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Abstract
Since the 1980s, researchers have been puzzled by close to zero estimates of the elasticity of intertemporal

substitution. Two possible causes are rates of return that are not representative of the agent's portfolio return and

inconsistent estimates due to the weak instrument problem. We examine if the aggregate capital return series for the

United States and several instrument sets can provide large estimates of this elasticity. Our findings indicate that this

return series leads to large estimates of the elasticity using different instrument sets. An unusual set of instruments

performed well and its use in consumption-model estimates seems promising.
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1. Introduction 

 

The magnitude of the elasticity of intertemporal substitution (EIS) is a crucial question in 

Macroeconomics and Finance, since it is a key driving force of consumption (and savings) 

allocation across periods. Moreover, given its central role in several economic models, 

consistent estimates of the EIS are extremely useful to researchers in their calibration 

exercises and to policymakers interested in the aggregate economy. 

Since Hall (1988) and Campbell and Mankiw (1989) seminal studies, EIS estimates 

for the U.S. aggregate data have been found to be small, usually below 0.3 and barely 

statistically significant. Indeed, Hall (1988) concluded that the EIS is unlikely to be above 0.1 

and, more recently, Campbell (2003) could not reject a null EIS. Others studies based on U.S. 

quarterly or annual aggregate data find statistically significant EIS estimates, but these 

estimates are still below 0.3 (Patterson and Pesaran, 1992; Hahm, 1998; and Yogo, 2004). 

These surprisingly low EIS estimates led researchers to carefully examine this important 

issue using different approaches.1 

The extant literature employs aggregate consumption and considers stock market and 

government bond returns as the typical asset return faced by consumers. As pointed out by 

Dacy and Hasanov (2011), stocks and government bonds are not the only assets held by the 

average household in economy. Consequently, a close to zero estimated EIS would not be a 

surprising result.  

 In response to this remark, one strand of the literature focused on specific groups of 

consumers in order to use the asset returns that mattered to them. For instance, Vissing-

Jørgensen’s (2002) results suggest that consumption growth is correlated with expected stock 

returns in the population of households owning stocks, and her estimated EIS ranges between 

zero and 0.8. This finding is buttressed by Guvenen’s (2006) calibration exercise that shows 

that when household participation in the stock market is limited, the EIS estimates will be 

small. This happens because the average investor will be different from the average 

consumer, which is the agent represented in the aggregate consumption data. 

Although studies using household-level data confirm the importance of using the asset 

returns considered by specific groups of households, there is still the need to estimate the EIS 

for the representative household in the economy. In response to such needs, another strand of 

the literature focused on building the representative agent’s portfolio rate of return. Mulligan 

(2002) by means of a state-dependent utility model argued that the expected return on 

aggregate capital drives the aggregate consumption growth. In this vein, the expected return 

of an aggregate portfolio gives much more information about consumption growth rate than 

any particular asset return. Hence, Mulligan (2002) used U.S. national accounts data and built 

a return series for the aggregate capital stock and a new set of instruments. In contrast to the 

previous literature, his estimates of the EIS using the aggregate return series are larger than 

one and statistically significant.2 

Given that Mulligan’s (2002) findings can potentially represent a solution to the low 

EIS puzzle, in this paper we further scrutinize his results along two lines. First, we investigate 

if his estimates are plagued by the weak instrument problem, which could make his estimates 

to be inconsistent. Additionally, we also employ weak instrument partially robust estimators 

                                                           
1 Although focused on price elasticities, Chetty (2012) suggests that the optimization frictions encountered by 

agents may lead to a downward bias in the estimated elasticities. 
2 Similarly, Dacy and Hasanov (2011) built a synthetic mutual fund (SMF) that is a share-weighted average of 

the quarterly returns of the assets held by the representative household, which is less comprehensive than 

Mulligan’s (2002) measure. Their EIS estimates using the SMF were statistically significant and close to 0.2. 
Moreover, Gomes and Paz (2013) concluded that estimates using SMF returns are plagued by weak instruments 

and, in some cases, partially robust estimators provided a statistically significant EIS estimate close to 0.2 



 

and compute weak instrument robust confidence intervals for the EIS. The importance of the 

weak instrument problem is underscored in Yogo (2004) and in Gomes and Paz (2011). They 

find that most estimates of the EIS obtained for the United States and other ten developed 

countries using either quarterly or annual data are plagued by weak instruments. In particular, 

for the specifications using U.S. data, only those employing T-Bill returns are not plagued by 

weak instruments; however, their EIS estimates are very close to zero.  

Second, given that Mulligan (2002) employs a set of excluded instruments that differs 

from the usual practice in the literature, we also estimate his specifications using Yogo’s 

(2004) and Dacy and Hasanov’s (2011) instrument sets. We do so to distinguish between two 

possible reasons for Mulligan’s (2002) results. The first is that the EIS estimates are specific 

to the simultaneous use of his aggregate return series and his instrument set. The second 

reason is that his large EIS estimates are solely due to the use of his aggregate return series, 

therefore other instrument sets would lead to similar estimates.  

Our results indicate that Mulligan’s (2002) aggregate capital return series is able to 

deliver relatively large and statistically significant estimates of the EIS for nondurable and 

nondurable plus service consumption series. We find that his original instrument set does not 

suffer from the weak instrument problem. Interestingly, similar estimates are obtained when 

Yogo’s (2004) instrument lists are used, even though such instruments sets are relatively 

weaker. This can be clearly seen in the wider weak instrument robust confidence intervals for 

the EIS using Yogo’s (2004) instrument list, which contain values close to zero, and indeed 
below 0.3, whereas the lower bound of the robust confidence interval based on Mulligan’s 
instrument list is 0.67. These findings suggest that Mulligan’s (2002) aggregate capital return 
series is the key factor driving the large EIS estimates 

The remainder of this paper is organized as follows. In section 2 the consumption 

model used to motivate the empirical specification is laid out. Section 3 discusses the 

econometric methodology. Section 4 describes the data used in the estimates. Results are 

presented in Section 5. Finally, Section 6 reports our conclusions. 

 

 

2. Consumption Model 

 

Consider a frictionless economy inhabited by a single representative agent with the Epstein 

and Zin (1989) non-expected utility. Following Gomes and Paz (2013), the agent’s 
intertemporal optimization problem leads to the following empirical specification.3 

 ∆��ሺܿ�ሻ = �ߙ + �ሺ�−ଵሻ� ܾ� + �� ��,� + ��,�,   � = 1, … , �  (1) 

 

where ܿ� is the per capita consumption growth in year t, bt is the return on the portfolio of all 

invested wealth, ��,� is the return of the i-th asset held by the consumer, and ��,� is an 

innovation. The parameter � is the EIS, and θ ≡ ሺ1 − ሻߛ ሺ1 − �−ଵሻ⁄ , where ߛ is the 

coefficient of relative risk aversion. Notice that, by construction, the portfolio of invested 

wealth is not and cannot be proxied by the returns of any specific asset, like stock market 

returns.  

Several studies, for example Dacy and Hasanov (2011), adopted the constant relative 

risk aversion (CRRA) utility function. In the above framework, these preferences are 

equivalent to restricting the coefficient of relative risk aversion to be equal to the reciprocal 

of the EIS, which means imposing � = 1. Therefore, Equation 1 becomes:  

 

                                                           
3 See Campbell and Viceira (2002, chapter 2) for further details. 



 

  ∆��ሺ��ሻ = �ߙ + ���,� + ��,�,   � = 1, … , �    (2) 

 

Equation 2 has two interesting properties. The first is that the EIS can be estimated 

using the return of any asset held by the consumer, as long as valid instruments are available. 

In this vein, Vissing-Jørgensen (2002) and Gross and Souleles (2002) use microdata to look 

at specific groups of consumer according to their asset holdings. They find EIS estimates of 

about 0.8 when they use stock returns for stockholders or credit card interest rate for credit 

card debtors. Nevertheless, it is unclear that microdata-based EIS estimates are a measure of 

the EIS faced by the representative consumer in the aggregate economy. Therefore, such 

estimates do not seem appropriate to be used in calibration of representative agent models, 

for instance. For this reason, we employ the aggregate return measure built by Mulligan 

(2002) to estimate the EIS using aggregate consumption data. 

The second property from Equation 2 is the assumption that the EIS is equal to the 

reciprocal of the coefficient of relative risk aversion, which implies that we can estimate the 

coefficient of relative risk aversion using the reverse of Equation 2. This idea was carried out 

by Hansen and Singleton (1983) and Campbell (2003), who find puzzling low estimates of 

the coefficient of relative risk aversion, which at the end of the day do not support the � = 1 

assumption. 

Yet, even for � ≠ 1, Equation 2 can still be a special case of Equation 1 if the 

individual asset return is replaced by the return on the portfolio of all invested wealth, which 

is the return on the aggregate capital stock (Mulligan, 2002). Then, the sum of the second and 

third terms in the right-hand side of Equation 1 becomes �ܾ�, as seen in Equation 3: 

 ∆��ሺܿ�ሻ = �ߙ + �ܾ� + ��,�,   � = 1, … , �    (3) 

 

Consequently, Equation 3 implies that consistent estimates of the EIS can be obtained 

as long as return on total wealth is measured and valid instruments are available. And this is 

the approach pursued in this paper. 

 

 

3. Econometric Methodology 

 

In this paper, the EIS will be estimated by means of Equation 3 and an instrumental variable 

estimator. Such estimator requires excluded instruments to be orthogonal to error term and to 

be correlated with the endogenous regressor, i.e. the aggregate capital rate of return. More 

precisely, this correlation cannot be small; otherwise the EIS estimate will be unreliable due 

to the weak instrument problem.  

Following Yogo (2004) and Gomes and Paz (2013), we first conduct several 

econometric pre-tests to assess the weak instrument problem. Next, we employ weak 

instrument partially robust estimators. And finally, we compute weak instrument robust 

confidence interval for the EIS. 

The first econometric pre-test conducted is the Kleibergen and Paap (2006) under-

identification test (KP). Its null hypothesis is that the excluded instrument has a zero 

correlation with the endogenous regressor. The next four tests come from Stock and Yogo 

(2005) and are based on the first-stage F-statistic of the two-stage least squares (TSLS) 

estimator. They have two types of null hypothesis. One is if the size of the bias with respect 

to OLS estimates is larger than 10% for the TSLS and the Fuller-k estimators. The other type 

is if the actual size of the 5% level t-test is greater than 10% for the TSLS and the limited 

information maximum likelihood (LIML) estimators. The use of pre-testing may lead to size 



 

distortion in the subsequent estimations that cannot be controlled. For this reason, we now 

turn to weak instrument partially robust estimators. 

The TSLS, the Fuller-k and the LIML estimators have different limiting distributions 

under weak instruments. Therefore, different EIS estimates across these estimators also 

indicate the existence of the weak instrument problem. As discussed in Yogo (2004), both the 

Fuller-k and the LIML are partially robust to the weak instrument problem. Accordingly, if 

there is evidence of weak instruments, we will focus on Fuller-k and LIML estimates. 

Weak instrument robust confidence intervals for the estimated EIS are calculated by 

inverting econometric tests that test �଴: ߚ =  ଴. Since these tests are based on the trueߚ

parameter value, they are not impaired by weak instruments. Yogo (2004) employed the 

following three weak instrument robust tests. The Anderson-Rubin (1949) ‘AR’ test, the 
Lagrange multiplier ‘LM’ test (Kleibergen, 2002), and the conditional likelihood ratio ‘CLR’ 
test (Moreira, 2003). We employ the CLR test because Andrews, Moreira, and Stock (2006) 

showed that the CLR test combines the LM statistic and the J-overidentification restrictions 

statistic in the most efficient way, thus it is more powerful than the AR and LM tests.4  

Even if we find that the EIS estimates using Mulligan’s (2002) aggregate return series 
are not plagued by weak instruments, we will re-estimate Equation 3 using instrument lists 

that are commonly used in the literature, such as Yogo’s (2004) and Dacy and Hasanov’s 
(2011). Given that Mulligan’s (2002) instrument set is very different from the commonly 
used instruments, by conducting these new estimations we can find out if Mulligan’s (2002) 
results are driven by his specific combination of aggregate returns and instrument set or by 

his aggregate return series alone. The former possibility implies close to zero EIS estimates 

when using different instrument sets, while the latter implies large EIS estimates using 

different instrument sets. 

 

 

4. Data Description 

 

The data used in this paper consists of Mulligan’s (2002) and Dacy and Hasanov’s (2011) 
datasets. Mulligan’s (2002) data are used in the main estimations and comprise a synthetic 

real aggregate asset return and a real nondurable consumption per capita (ND) and a real 

nondurable plus service consumption per capita (NDS) series.  

To construct the annual aggregate capital return series, Mulligan (2002) used U. S. 

national accounts data. His measure of capital stock comes from BEA’s (2000) fixed assets 
valued at current cost at the beginning of the year. Next, the direct and indirect taxes were 

deducted from the capital income net of depreciation per dollar of capital to obtain the after-

tax annual aggregate capital rate of return.  

Mulligan’s (2002) instrument set (hereafter called Mulligan-1st lag) consists of the 

first lag of the after-tax capital return, nominal promised yield on commercial paper, inflation 

rate, yield gap between BAA and AAA bonds, and tax rate. Interestingly, Hall’s (1988) 
recommendation for using lags of variables no closer than the second lag because of 

aggregation problems does not apply here because Mulligan’s (2002) instrument sets do not 
contain lagged dependent variables (consumption growth). We construct another instrument 

set made of the second lag of the aforementioned variables, hereafter called Mulligan-2nd lag. 

The Dacy and Hasanov (2011) dataset is used to build four additional instrument sets. 

The third and fourth sets are based upon Yogo’s (2004) instruments. The third set (Yogo-1st 

lag) is composed of the first lag of the nominal T-Bill rate, inflation, consumption growth 

                                                           
4 This J-statistic is calculated at the true parameter value. So, it is different from Hansen’s J-statistic that is 

evaluated at the estimated parameter value, and therefore subject to the weak instrument problem. 



 

(ND or NDS depending on the dependent variable), and log dividend-price ratio. The fourth 

instrument set (Yogo-2nd lag) consists of the second lag of variables included in Yogo-1st lag 

set. The last two instrument sets are similar to Dacy and Hasanov’s (2011) instruments. The 

fifth instrument set (DH-1st Lag) consists of one-, two-, and three-period lagged real T-Bill 

rate and consumption growth rate; one-period lagged bond default yield premium and bond 

horizon yield premium. And the sixth instrument set (DH-2nd Lag) is comprised of two-, 

three-, and four-period lagged real T-Bill rate and consumption growth rate; two-period 

lagged bond default yield premium and bond horizon yield premium. For the sake of 

comparability across estimates, we restrict the sample to cover 1952–1997 that is the period 

in which all instrument series are available.5  

Table 1 displays the descriptive statistics of the consumption growth rates and the 

aggregate asset returns. Notice that the average growth rate of the NDS is greater than the 

average growth rate of ND, whereas the former is less volatile than the latter. In Figure 1 we 

can see the nondurable and the nondurable plus service consumption growth series over time. 

They have a similar behavior; however, the nondurable series is more volatile. Among the 

real return rates considered, the aggregate capital return is always positive and has the lowest 

volatility. These last two remarks can be clearly seen in Figure 2, which exhibits the behavior 

of the Mulligan’s (2002) aggregate capital real return, the stock market real return, and the T-

Bill real return.  

 

 

5. Results 

 

In this section, we first conduct the weak instrument tests for the six instrument sets. Next, 

we report and discuss the EIS estimates obtained using the TSLS, Fuller-k, and LIML 

estimators; and the weak instrument robust confidence intervals. 

 

5.1 Weak instrument tests  

 

Table 2 displays the weak instrument tests when the nondurable consumption growth is the 

dependent variable. The null hypothesis of under-identification of the KP test is rejected at 

the 5% level of confidence for all instrument sets, except for DH-2nd lag. The Mulligan-1st lag 

is the only instrument set to exhibit a first-stage F-statistic above 10. For this instrument set, 

the null hypotheses that the coefficient of the TSLS or the Fuller-k estimators is severely 

biased are rejected. The p-value for the LIML size test is below the 1% level, implying that 

the t-test coefficients for the LIML estimates are reliable. Nonetheless, the p-value for the 

TSLS size test is above 10%, indicating that the size of t-test for the TSLS estimated 

coefficient is not reliable. Along these lines, the results suggest taking the TSLS results with 

a grain of salt, and focusing on the Fuller-k and LIML estimates. The other instrument sets 

show a low first-stage F-statistic which do not lead to a rejection of the null hypothesis of the 

weak instrument tests. Thus, TSLS estimates using these instrument sets are definitely not 

reliable.  

Notice that Mulligan’s instruments sets are the same no matter which consumption 
growth measure is used. But, Yogo’s (2004) and Dacy and Hasanov’s (2011) instrument sets 

include lagged consumption growth as an instrument. Consequently, the weak instrument test 

results change according to the consumption growth series used. We conducted weak 

instrument tests for nondurable plus service consumption growth, and found p-values similar 

                                                           
5 Mulligan’s (2002) estimates refer to the 1947–1997 period. For Mulligan’s instrument sets we also conducted 
estimates using data covering this period and the results were similar to those reported here in the paper. Such 

results are available upon request. 



 

to the ones for the nondurable consumption reported in Table 2. For the sake of brevity, these 

results are not reported here, but are available upon request. 

 

5.2 EIS estimates and robust confidence intervals 

 

The EIS estimates obtained by means of Equation 3 using Mulligan’s aggregate rate of return 

and nondurable consumption growth are reported in Table 3. Focusing on Mulligan’s-1st lag 

instrument set, the TSLS, Fuller-k, and LIML estimates of the EIS are between 1.34 and 1.37 

and are statistically significant at the 5% level. Such results are well above the earlier 

findings in the literature, and are very similar to the results obtained by Mulligan (2002) in 

his Table 3. The fact that our TSLS, Fuller-k, and LIML estimates are close to each other is 

another result supporting our claim that weak instrument problem is not a concern for this 

instrument set.  

The use of the Mulligan’s-2nd lag instrument set leads to larger EIS estimates ranging 

from 1.26 to 1.27. Yogo’s (2004) instruments also provide EIS estimates above one that are 

statistically significant at the 5% level. The estimates using Dacy and Hasanov’s (2011) 
instrument sets have a worse performance. The EIS estimates jump wildly across different 

estimators clearly indicating very weak instruments. Therefore, estimation procedures 

partially robust to weak instruments lead to larger EIS estimates, even when Mulligan’s 
(2002) original instrument set is not used. In this vein, Mulligan’s (2002) aggregate capital 
return series seems to be the reason behind the large EIS estimates. 

The weak instrument robust confidence intervals are obtained by inverting the CLR 

test. The calculated intervals indicate a positive EIS for Mulligan’s-1st and 2nd lag and 

Yogo’s-1st lag instruments. Notice that the confidence intervals for Yogo’s-2nd lag and DH-1st 

lag instrument sets include negative values, while DH-2nd lag instruments provide an 

uninformative confidence interval. These facts do not necessarily weaken our previous 

conclusion. Intuitively speaking, the weaker the instrument set the wider will be the robust 

confidence interval. Thus, the interval for the Mulligan-1st lag is the narrowest, as suggested 

by our weak instrument test results. Therefore, the results for the other instrument sets can be 

understood as not being very informative due to relatively weaker instruments. 

So far our results using aggregate data provide, at least for Mulligan’s original 
instrument set, a larger than one estimated EIS, which is well above the estimates found by 

studies using aggregate or microdata. It is worth mentioning that our estimates based on 

Mulligan-1st instrument set are not plagued by weak instruments, but even methods robust to 

weak instruments corroborate the findings. We now turn to the EIS estimates employing 

nondurable plus service consumption.  

Table 4 reports the estimates of Equation 3 for nondurable plus service consumption 

growth. The estimated EIS is not very different from Table 3 results. The estimates using 

DH-1st lag and DH-2nd lag instrument sets varied substantially. This indicates the presence of 

weak instruments. The remaining instrument sets provided positive and statistically 

significant EIS estimates, which are above 0.87. Focusing on the Mulligan-1st lag instrument 

set, estimates range from 1.11 (TSLS) to 1.24 (LIML). As before, large EIS estimates are not 

restrict to Mulligan’s original instrument set. The weak instrument robust confidence interval, 

reported in Table 4, indicate that Mulligan-1st lag set leads to the narrowest interval, ranging 

from 0.79 to 1.74. The confidence intervals for the Mulligan-2nd lag, Yogo-1st lag, Yogo-2nd 

lag, and DH-1st lag instrument sets contain only positive numbers, and their lower bound is 

below 0.5, indicating that EIS could be small and close to zero. And, the confidence interval 

implied by DH-2nd lag instruments is uninformative. 

These results using nondurable plus services consumption also provide large EIS 

point estimates, and these estimates were not limited to Mulligan’s (2002) instrument sets 



 

either. Thus, a similar conclusion applies here.  It is the Mulligan’s (2002) aggregate return 

rate and not his instruments sets that are leading to large EIS. And again, the same pattern 

emerges in the weak instrument robust intervals for the EIS. The weaker is the instrument set, 

the wider will the confidence interval for the EIS.  

 

 

6. Conclusions 

 

In the literature, the estimated elasticity of intertemporal substitution is usually close to zero 

when aggregate data is used. Such puzzling result led researchers to investigate this issue 

from different perspectives. Following Gomes and Paz (2013), in this paper we combine two 

of these perspectives. First, we use an aggregate return series that mimics the return on the 

wealth portfolio of the representative household. Second, we employ several econometric 

techniques to verify and address the presence of the weak instrument problem in the EIS. 

The empirical evidence amassed in this paper indicate that Mulligan’s (2002) 

aggregate rate of return provide statistically significant estimates of the EIS that are not 

plagued by the weak instrument problem and are above one. By estimating the EIS using 

different instrument sets, we found large EIS point estimates which suggests that these large 

EIS estimates are mostly due to Mulligan’s (2002) aggregate return series. The instrument set 

proposed by Mulligan (2002) performed well and may be useful for researcher interested in 

estimating consumption models. As expected, the weak instrument fully robust confidence 

intervals for the EIS became wider when relatively weaker instruments were used. This does 

not necessarily weaken our conclusions, but it certainly stresses the pitfalls of overlooking the 

weak instrument problem when estimating the EIS.  

In light of our findings, an interesting avenue for future research is estimate the EIS 

using Mulligan’s aggregate return rate for specific consumer groups (for instance, 

bondholders, stockholders, etc.) and contrast these estimates with those obtained by Vissing-

Jørgensen’s (2002). Such exercise could shed some light if consumers take into account a 

benchmark return rate (like Mulligan’s) or their portfolio’s return rate.  
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Figure 1 – Behavior of the consumption growth series over time. 
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Figure 2 – Behavior of the real asset returns over time. 
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 Table 1: Descriptive Statistics 

Variable 
Number 

of Obs. 
Mean 

Standard 

error 
 Min Max 

 Log Nondurable consumption 46 0.008 0.016 -0.035 0.041 

 Log Nondurable plus Service consumption 46 0.021 0.012 -0.006 0.037 

Log(1+ aggregate capital return) 46 0.058 0.007 0.047 0.075 

Log(1 + real T-Bill return) 46 0.016 0.019 -0.031 0.064 

Log(1+ real Stock return) 46 0.082 0.162 -0.412 0.419 

Note: Data is in annual frequency. Nondurable consumption, nondurable plus service consumption 

and aggregate capital return comes from Mulligan (2002). T-Bill and Stock returns come from Dacy 

and Hasanov (2011).  

 

  



 

 

Table 2 – Weak instrument tests for Mulligan’s aggregate rate of return using Nondurable 
consumption 

Instrument set  
Mulligan 

1st Lag 

Mulligan2nd 

Lag  

Yogo 

1st Lag 

Yogo 

2nd Lag 

DH 

1st Lag 

DH 

2nd Lag 

   1st stage F-statistic 24.337 7.255 8.348 8.944 2.599 1.351 

Weak Instrument Tests (p-value) 

   TSLS bias  0.000 0.949 0.810 0.748 0.999 0.999 

   TSLS size 0.769 1.000 1.000 0.999 1.000 1.000 

   Fuller-k bias 0.000 0.327 0.325 0.255 0.488 0.919 

   LIML size 0.000 0.231 0.205 0.151 0.320 0.837 

   KP 0.000 0.000 0.000 0.000 0.038 0.240 

Observations      45      44     45      44    43   42 

Notes: All specifications include a constant. Fuller-k estimates use k=1. 

  



 

 

Table 3 –Equation 3 estimated using Nondurable Consumption and Mulligan’s aggregate rate 
of return 

Instrument set  
Mulligan 

1st Lag 

Mulligan 

2nd Lag 

Yogo 

1st Lag 

Yogo 

2nd Lag 

DH 

1st Lag 

DH 

2nd Lag 

EIS Estimates 

   TSLS 1.34** 1.27** 1.22** 1.08** 0.78 0.84 

   Fuller-k 1.36** 1.26** 1.18** 1.03** -0.03 -1.64 

   LIML 1.37** 1.26** 1.19** 1.02** -0.20 -4.59 

Observations 45 44 45 44 43 42 

Weak instrument robust confidence interval 

   CLR [0.67, 2.09] [0.13, 2.38] [0.01, 2.30] [-0.13, 2.01] [-7.65, 1.47] (-,+) 

Notes: All specifications include a constant. **, * means statistically significant at the 5% and 10% 

level respectively. Fuller-k estimates use k=1. Weak instrument robust confidence intervals are 

calculated using the rivtest command in Stata, developed by Finlay and Magnusson (2009). 

 

  



 

 

Table 4 –Equation 3 estimated using Nondurable plus Service Consumption and Mulligan’s 
aggregate rate of return 

Instrument set  
Mulligan 

1st Lag 

Mulligan 

2nd Lag 

Yogo 

1st Lag 

Yogo 

2nd Lag 

DH 

1st Lag 

DH 

2nd Lag 

EIS Estimates 

   TSLS 1.11** 1.03** 0.97** 0.94** 1.37** 1.78** 

   Fuller-k 1.23** 1.01** 0.96** 0.88** 0.93** -1.00 

   LIML 1.24** 1.00** 0.95** 0.87** 1.55** 4.01** 

Observations 45 44 45 44 43 42 

Weak instrument robust confidence interval 

   CLR [0.79, 1.74] [[0.21, 1.75] [0.16, 1.72] [0.06, 1.55] [0.45, 3.64] (-,+) 

Notes: All specifications include a constant. **, * means statistically significant at the 5% and 10% 

level respectively. Fuller-k estimates use k=1. Weak instrument robust confidence intervals are 

calculated using the rivtest command in Stata, developed by Finlay and Magnusson (2009). 

 

 


