditional distribution, instead
of the conditional mean. These authors specifically work with INAR(1) process with
Poisson innovations, but after their contribution a number of generalizations appear in
the literature, e.g. Jung and Tremayne (2006) and Bu and McCabe (2008) who focus on
higher order INAR models.1

The methods proposed to obtain coherent forecasts have also some disadvantages. On
the one hand, they are problem-specific as they depend on the distributional assumption
of Poisson error terms, on the other hand, they are computationally not simple. With this
particular concern in mind, in the present note we conduct a Monte Carlo experiment to
clarify if (and when) it is really recommended to adopt the coherent forecasting methods
from INAR models or if equivalently good predictions can be obtained from the simpler
AR models. Results show that INAR(1) models clearly exhibit a better forecasting per-
formance compared to AR(1) thus leading to the conclusion that, in case of count time
series, the use of AR(1) models to forecast, although appealing for their simplicity, should
be avoided and INAR(1) models should be adopted instead.

The remainder is divided as follows. Section 2 briefly reviews the INAR(1) model

1There are also contributions that tackle the issue of coherent forecasts from a Bayesian perspective,
e.g. McCabe and Martin (2005) and Silva et al. (2009). In those works, uncertainty due to both model
specification and parameters is incorporated into the predictive probability mass function, but this is
beyond the scope of the current paper.



and presents the proposal of Freeland and McCabe (2004b) to obtain coherent forecasts.
Section 3 describes our Monte Carlo study. In Section 4 an empirical illustration is
presented.

2. Forecasting from INAR(1) models

To introduce the class of INAR models we first recall the thinning operator, ‘◦’. Let Y
be a non negative integer-valued random variable, then for any α ∈ [0, 1]

α ◦ Y =
Y
∑

i=1

Xi

where Xi is a sequence of iid count random variables, usually Bernoulli, independent of
Y, with common mean α.

The INAR(1) process {Yt; t ∈ Z} is defined by the recursion

Yt = α ◦ Yt−1 + ǫt (1)

where α ∈ [0, 1), and ǫt is a sequence of iid discrete random variables with finite first and
second moment. The components of the process {Yt} are the surviving elements of the
process Yt−1 during the period (t − 1, t], and the number of new elements which entered
the system in the same interval, ǫt. Each element of Yt−1 survives with probability α and
its survival has no effect on the survival of the other elements, nor on ǫt which is not
observed and cannot be derived from the Y process in the INAR(1) model. If the error
terms are distributed as a Po(λ), the marginal distribution of the observed counts is also
a Poisson distribution with (unconditional) mean and variance equal to λ/(1 − α); see
Jung et al. (2005).

Usually, to obtain predictions from time series models, conditional expectations are
adopted, since the derived forecast has minimummean square error. However, this method
does not provide coherent predictions, in the sense that it ignores the restriction that the
support should be the set of integer. To circumvent this, Freeland and McCabe (2004b)
move by considering the p−step ahead predictive probability mass function (pmf) itself
which, for the INAR(1) model with Poisson innovations, PoINAR(1), takes this form:

P (YT+k = y | YT = yT ) =
∑min(y,yT )

s=0

(

yt
s

)

(αk)s(1− αk)yT−s × (2)

1
(y−s)!

exp
{

−λ1−αk

1−α

}

×
(

λ1−αk

1−α

)y−s

where yT+k ∈ {0, 1, 2, . . .} and k = 1, 2, 3, . . . . Then, in order to obtain coherent predic-
tions for YT+k, Freeland and McCabe (2004b) suggest using the median of the k−step-
ahead pmf. Operatively, it is computed as Pk(YT+k = y | YT , α̂, λ̂), where (α, λ) are
typically estimated via maximum likelihood (ML).



3. Monte Carlo experiments

In this Section we provide the details of the Monte Carlo experiment we conduct to
compare the forecast accuracy of INAR(1) and AR(1) models. To do this, we gener-
ate data from INAR(1) DGP’s with Poisson errors, whose parameters values are α =
(0.1, 0.25, 0.5, 0.75, 0.9) and λ = (1, 3). The sample size we consider is N = (110, 260, 510)
retaining the last 10 observations for assessing out-of-sample forecasting performance. For
each model we generate s = 2000 independent realizations.2

In practice, to make comparisons, we firstly estimate an AR(1) model for the time
series at hand, obtain the forecast with the conditional mean and round it. Then, for
the same time series, we calculate the forecasts following the approach depicted in the
previous section for PoINAR(1). The forecasting performance of the estimated INAR and
AR models is expressed through the Forecast Mean Square Error (FMSE) and Forecast
Mean Absolute Error (FMAE) statistics of k−step-ahead forecasts, where k = 1, 2, . . . , 10.

Before presenting the core of the results, we report in Table I some summary statistics
of the ML estimates of α, λ for PoINAR(1) models and φ for AR(1) models relatively to
selected cases of our Monte Carlo experiment. We observe that the obtained Monte Carlo
mean and standard deviation of the ML estimates perform well, especially for α > 0.1
and, as expected, the performance improves when the sample size increases. Interestingly,
the value of the estimated parameter φ, when we fit an AR model to the data, is very
close to the value taken by the thinning parameter.

Moving now to the forecasting performance, in Tables II, III we present, respectively,
the FMSE and the FMAE.

Results show that INAR(1) models exhibit a better forecasting performance compared
to AR(1) models. In particular, by forecasting with the median of the p−step-ahead pmf,
a very large gain is obtained in terms both of FMSE and FMAE as the thinning parameter
value increases and this gain is even more for λ = 3. On the contrary, the performance
of the AR model greatly worsens with the increase of the thinning parameter and sample
size. It seems that only for α = 0.1, independently of the value of λ, the two models have
similar behaviour, in all other cases the INAR(1) model outperforms AR(1) models, thus
leading to the conclusion that, although simple, the latter models should be avoided for
this kind of data.

4. An empirical illustration

To illustrate also via an empirical analysis the better forecasting performance of INAR(1)
compared to AR(1) models, we applied both approaches to the real time series of the
daily count of visits to the web site of the “statistical calendar” (Durante et al., 2012), a

2The parameters settings we consider in this experiment are in line with possible real scenarios, see
for example Freeland and McCabe (2004a).



Table I: Mean and standard deviations (in parenthesis) of ML estimates across Monte Carlo
simulations (columns 1-3), summary statistics of the simulated data (columns 4-6).

λ N α α̂ λ̂ φ̂ min mean max

1 100 0.1 0.0862 1.0105 0.0570 0 1.1083 8
(0.1116) (0.1538) (0.1036)

0.25 0.2387 1.0093 0.2080 0 1.3315 10
(0.0987) (0.1547) (0.1313)

0.5 0.4922 1.0072 0.4667 0 1.9944 11
(0.0747) (0.1665) (0.0995)

0.75 0.7452 1.0060 0.7032 0 3.9833 16
(0.0409) (0.1670) (0.0786)

0.9 0.8976 1.0193 0.8416 0 10.0157 26
(0.0170) (0.1749) (0.0617)

250 0.1 0.0928 1.0075 0.0739 0 1.0585 7
(0.0678) (0.0969) (0.0793)

0.25 0.2459 1.0075 0.2412 0 1.3383 10
(0.0622) (0.0998) (0.0702)

0.5 0.4970 1.0064 0.4879 0 1.9842 11
(0.0452) (0.1020) (0.0599)

0.75 0.7481 1.0087 0.7329 0 4.0157 17
(0.0251) (0.1071) (0.0462)

0.9 0.8990 1.0079 0.8802 0 10.0153 27
(0.010) (0.1063) (0.0313)

500 0.1 0.0942 1.0047 0.0846 0 1.1094 9
(0.0443) (0.0654) (0.0561)

0.25 0.2454 1.0067 0.2447 0 1.3342 9
(0.0416) (0.0685) (0.0460)

0.5 0.4973 1.0044 0.4934 0 1.9999 12
(0.0323) (0.0717) (0.0424)

0.75 0.7496 1.0003 0.7409 0 4.0003 16
(0.0182) (0.0769) (0.0319)

0.9 0.8997 1.0020 0.8898 0 10.0096 27
(0.0074) (0.0736) (0.0219)

3 100 0.1 0.0897 3.0322 0.0568 0 3.3323 16
(0.1042) (0.3719) (0.1008)

0.25 0.2365 3.0527 0.2076 0 4.0012 16
(0.0994) (0.4321) (1311)

0.5 0.4923 3.0398 0.4656 0 6.0030 20
(0.0715) (0.4404) (0.0941)

0.75 0.7463 3.0359 0.7032 0 11.9880 30
(0.0375) (0.7021) (0.0786)

0.9 0.8982 3.0461 0.8418 9 29.9829 54
(0.0155) 0.4623 0.0619

250 0.1 0.0949 3.0196 0.0751 0 3.3361 12
(0.0643) (0.2385) (0.0771)

0.25 0.2456 3.0205 0.2403 0 4.0062 16
(0.0587) (0.2504) (0.0659)

0.5 0.4959 3.0193 0.4841 0 5.9929 20
(0.0437) (0.2727) (0.0571)

0.75 0.7495 3.0027 0.7344 0 12.0016 33
(0.0239) (0.2879) (0.0458)

0.9 0.8988 3.0200 0.8791 9 29.9123 55
(0.0103) (0.3026) (0.0335)

500 0.1 0.0977 3.0044 0.0877 0 3.3292 17
(0.0449) (0.1709) (0.0578)

0.25 0.2476 3.0179 0.2445 0 4.0112 15
(0.0429) (0.1789) (0.0444)

0.5 0.4998 2.9977 0.4930 0 5.9951 22
(0.0309) (0.1944) (0.0411)

0.75 0.7486 3.0164 0.7397 0 12.0037 32
(0.0162) (0.1927) (0.0308)

0.9 0.8999 3.0027 0.8911 8 30.0091 58
(0.0068) (0.2046) (0.0214)



Table II: Forecasting Mean Square Error (FMSE)
λ = 1 λ = 3

N α FMSE p = 1 p = 2 p = 5 p =
10

p = 1 p = 2 p = 5 p =
10

100 0.1 median 1.183 1.150 1.137 1.134 3.543 3.495 3.319 3.519
mean 1.152 1.150 1.141 1.124 3.483 3.414 3.299 3.443
ar 1.165 1.153 1.140 1.135 3.640 3.578 3.349 3.590

250 median 1.122 1.082 1.084 1.148 3.435 3.517 3.428 3.296
mean 1.096 1.082 1.081 1.143 3.376 3.402 3.337 3.214
ar 1.117 1.082 1.084 1.148 3.535 3.544 3.439 3.299

500 median 1.063 1.226 1.206 1.139 3.274 3.322 3.380 3.589
mean 1.048 1.206 1.194 1.127 3.116 3.197 3.303 3.515
ar 1.058 1.226 1.206 1.139 3.244 3.339 3.391 3.614

100 0.25 median 1.338 1.554 1.429 1.443 3.945 4.048 4.037 4.013
mean 1.242 1.424 1.311 1.357 3.853 3.945 3.985 3.993
ar 1.518 1.606 1.459 1.504 4.449 3.978 3.992 3.981

250 median 1.307 1.450 1.489 1.491 3.875 4.054 4.079 3.824
mean 1.195 1.331 1.380 1.397 3.735 4.014 4.056 3.832
ar 1.489 1.493 1.506 1.513 4.110 4.032 4.056 3.825

500 median 1.466 1.451 1.407 1.384 3.757 3.988 3.719 3.875
mean 1.352 1.319 1.329 1.279 3.649 3.957 3.739 3.879
ar 1.566 1.435 1.420 1.394 4.227 3.934 3.718 3.874

100 0.5 median 1.601 2.058 2.187 2.049 4.929 5.701 6.399 6.308
mean 1.451 1.928 2.151 2.015 4.766 5.578 6.252 6.154
ar 2.421 2.232 2.134 1.989 7.662 6.389 6.377 6.232

250 median 1.587 2.029 2.216 2.140 4.563 5.922 6.150 6.198
mean 1.482 1.903 2.207 2.135 4.514 5.844 6.075 6.167
ar 2.490 2.204 2.197 2.107 7.431 6.597 6.138 6.183

500 median 1.536 1.961 1.994 2.029 4.744 5.831 5.610 5.783
mean 1.417 1.838 2.008 2.055 4.659 5.754 5.598 5.831
ar 2.441 2.094 1.994 2.029 8.382 6.841 5.561 5.778

100 0.75 median 1.834 2.872 4.400 4.508 5.733 8.901 12.815 12.488
mean 1.737 2.782 4.251 4.383 5.696 8.852 12.700 12.338
ar 6.375 5.610 4.870 4.541 18.683 16.264 14.204 12.464

250 median 1.942 2.930 4.110 4.402 5.513 8.636 11.801 12.304
mean 1.833 2.859 4.000 4.329 5.444 8.550 11.679 12.209
ar 6.304 5.336 4.534 4.369 18.519 15.906 13.313 12.252

500 median 1.779 2.659 3.533 4.134 5.039 7.607 12.097 12.334
mean 1.671 2.608 3.401 4.076 5.020 7.531 11.939 12.259
ar 6.019 5.075 4.000 4.087 17.988 14.604 13.401 12.472

100 0.9 median 1.935 3.791 6.860 9.781 5.731 10.816 19.773 28.903
mean 1.862 3.674 6.758 9.664 5.639 10.706 19.659 28.729
ar 12.281 12.199 11.434 11.258 35.501 34.099 32.272 34.050

250 median 2.001 3.761 6.900 9.4115 5.657 10.083 18.768 25.761
mean 1.961 3.633 6.787 9.323 5.579 10.102 18.700 25.798
ar 12.732 12.396 11.236 10.971 34.630 33.231 33.255 30.024

500 median 1.862 3.442 6.597 9.066 5.655 10.116 19.423 28.381
mean 1.798 3.333 6.529 8.895 5.529 10.115 19.306 28.375
ar 12.354 11.449 10.929 10.623 35.270 34.386 31.964 33.283



Table III: Forecasting Mean Absolute Error (FMAE)
λ = 1 λ = 3

N α FMAE p = 1 p = 2 p = 5 p =
10

p = 1 p = 2 p = 5 p =
10

100 0.1 median 0.793 0.765 0.765 0.781 1.446 1.448 1.403 1.435
mean 0.838 0.818 0.818 0.828 1.490 1.486 1.461 1.483
ar 0.786 0.766 0.766 0.782 1.473 1.471 1.420 1.468

250 median 0.769 0.752 0.741 0.777 1.415 1.428 1.418 1.402
mean 0.811 0.801 0.790 0.821 1.462 1.474 1.469 1.449
ar 0.769 0.752 0.741 0.777 1.442 1.444 1.433 1.406

500 median 0.737 0.806 0.802 0.763 1.415 1.428 1.418 1.402
mean 0.785 0.845 0.843 0.807 1.462 1.474 1.469 1.449
ar 0.738 0.806 0.802 0.763 1.442 1.444 1.433 1.406

100 0.25 median 0.847 0.896 0.851 0.866 1.518 1.574 1.577 1.555
mean 0.889 0.953 0.915 0.938 1.553 1.586 1.598 1.585
ar 0.924 0.930 0.882 0.892 1.639 1.561 1.569 1.554

250 median 0.847 0.853 0.880 0.867 1.546 1.551 1.575 1.527
mean 0.874 0.925 0.957 0.953 1.560 1.572 1.590 1.551
ar 0.911 0.887 0.893 0.881 1.611 1.549 1.571 1.530

500 median 0.862 0.841 0.833 0.850 1.546 1.551 1.575 1.527
mean 0.910 0.912 0.932 0.924 1.560 1.572 1.590 1.551
ar 0.910 0.843 0.840 0.854 1.611 1.549 1.571 1.530

100 0.5 median 0.927 1.078 1.118 1.088 1.736 1.866 1.983 1.957
mean 0.945 1.101 1.152 1.122 1.744 1.870 1.994 1.969
ar 1.187 1.142 1.116 1.079 2.189 1.981 1.979 1.954

250 median 0.929 1.077 1.151 1.107 1.661 1.880 1.938 1.952
mean 0.956 1.098 1.174 1.135 1.686 1.908 1.957 1.978
ar 1.210 1.153 1.146 1.100 2.147 2.018 1.941 1.963

500 median 0.930 1.043 1.086 1.105 1.661 1.880 1.938 1.952
mean 0.952 1.074 1.113 1.129 1.686 1.908 1.957 1.978
ar 1.215 1.100 1.086 1.105 2.147 2.018 1.941 1.963

100 0.75 median 1.006 1.298 1.628 1.645 1.869 2.373 2.844 2.801
mean 1.036 1.319 1.640 1.662 1.896 2.395 2.852 2.805
ar 1.965 1.857 1.731 1.669 3.410 3.215 2.981 2.795

250 median 1.033 1.305 1.562 1.631 1.832 2.291 2.702 2.754
mean 1.059 1.335 1.582 1.651 1.852 2.312 2.717 2.770
ar 1.956 1.809 1.666 1.625 3.413 3.156 2.880 2.764

500 median 0.983 1.263 1.455 1.580 1.725 2.149 2.791 2.790
mean 1.011 1.292 1.468 1.631 1.758 2.169 2.796 2.806
ar 1.901 1.767 1.544 1.569 3.360 3.024 2.933 2.798

100 0.9 median 1.027 1.506 2.051 2.463 1.872 2.596 3.502 4.293
mean 1.054 1.518 2.066 2.476 1.882 2.604 3.502 4.282
ar 2.741 2.734 2.641 2.657 4.717 4.621 4.501 4.591

250 median 1.032 1.488 2.072 2.423 1.811 2.505 3.476 4.097
mean 1.072 1.495 2.077 2.437 1.832 2.530 3.478 4.109
ar 2.780 2.764 2.646 2.625 4.648 4.573 4.360 4.376

500 median 0.996 1.410 2.015 2.386 1.863 2.490 3.459 4.233
mean 1.031 1.430 2.032 2.392 1.871 2.516 3.469 4.246
ar 2.756 2.595 2.585 2.573 4.670 4.672 4.492 4.591
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Figure 1: Time series of the daily number of visit to the “statistical calendar” website.
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Figure 2: Estimated pmf of the daily number of visit to the “statistical calendar” website.



students’ project of the Department of Statistics of the University of Padua, Italy. The
data set stretches from February, 27, 2012 to the first week of September, 2012. The
site is the output of a contest sponsored by the Italian Statistical Society on the the
topic “Statistics and statisticians: ideas to foster and spread the statistical culture”. The
promotion of the site, after its launch at the end of 2011, motivates a h−step-ahead
prediction. Indeed, knowing the whole predictive probability mass function allows the
webmasters to compute both the median forecast for the following day and the probability
of the web site receiving less than k visits, where k is a lower bound, in order to have a fairly
large number of visitors. In general, the total number of today visitors is typically given
by the loyal visitors from yesterday and new visitors. Thus, the birth-death interpretation
of the INAR model fits this particular dataset.

The dataset consists of 203 daily counts, from 0 to 17, but we remove the last 6
observations to obtain out-of-sample forecasts. The series has median 4, mean 4.65 and
mode 2. A plot of the series is shown in Figure 1. The empirical autocorrelation functions
of the series (not reported here) are coherent with that of an AR(1) and thus of a INAR(1)
model. Similarly to what we did in the Monte Carlo experiment, firstly we estimate the
INAR(1) and the simple AR(1) models, then we predict the last six observations. The
results are shown in Table IV where the better forecasting performance of the INAR
model with respect to AR one is evident. Figure 2 displays the estimated probability
mass function for j = 0, 1, 2, . . . , 20. At this point, since we know the whole probability
mass function, we are able to calculate, for example, the probability to have more than 5
visits which is 0.31.

Table IV: FMSE and FMAE for the series of the daily number of visit to the “statistical
calendar” website

Model FMSE FMAE
INAR(1) Median 11.33 3

Mean 10.99 2.95

AR(1) 13.17 3.17

In conclusion, in this paper we show via Monte Carlo simulations that in case of count
time series data, forecasting from AR(1) models can be dangerous because of the very
poor forecasting performance of those models for this kind of data. Simulations also reveal
that, on the contrary, INAR(1) models perform much better and their use is then strongly
recommended. Moreover, as illustrated in the application, by forecasting from INAR(1)
models, a big amount of information, carried by the knowledge of the entire predictive
probability mass function, is available for the researcher. We think these results are very
interesting, bearing in mind the variety of realistic empirical economic applications where
INAR(1) models can be fruitfully adopted.
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