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1. Introduction

Various results in the literature guarantee the existence of a unique Cournot equilibrium
in homogeneous Cournot oligopolies with continuous profit functions (see, e.g., Ewerhart
(2014) for a review).1 Uniqueness boils down to existence (i.e., the existence of at least
one equilibrium) and semi-uniqueness (i.e., the existence of at most one equilibrium). To
the best of our knowledge, the conditions assumed in all equilibrium uniqueness results
with continuous profit functions that deal with an indefinite number of possibly non-
symmetric firms allow a routine application of the well-known Nikaido-Isoda theorem
(Nikaido and Isoda (1955)): in fact the equilibrium existence issue cannot be considered
a real issue. Nevertheless equilibrium semi-uniqueness is a real issue in these results. This
is particularly evident in the case of oligopolies with concave industry revenue function.
The first result for this case is the following one in Murphy et al. (1982).

Theorem 1. Suppose that no firm is capacity constrained, that the industry revenue
function is concave and that cost functions are convex. Also, suppose that the price func-
tion is continuously differentiable and strictly decreasing and that the cost functions are
continuously differentiable. Each of the following conditions is sufficient for the existence
of at most one equilibrium: (I) The industry revenue function is strictly concave. (II) All
cost functions are strictly convex. ⋄

The proof of Theorem 1 in Murphy et al. (1982) and that of its variants, in Deneckere
and Kovenock (1999), Hirai and Szidarovszky (2013) and Ewerhart (2014),2 is not so
simple. The proof in Murphy et al. (1982) is provided by means of a convex programming
technique; those of the mentioned variants employ a technique based on the cumulative
best reply correspondences (see Vives (2001)).3 Using ideas in Quartieri (2008) and von
Mouche and Quartieri (2013), we shall provide a very simple proof of Theorem 1, and a
generalization thereof in Theorem 2.

2. Setting

A (homogeneous Cournot) oligopoly is a game in strategic form with a set N := {1, . . . , n}
of players whose elements are called firms. Each firm i has a strategy set Xi which is
a proper interval of R+ containing 0; the elements of Xi are referred to as production
levels, and those of Y :=

∑

l∈N Xl as industry production levels. Each firm i has a payoff
function, called profit function, fi : X1 × · · · ×Xn → R given by

fi(x) := p(
∑

l∈N

xl)xi − ci(xi),

where p : Y → R is called price function (also called inverse demand function),4 and
ci : Xi → R is called firm i’s (net) cost function. A Nash equilibrium of an oligopoly

1Terminology, definitions and notations are provided in Section 2.
2Hirai and Szidarovszky (2013) consider rent-seeking games. However, as first shown in Szidarovszky

and Okuguchi (1997), results for such games generally imply a corresponding result for oligopolies; on
this, see also the mimeo by Prof. Okuguchi cited in Szidarovszky and Okuguchi (1997).

3There is a claim in Watts (1996) for a related result. See also Okuguchi (2010), where in a structurally
equivalent context (with cost functions replaced by production functions) the case of a concave industry
revenue function is dealt with.

4The price function associates with each positive industry production level y the (greatest) unit price
at which y is entirely sold to the market. In the present article we allow p to assume negative values; in
this context Monderer and Shapley (1996) speak of a quasi-Cournot game.



is called a (Cournot) equilibrium. The industry (aggregate) revenue function r : Y → R

is defined by r(y) := p(y)y; therefore r(0) = 0. Henceforth, we shall denote the set of
equilibria of an oligopoly by E.

Note that either Xi = [0,mi] with mi > 0, or Xi = [0,mi [ with mi > 0, or Xi = R+.
In the first two cases we say that firm i is capacity constrained.5 Henceforth, for all x ∈ X

and A ⊆ N we shall denote
∑

i∈A xi by xA. By an equilibrium aggregate we mean an
element of {eN | e ∈ E}.

3. The simple proof

By way of contradiction suppose that either I or II holds and that a and b are distinct
equilibria with aN ≤ bN . Let J := {l ∈ N | al < bl} and s := |J |. Note that b 6= 0, s ≥
1, bN > 0, aJ ≤ aN , bJ ≤ bN , bJ − aJ ≥ bN − aN and aJ < bJ .

For all i ∈ J we have ai < bi and therefore, as a,b ∈ E, Difi(a) ≤ 0 ≤ Difi(b), i.e.,

(1) Dp(aN)ai + p(aN)−Dci(ai) ≤ 0 ≤ Dp(bN)bi + p(bN)−Dci(bi).

Suppose for a moment that the following fundamental observation holds:

(2)
∑

i∈J

(Dp(aN)ai + p(aN)) ≥
∑

i∈J

(Dp(bN)bi + p(bN)) (> in case I).

As each ci is convex (and strictly convex in case II), (2) implies

(3)
∑

i∈J

(Dp(aN)ai + p(aN)−Dci(ai)) >
∑

i∈J

(Dp(bN)bi + p(bN)−Dci(bi)).

But we obtain a contradiction with (1), because (3) implies that for some i ∈ J

Dp(aN)ai + p(aN)−Dci(ai) > Dp(bN)bi + p(bN)−Dci(bi).

Let us prove the fundamental observation (2). By the decreasingness of p, (2) holds if
aN = bN =: y since Dp(y) ≤ 0 and even6 Dp(y) < 0 in case I. Suppose that aN < bN .
As r is (strictly) concave, the function r̃ : R+ → R defined by r̃(x) := p(x+ aN − aJ)x is
(strictly) concave.7 Thus Dr̃(aJ) ≥ Dr̃(aJ + bN − aN) (> in case I), i.e.,

Dp(aN)aJ + p(aN) ≥ Dp(bN)(aJ + bN − aN) + p(bN) (> in case I).

As aJ + bN − aN ≤ bJ and Dp(bN) ≤ 0, it follows that

(4) Dp(aN)aJ + p(aN) ≥ Dp(bN)bJ + p(bN) (> in case I).

As (s−1)p(aN) ≥ (s−1)p(bN) by the decreasingness of p, we have Dp(aN)aJ +sp(aN) ≥
Dp(bN)bJ + sp(bN) (> in case I). Thus (2) holds. �

4. A counter-example

Theorem 1 provides two additional sufficient conditions for equilibrium semi-uniqueness:
conditions I and II. Lemma 5 in Murphy et al. (1982) states that also the following ad-
ditional condition is sufficient: p is convex. Example 1 below shows that even the strict
convexity of p is not a sufficient additional condition.

5See Laye and Laye (2008), and some references therein, about the importance of capacity constraints.
6Indeed, in this case r is strictly concave and y > 0. This implies Dr(y) < (r(y) − r(0))/(y − 0). So

Dp(y)y + p(y) < p(y), and hence Dp(y) < 0.
7If wished, see Lemma 1 in Murphy et al. (1982).



Example 1. Put n = 2, X1 = X2 := R+, c1 (x1) := 1000x1, c2(x2) :=
x2

4
and

p (y) :=







81
16y+16

− 5
16

if y ∈ [0, 2] ,
9
4y

+ 1
4

if y ∈ [2, 3] ,
4

y+1
if y ∈ [3,+∞[ .

It is straightforward to verify that the equilibrium set is {(0, x2) | 2 ≤ x2 ≤ 3}, that p is
strictly convex and that the example satifies all conditions of Theorem 1 but additional
conditions I and II. ⋄

5. Improvement

Theorem 2 below provides a substantial improvement of Theorem 1. Its proof, con-
tained in the Appendix, is along the same lines of that of Theorem 1, but more technical.

Theorem 2. Suppose that the industry revenue function is concave and that cost func-
tions are convex. Besides suppose that one of the following three conditions holds:

I. The industry revenue function is strictly concave.
II. All cost functions are strictly convex.

III. The industry revenue function is decreasing on the interior of its domain and cost
functions are strictly increasing.

Finally, suppose there exists at least one equilibrium. Then:

(1) There is a unique equilibrium aggregate, say Ψ.
(2) There is a unique equilibrium if the price function is differentiable at Ψ.
(3) There is a unique equilibrium if the price function is differentiable on the interior

of its domain. ⋄

Admittedly, the statement of Theorem 2 does not allow for a non-concave industry
revenue function which is concave on the set where it is positive (such as, e.g., in the
pedagogical case of an industry revenue function associated to a price function defined by
p(y) = max (a− by, 0), with a > 0 and b > 0). The following simple observation clarifies
that many of these industry revenue functions are in fact allowed for by Theorem 2.

Observation Consider an oligopoly with strictly increasing cost functions and with a
price function p+ : Y → R such that p+ = max (p, 0) for some function p : Y → R. The
set of equilibria is unchanged if p+ is replaced by p. ⋄

6. Conclusions

In the first part of this article, with the proof of Theorem 1, we have provided a simple
proof of a known result (and we have pointed out an error in the literature related to
this theorem). In the second part, with Theorem 2, we have proved a more general result
employing more technical arguments. The novelties of Theorem 2 concern both cost
functions and industry revenue functions.



Novelties on cost functions. Theorem 2 allows for non-differentiable cost functions.8

For instance, part (I) of Theorem 2 allows for cost functions which are piecewise linear
and convex, part (III) allows for convex piecewise linear strictly increasing cost functions
and part (II) allows for cost functions which are the sum of a piecewise linear convex
function and a strictly convex function. Besides, capacity constrained firms are allowed
for and, more generally, cost functions that are defined on (possibly half-open) intervals
are allowed for (e.g., the cost function ci on [0, 1 [ defined by x/(1− x)).

Novelties on industry revenue functions. Theorem 2 allows for industry revenue
functions which are discontinuous at 0. For instance, an industry revenue r defined by
r(y) = 1 + byc + dy at all y>0 is compatible with part (I) of Theorem 2 if b > 0 and
0 < c < 1, with part (III) of Theorem 2 if b, d ≤ 0 and c ≥ 1, and with part (II) of
Theorem 2 if b ≥ 0 and 0 ≤ c ≤ 1.

Note that in all numerical examples of industry revenue functions illustrated above,
profit functions are not continuous. This fact alone does not in the least imply that equi-
libria do not exist. Indeed, several equilibrium existence results in case of discontinuous
industry revenue functions can be developed; however, we shall not examine such results
in the present article on the semi-uniqueness of equilibria.

Appendix. Proof of Theorem 2

Preliminaries about case I, II and III. Henceforth, we shall denote Y \ {0} by
Y +. The concavity of r implies that p is semi-differentiable at each interior point of its
domain with D+p ≤ D−p ≤ 0 and when Y = [0,m] also that the left derivative of p
at m exists as an element of R ∪ {−∞} with D−p(m) ≤ 0. If r is strictly concave, the
last two inequalities are even strict.9 This in turn implies that p is strictly decreasing on
Y + in case I and that p is decreasing on Y + in case II. Note that, in case III, r must be
decreasing on Y + because r is concave by assumption and decreasing on Int(Y ).

Further preliminaries about case III. In case III, if r ≤ 0 on Y , then E = {0} by
the strict increasingness of ci, and hence parts 1 and 2 of the theorem hold. Henceforth
suppose that in case III the function r is positive somewhere. In case III, as r is decreasing
on Y +, we have that V := {y ∈ Y + | r(y) > 0} must be a proper interval, limx↓0 r(x) ≥
r(y) (y ∈ Y +) and limx↓0 r(x) > 0. Besides in case III we have:

(5) e ∈ E ⇒
∑

j∈N\{i}

ej 6= 0 (i ∈ N);

(6) e ∈ E ⇒ eN ∈ V ;

(7) p is strictly decreasing on V and D−p < 0 on V.

8Note that, like in Murphy et al. (1982) but unlike a good part of the literature, we have not assumed
that cost functions are increasing and non-negative. Therefore (net) cost functions can include production
costs and subsidies to production. E.g., the function ci(x) := x2−x is firm i’s net cost function when x2

is the cost of producing x units of the good and x is the subsidy received for the production of x units
of the good.

9This can be proven as in footnote 6 but considering now left and right derivatives.



Proof of (5). Suppose instead that
∑

j∈N\{i} ej = 0 for some i. Then ej = 0 (j 6= i).
As ci is convex and increasing, ci is continuous at 0 and we have

lim
xi↓0

fi(xi; eı̂) = lim
xi↓0

(r − ci)(xi) = lim
xi↓0

r(xi)− ci(0).

If ei > 0 then limxi↓0 r(xi) − ci(0) ≥ r(ei) − ci(0) > r(ei) − ci(ei) = fi(e) and if ei = 0
then limxi↓0 r(xi)− ci(0) > −ci(0) = fi(e): a contradiction with e ∈ E.

Proof of (6). By (5), eN 6= 0. As ci is strictly increasing and e ∈ E it follows that
p(eN) > 0. So r(eN) = p(eN)eN > 0 and hence eN ∈ V .

Proof of (7). As p(y) = r(y) 1
y
(y ∈ Y +), r is decreasing on Y + and positive on V , it

follows that p is strictly decreasing on V . Besides, 0 ≥ D−r(y) = D−p(y)y+p(y) (y ∈ V ).
It follows that D−p(y) < 0 (y ∈ V ).

We are now ready for the proof of the theorem.

Proof of part 1. By way of contradiction suppose that a,b ∈ E and aN < bN . Let
J := {l ∈ N | al < bl} and s := |J |. Note that s ≥ 1, bN > 0, aJ ≤ aN , bJ ≤ bN , aJ < bJ
and

(8) bJ − aJ ≥ bN − aN .

Suppose for a moment that

(9) aN 6= 0.

As a, b ∈ E and aN > 0, for all i ∈ J we have D+
i fi(a) ≤ 0 ≤ D−

i fi(b), i.e.,10

(10) D+p(aN)ai + p(aN)−D+ci(ai) ≤ 0 ≤ D−p(bN)bi + p(bN)−D−ci(bi).

Suppose for a moment that also the following fundamental observation holds:

(11) D+p(aN)aJ + sp(aN) ≥ D−p(bN)bJ + sp(bN) (> in cases I and III).

As each ci is convex (and strictly convex in case II), (11) implies that

D+p(aN)aJ + sp(aN)−
∑

i∈J

D+ci(ai) > D−p(bN)bJ + sp(bN)−
∑

i∈J

D−ci(bi)

and hence that D+p(aN)ai + p(aN)−D+ci(ai) > D−p(bN)bi + p(bN)−D−ci(bi) for some
i ∈ J , in contradiction with (10).

Proof of (9). In case III, (9) holds by (5). Suppose now that either condition I or
II holds. Fix i ∈ N with bi > 0 and let bı̂ denote the production profile of the other

firms. For a given production profile z of the other firms let f
(z)
i : Xi → R denote

the profit function of firm i as a function of its own production level. Every f
(z)
i is

strictly concave. As b is an equilibrium, this strict concavity implies that bi is the

unique maximiser of f
(bı̂)
i ; so f

(bı̂)
i (bi) > f

(bı̂)
i (0). As p is decreasing on Y +, we obtain

f
(0)
i (bi) ≥ f

(bı̂)
i (bi) > f

(bı̂)
i (0) = f

(0)
i (0). This implies that 0 is not an equilibrium, and

hence that aN 6= 0.
Proof of (11). Let us finish the proof of part 1 showing that (11) holds. Clearly, (11)

holds if D−p(bN) = −∞. Henceforth suppose that D−p(bN) 6= −∞. As r is concave
(and strictly concave in case I), the function r̃ : Y ∩ (Y − {aN − aJ}) → R defined

10The right derivative D+ci(0) may be −∞; if Xi = [0,mi], the left derivative D−ci(mi) may be +∞.



by r̃(x) := p(x + aN − aJ)x is concave (and strictly concave in case I). So D+r̃(aJ) ≥
D−r̃(aJ + bN − aN) (> in case I), i.e.,

(12) D+p(aN)aJ + p(aN) ≥ D−p(bN)(aJ + bN − aN) + p(bN) (> in case I).

As aJ + bN − aN ≤ bJ and D−p(bN) ≤ 0, it follows that

(13) D+p(aN)aJ + p(aN) ≥ D−p(bN)bJ + p(bN) (> in case I).

The monotonicity properties of p imply that

(14) (s− 1)p(aN) ≥ (s− 1)p(bN),

which, together with (13), implies the validity of (11) in cases I and II. Consider now case
III. In order to show that (11) holds, we prove by contradiction that either the inequality
in (14) is strict or that in (12) is strict: consequently also the inequality in (13) must be
strict. Suppose that neither the inequality in (14) is strict nor that in (12) is so. This
implies that s = 1 (by (6) and (7)) and aN = aJ (as aN > aJ implies that r̃ is strictly
concave). Let m ∈ N be such that J = {m}. By (8), bJ = bN . This in turn implies that
∑

l∈N\{m} al = 0. But this is in contradiction with (5).

Proof of part 2. We prove by contradiction that g is injective on E; then part 2 follows
from part 1. Suppose a,b ∈ E with a 6= b and aN = bN = Ψ. Then Ψ ∈ Int(Y ). Fix i
such that ai < bi. As a,b ∈ E and p is differentiable at Ψ,

Dp(Ψ)bi + p(y)−D−ci(bi) ≥ 0 ≥ Dp(Ψ)ai + p(y)−D−ci(ai).

Thus the inequality Dp(Ψ)(bi − ai) ≥ D−ci(bi) − D+ci(ai) holds. If either condition I
or condition III holds, the left hand side of the last inequality is an element of ]−∞, 0 [
and the right hand side is an element of [0,+∞]; if condition II holds, the left hand side
of the last inequality is an element of ] −∞, 0] and the right hand side is an element of
]0,+∞]. Both cases are impossible.

Proof of part 3. A consequence of part 2, as Ψ ∈ Int(Y ) if #E ≥ 2. �
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