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1 Introduction

Based on the evidence collected by the research on neurosciences, Brocas and Carrillo (2008)
and Alonso et al. (2014), have proposed to model the brain as an organization with peculiar
features. These features include specialization (there are different brain systems, each one
dedicated to a different task), centralization (a central executive system —CES —is responsible
for a judicious allocation of scarce cognitive resources) and communication of needs (each system
triggers a signal every time it requires resources to undertake a task).
The mentioned principles support the view that decision-making should be interpreted as

an agency problem, where brain systems are the ‘agents’requiring resources to perform tasks
and the CES assumes the role of ‘principal’, taking the responsibility of optimally allocating
the available mental resources.
In the referred literature, the resource allocation problem is interpreted as being static.

At a given point in time, an individual has a series of tasks to perform and the allocation of
resources to each deliberative process will depend on the complexity of each task and on the
resources it demands. Here, resource allocation in the brain is transformed into an intertemporal
optimization problem, for which it is feasible to analyze the steady-state behavior and stability
properties.
The adoption of a dynamic setting implies conceiving a choice problem in which the decision-

maker is systematically faced, period after period, with the same set of tasks, such that the
allocation of cognitive resources will converge towards a long-term equilibrium position where
it tends to rest unless some external disturbance occurs.
The dynamic setup reveals some suggestive results. First, the steady-state will correspond

to an array of resource shares effi ciently allocated to each system. Second, available resources
might not be fully used; from an optimality perspective, some cognitive resources may fail to be
allocated to the execution of any of the tasks. Third, the saddle-path stability result indicates
that as long as the brain systems are able to communicate their needs to the CES, convergence
to the long-run locus is attainable.
The remainder of the paper is organized as follows. Section 2 describes the agency prob-

lem. Section 3 is dedicated to the analysis of the model’s dynamics. Section 4 concludes and
highlights possible pathways for future research.

2 The Dynamic Agency Problem

Assume a decision-maker endowed with a fixed amount of cognitive resources, Ω, which can be
reused in every time period of the planning problem. Let there be n brain systems, each one
associated with the fulfilment of a specific task i ∈ N = {1, 2, ..., n}. For each brain system, a
state variable ωi(t) is defined; this represents the share of mental resources allocated to system i
at date t. One also defines, again for each brain system, a control variable, θi(t), which respects
to the resources employed by system i in order to communicate needs to the CES.
Consider that the utility obtained from the execution of tasks in each brain system is a

linear function of the allocated resources, i.e., U(ωi(t)Ω) = uωi(t)Ω, u > 0.1

1One could consider a ceiling on the resources required to execute each task, Ω̃i, what would imply
U(ωi(t)Ω) = uωi(t)Ω for ωi(t)Ω ≤ Ω̃i and U(ωi(t)Ω) = uΩ̃i for ωi(t)Ω > Ω̃i. Without the ceiling one is
implicitly assuming that the tasks are all suffi ciently complex to continue to demand resources even when the
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Assuming an infinite horizon and a constant intertemporal discount rate, ρ > 0, the aggre-
gate objective function of the decision-maker is

Θ(0) = Max
θi(t),i∈N

∞∫
0

[
uΩ
∑
i

ωi(t)−
∑
i

θi(t)

]
exp(−ρt)dt (1)

The individual intends to maximize the utility accomplished with solving tasks in the brain
systems, while minimizing the resources spent by each one of the systems in transferring infor-
mation on the task to the central brain unit. Optimization problem (1) is subject to a series of
resource constraints that deliver the motion of ωi(t),∀i ∈ N .
The amount of resources allocated to system i increases with the output of a matching

function that has, as arguments, the system’s effort variable and the overall amount of cognitive
resources yet to be allocated,

yi(t) = f

{
θi(t);

[
1−

∑
j∈N

ωj(t)

]
Ω

}
, i ∈ N (2)

Definition 1 Function f(.) : R2
+ −→ R+ is a matching function of the dynamic agency problem

if the following properties hold,
i) f is continuous and differentiable;
ii) f is an increasing function in both arguments: fθ > 0, f(1−ω)Ω > 0;
iii) f is subject to decreasing marginal returns, for each of its inputs: fθθ < 0, f(1−ω)Ω,(1−ω)Ω<

0;
iv) f is homogeneous of degree 1,

f

{
εθi(t), ε

[
1−

∑
j∈N

ωj(t)

]
Ω

}
= εf

{
θi(t),

[
1−

∑
j∈N

ωj(t)

]
Ω

}
,∀ε > 0;

v) Both inputs are essential for resource allocation,

f

{
0,

[
1−

∑
j∈N

ωj(t)

]
Ω

}
= f [θi(t), 0] = 0.

The matching function indicates that when deliberating how much resources to attribute to
each brain system, the CES simultaneously considers the signalling effort made by the system
and the amount of cognitive resources that are not yet employed in any of the considered
system activities. The last property is particularly meaningful because it indicates that resource
availability and the signalling of needs are both indispensable for a transference of resources to
occur.
Besides increasing with the outcome of the matching process, the resources allocated to

each system i will also suffer the influence of an automatic withdrawal by the CES; at each
time period, the CES withdraws cognitive resources from each brain system at a constant rate
λ ∈ (0, 1). This translates the idea that the CES will progressively ignore system i unless the

ones available are fully allocated.
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brain system is capable of keeping the attention of the CES by maintaining the value of θi(t)
persistently at a positive level.
With the previous information in mind, the resource constraints of the allocation problem

are generically presentable as,
•

[ωi(t)Ω] = yi(t)− λωi(t)Ω, ωi(0) ∈ (0, 1) given, i ∈ N (3)

An explicit functional form for the matching function that obeys the properties in definition 1
is the Cobb-Douglas specification,

yi(t) = Ai [θi(t)]
α

{[
1−

∑
j∈N

ωj(t)

]
Ω

}1−α

, i ∈ N,Ai > 0, α ∈ (0, 1) (4)

In the above formulation, it is assumed that each matching process, for each brain system, has
not necessarily the same effi ciency, i.e. the value of parameter Ai might vary across systems.
Under matching function (4), constraint (3) is equivalent to

•
ωi(t) = Ai

[
θi(t)

Ω

]α [
1−

∑
j∈N

ωj(t)

]1−α

− λωi(t), ωi(0) ∈ (0, 1) given, i ∈ N (5)

Definition 2 The dynamic agency problem (DAP), defined to characterize resource allocation
in the brain, consists in solving (1) subject to: (i) equation (3) or, for an explicit Cobb-Douglas
matching function, equation (5); and (ii) the constraints on state and control variables, 0 ≤
ωi(t) ≤ 1 and θi(t) ≥ 0,∀i ∈ N .

3 Optimal Solution, Steady-State and Stability

The application of Pontryagin’s principle allows for a straightforward examination of the DAP.
A first result concerns the optimal motion of the problem’s variables.

Proposition 1 Under conditions of optimality and considering the Cobb-Douglas matching
function, the intertemporal behavior of the DAP is fully translated in the 2n−dimensional system
of differential equations

•
ωi(t) = A

1/(1−α)
i

[α
Ω
pi(t)

]α/(1−α)
[

1−
∑
j∈N

ωj(t)

]
− λωi(t), i ∈ N (6)

•
pi(t) = (ρ+ λ)pi(t)− uΩ + (1− α)

(α
Ω

)α/(1−α)∑
j∈N

[Ajpj(t)]
1/(1−α) , i ∈ N (7)

with pi(t) the co-state variable associated with ωi(t).

Proof. Start by writing the current-value Hamiltonian function of the problem,

H(.) = uΩ
∑
i∈N

ωi(t)−
∑
i∈N

θi(t)

+
∑
i∈N

pi(t)
Ai

[
θi(t)

Ω

]α [
1−

∑
j∈N

ωj(t)

]1−α

− λωi(t)


 (8)
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First-order optimality conditions are2

∂H

∂θi(t)
= 0⇒

αAi
Ωα

pi(t)


1−

∑
j∈N

ωj(t)

θi(t)


1−α

= 1, i ∈ N (9)

•
pi(t) = ρpi(t)−Hωi ⇒

•
pi(t) = (ρ+ λ)pi(t)− uΩ + (1− α)

∑
j∈N

Ajpj(t)


θj(t)[

1−
∑
j∈N

ωj(t)

]
Ω



α

, i ∈ N (10)

and the transversality condition,

lim
t→∞

pi(t) exp(−ρt)ωi(t) = 0, i ∈ N (11)

From (9) and (10), it is straightforward to write the equation of motion for the co-state
variable, (7). To present equation (6) replace θi(t) in (5) by the respective value obtained by
solving (9) with respect to this variable
The 2n−dimensional system mentioned in proposition 1 will be subject to examination, in

what concerns both the existence of a long-term steady-state and the corresponding stability.
Define the steady-state as point (ω∗i , p

∗
i ) = {(ω∗i , p∗i ) :

•
ωi(t) = 0,

•
pi(t) = 0}, i ∈ N . The following

results are derived,

Proposition 2 ∀i, j ∈ N , the steady-state ratio between resource shares is

ω∗i
ω∗j

=

(
Ai
Aj

)1/(1−α)

Proof. Applying condition
•
pi(t) = 0 to differential equation (7), it follows, for any two brain

systems i, j, that p∗i = p∗j . Next, take equation (6) and apply the respective steady-state
condition,

1−
∑
j∈N

ω∗j =
λω∗i

A
1/(1−α)
i

(
α
Ω
p∗i
)α/(1−α)

, i ∈ N (12)

For brain systems i, j, relation (12) is such that ω
∗
i

ω∗j
=
(
Ai
Aj

)1/(1−α) (
p∗i
p∗j

)α/(1−α)

. Because p∗i = p∗j ,

one confirms the result in the proposition
Although one cannot derive explicit expressions for steady-state values of the endogenous

variables, it is possible to state the following,
2The displayed optimality conditions hold, unequivocally, for unconstrained values of the state and control

variables. One should note, though, that this is not the case under the proposed model. Specifically, in the
scenario under appreciation, 0 ≤ ωi(t) ≤ 1 and θi(t) ≥ 0,∀i ∈ N . Therefore, a careful examination of the
implications of taking these constraints is required; such examination is the subject of the appendix in the end
of the paper.
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Proposition 3 The 2n-dimensional steady-state point (ω∗i , p
∗
i ), i ∈ N exists and it is unique.

Proof. Defining p∗ := p∗i , ∀i ∈ N , equation (7) implies[
(1− α)

(α
Ω

)α/(1−α)∑
j∈N

(Aj)
1/(1−α)

]
(p∗)1/(1−α) = uΩ− (ρ+ λ)p∗ (13)

The solution of (13) is the steady-state value of p∗. Hence, what one intends to investigate is
whether there is a solution for this equation and, existing, if it is unique. The lhs of (13) is an
increasing and convex function of p∗ that starts at zero (for p∗ = 0); the rhs is a straight line,
starting at uΩ > 0 (for p∗ = 0) and with a negative slope. These features force both terms to
intersect once and only once for positive values of p∗. Therefore, a unique p∗ exists
Figure 1 illustrates the steady-state uniqueness for the co-state variable.

p

Fig. 1 - p∗ as the intersection point of the lhs and the rhs of (13).

If a unique p∗ exists, then there will be also just one ω∗i , although this is not necessarily the
same across brain systems. Proceeding with the proper computation, one obtains

ω∗i =

(
α
Ω
p∗
)α/(1−α)

A
1/(1−α)
i

λ+
(
α
Ω
p∗
)α/(1−α)

∑
j∈N

(Aj)
1/(1−α)

, i ∈ N (14)

Note, as well, that the sum of all the resource shares is

∑
j∈N

ω∗j =

(
α
Ω
p∗
)α/(1−α)

∑
j∈N

(Aj)
1/(1−α)

λ+
(
α
Ω
p∗
)α/(1−α)

∑
j∈N

(Aj)
1/(1−α)

(15)

Expression (15) reveals an important long-term implication of the DAP: as long as parameter
λ assumes a non-zero value, the steady-state result is such that it is optimal for the CES to leave
some of the cognitive resources unemployed (this is true because Σj∈N ω∗j < 1). This outcome
is the straightforward corollary of costly communication of needs; after a given threshold, the
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benefit of acquiring additional resources for solving tasks does not compensate, on the individual
system’s perspective, the costs of convincing the CES to release additional resources.
Next, local stability of the steady-state (ω∗i , p

∗
i ), i ∈ N is evaluated. To proceed, one lin-

earizes equations (6)-(7) in the vicinity of the steady-state. The linearization conducts to a
2n−dimensional matricial system. The respective Jacobian matrix is conveniently expressed in
four blocks, each one corresponding to a square matrix of order n:

J =

[
J11 J12

J21 J22

]
Matrix Jlm has as elements the derivatives of the state equations (l = 1) / co-state equations
(l = 2) with respect to the state variables (m = 1) / co-state variables (m = 2). All the
elements are evaluated in the equilibrium position. The following result is determined,

Proposition 4 The linearized system of the DAP is saddle-path stable, with the number of
stable trajectories equal to n.

Proof. The number of positive and negative eigenvalues of the Jacobian matrix furnishes the
degree of stability underlying the system. To each negative (positive) eigenvalue it corresponds
a stable (unstable) dimension. Note that J21 is a matrix of zeros and, therefore, the eigenvalues
of J have correspondence on the eigenvalues of J11 and J22. These matrices are,

J11 =



−
1−
∑

j∈N\{1}

ω∗j

1−
∑
j∈N

ω∗j

λ − ω∗1

1−
∑
j∈N

ω∗j

λ · · · − ω∗1

1−
∑
j∈N

ω∗j

λ

− ω∗2

1−
∑
j∈N

ω∗j

λ −
1−
∑

j∈N\{2}

ω∗j

1−
∑
j∈N

ω∗j

λ · · · − ω∗2

1−
∑
j∈N

ω∗j

λ

...
...

. . .
...

− ω∗n

1−
∑
j∈N

ω∗j

λ − ω∗n

1−
∑
j∈N

ω∗j

λ · · · −
1−
∑

j∈N\{n}

ω∗j

1−
∑
j∈N

ω∗j

λ


and

J22 =



ρ+

1−
∑

j∈N\{1}

ω∗j

1−
∑
j∈N

ω∗j

λ
ω∗2

1−
∑
j∈N

ω∗j

λ · · · ω∗n

1−
∑
j∈N

ω∗j

λ

ω∗1

1−
∑
j∈N

ω∗j

λ ρ+

1−
∑

j∈N\{2}

ω∗j

1−
∑
j∈N

ω∗j

λ · · · ω∗n

1−
∑
j∈N

ω∗j

λ

...
...

. . .
...

ω∗1

1−
∑
j∈N

ω∗j

λ
ω∗2

1−
∑
j∈N

ω∗j

λ · · · ρ+

1−
∑

j∈N\{n}

ω∗j

1−
∑
j∈N

ω∗j

λ


2185



Economics Bulletin, 2014, Vol. 34 No. 4 pp. 2179-2189

Eigenvalues of each matrix are straightforward to compute. For J11,

ε1 = − λ

1−
∑
j∈N

ω∗j
;

ε2, ..., εn = −λ

For J22,

εn+1 = ρ+
λ

1−
∑
j∈N

ω∗j
;

εn+2, ..., ε2n = ρ+ λ

As it is evident, the n eigenvalues of J11 are negative, while the n eigenvalues of J22 are positive.
Thus, stable and unstable paths are both of dimension n
The stability result guarantees the possibility of convergence from any initial state in the

steady-state vicinity to the equilibrium point, since the dimension of the stable path coincides
with the number of state variables.

4 Conclusion and Future Work

Evidence from neuroscience indicates that the brain is composed by a multitude of systems
of neurons specialized in dealing with different tasks. Furthermore, cognitive resources are
allocated by a central unit that promotes the most effi cient conciliation between the available
resources and the needs communicated by each system. Therefore, agency relations occur in
the brain in a recurrent way. Assuming that the decision-maker is faced with the same tasks
period after period, the agency problem can be approached under the form of an optimal control
problem.
The laws of motion derived from solving the intertemporal optimization problem deliver

some relevant results on the allocation of resources to brain systems. A steady-state exists, it
is unique, it is saddle-path stable and it furnishes the long-run optimal allocation of mental
resources across tasks. Optimality implies, in this case, that cognitive resources will never be
used in their full extent.
As highlighted in Alonso et al. (2014), this type of agency problem is well suited to approach

resource allocation in the brain but it does not need to be circumscribed to this; it can also
be used to address other issues as, e.g., the optimal allocation of a financial budget to the
functional areas of a firm.
Finally, one should note that the undertaken analysis is purely deterministic; the framework

might be modified in order to account for the uncertainty that is associated to most of the choices
the human mind faces. One way of introducing uncertainty in this model is by considering that
the effi ciency parameter Ai is a stochastic variable: the matching between communicated needs
and resources available to be allocated does not have to be a deterministic process. This
observation constitutes a relevant starting point for future work on the theme.
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Appendix - First-order Necessary Conditions under Con-
strained Optimization

In this appendix, the reasoning presented in Kamien and Schwartz (1991) respecting bounded
controls (section II.10) and state variable inequality constraints (section II.17) is employed to
confirm that equations (9) and (10) represent the necessary conditions for optimality despite
the constraints over endogenous variables that are assumed.
Concerning the nonnegativity constraint on the control variables, a complete statement of

the necessary optimality condition would be

θi(t) = 0 only if
∂H

∂θi(t)
≤ 0, i ∈ N

θi(t) > 0 only if
∂H

∂θi(t)
= 0, i ∈ N

Since the derivative ∂H
∂θi(t)

becomes arbitrarily large when θi(t) approaches 0, one can exclude
the first of the above cases and take equation (9) as the relevant optimality condition (and,
thus, an optimal solution requires θi(t) > 0).
To confirm that (10) is the other relevant first-order condition, one needs to verify that

double inequality 0 ≤ ωi(t) ≤ 1 is satisfied ∀ t ∈ [0,+∞). The first inequality requires the
nonnegativity of each mental resource share; the second inequality holds for every brain system
i if it also holds for the sum of the mental resource shares,

∑
i∈N

ωi(t) ≤ 1. Let us start by

addressing this last condition.
Under the established optimality conditions, the motion of ωi(t) is given by (6). The sum

of all
•
ωi(t) generates the following aggregate constraint,

•[∑
i∈N

ωi(t)

]
=
(α

Ω

)α/(1−α)∑
i∈N

[
A

1/(1−α)
i pi(t)

α/(1−α)
] [

1−
∑
i∈N

ωi(t)

]
− λ
∑
i∈N

ωi(t) (16)

Next, recall that the analysis takes place on the vicinity of the steady-state, i.e., ωi(0) is
defined on the neighborhood of ω∗i , ∀i ∈ N . The study of the stability in section 3 allowed for
the determination of the eigenvalues of the system’s Jacobian matrix. These eigenvalues reveal
the qualitative nature of the stability result, in the case, a n-dimensional saddle-path stability
outcome, and may also furnish the expressions of each of the stable trajectories; these are,

p1(t)− p∗1
p2(t)− p∗2

...
pn(t)− p∗n

 = QpQ
−1
ω


ω1(t)− ω∗1
ω2(t)− ω∗2

...
ωn(t)− ω∗n

 (17)

Matrices Qp and Qω are square matrices of order n. The elements of Qp and Qω are the
elements of the eigenvectors of the system’s Jacobian matrix that are associated to the negative
eigenvalues. Matrix Qp is the sub-matrix of the eigenvectors’matrix that concerns co-state
variables, matrix Qω contains the eigenvectors’elements respecting state variables.
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Independently of parameter values, Qp = 0 and, therefore, stable trajectories become simply
pi(t) = p∗i ,∀i ∈ N . In section 3, it was revealed that co-state variables have identical values in
the steady-state; hence pi(t) = p∗ holds in the convergence to the steady-state. If the value of
the co-state variables remains constant as ωi(t) converges towards the long-term equilibrium,
then only the motion of ωi(t) matters. This implies that equation (16) can be represented as

•[∑
i∈N

ωi(t)

]
=
(α

Ω
p∗
)α/(1−α)∑

i∈N
A

1/(1−α)
i

[
1−

∑
i∈N

ωi(t)

]
− λ
∑
i∈N

ωi(t) (18)

Given steady-state result (15), equation (18) can be simplified,

•[∑
i∈N

ωi(t)

]
= − λ

1−
∑
i∈N

ω∗i

[∑
i∈N

ωi(t)−
∑
i∈N

ω∗i

]
(19)

Differential equation (19) has a straightforward solution,

∑
i∈N

ωi(t) =
∑
i∈N

ω∗i + exp

− λ

1−
∑
i∈N

ω∗i
t


[∑
i∈N

ωi(0)−
∑
i∈N

ω∗i

]
(20)

As long as
∑
i∈N

ωi(0) and
∑
i∈N

ω∗i are positive values lower than 1, equation (20) guarantees

that the imposed boundaries on
∑
i∈N

ωi(t) are never crossed. Variables representing cogni-

tive shares will follow stable trajectories such that
∑
i∈N

ωi(t) remains, for any t, in the inter-

val
∑
i∈N

ωi(0) ≤
∑
i∈N

ωi(t) ≤
∑
i∈N

ω∗i

(
for
∑
i∈N

ωi(0) ≤
∑
i∈N

ω∗i

)
or
∑
i∈N

ω∗i ≤
∑
i∈N

ωi(t) ≤
∑
i∈N

ωi(0)(
for
∑
i∈N

ωi(0) ≥
∑
i∈N

ω∗i

)
.

To go back to the nonnegativity constraint on each individual ωi(t), rewrite equation (6)
for a constant p∗,

•
ωi(t) =

(α
Ω
p∗
)α/(1−α)

A
1/(1−α)
i

[
1−

∑
j∈N

ωj(t)

]
− λωi(t), i ∈ N (21)

System (21) is linear and, thus, its solution is

ω(t) = ω∗ +Q exp(Λt)Q−1 [ω(0)− ω∗] (22)

with ω(t) an order n vector of variables ωi(t), ω(0) an order n vector of initial values and ω∗

an order n vector of steady-state share values. Matrix Λ is the Jordan matrix of the system
(the main diagonal contains the eigenvalues of the respective Jacobian matrix, J11, and the
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rest of the elements are zeros), and Q is the corresponding matrix of eigenvectors. Because
the eigenvalues in Λ are negative, solution (22) ensures that for every brain system i there is
an exponential convergence from ωi(0) to ω∗i ; if these are both positive, then ωi(t) will also
be positive for every time period. Obviously, ωi(t) are also values lower than 1, as already
demonstrated when dealing with the aggregate share equation.
Since the above arguments allow to confirm that constraint 0 ≤ ωi(t) ≤ 1, ∀i ∈ N, is

compatible with the defined law of motion, one does not need to directly incorporate this
constraint in the Hamiltonian function and, hence, equation (10) is effectively the relevant
optimality condition.
Another important remark to make is that necessary conditions are, in this case, also suffi -

cient conditions for optimality. In Kamien and Schwartz (1991, section II.15), it is stated that
if the objective function and the state constraint are both concave in the states and in the
controls, and if pi(t) ≥ 0, as it is the case, then necessary conditions for optimality are also
suffi cient. This result may fail to hold, however, if corner solutions eventually exist. The above
reasoning has made it clear that control variables might be chosen, in conditions of optimality,
in order to guarantee θi(t) > 0; also, as long as ωi(0) is different from 0 or 1, ωi(t) will never fall
in one of these two extreme values, since the allocation share variable will follow an exponential
trajectory that conducts ωi(t) directly to ω∗i ∈ (0, 1).
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