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Abstract
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the maximum likelihood estimator under the normality assumption (BC MLE) is used. However, the BC MLE is not

consistent under heteroscedasticity, even if the “small sigma” assumption is satisfied.　Here I propose a new robust

estimator of the Box-Cox transformation model. The estimator is based on only the first- and third-moment
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the results of Monte Carlo experiments are presented.
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1. Introduction 
The Box-Cox (1964) transformation model (hereafter, the BC model) is widely used 

in various fields of econometrics and statistics. Generally, the maximum likelihood 
estimator under the normality assumption (BC MLE) is used. The BC MLE is consistent 
if the error terms are independent and identically distributed (i.i.d.) random variables, 
and the “small  ” assumption, described in Bickel and Doksum (1981) and Nawata 
and Kawabuchi (2014), is satisfied. However, the BC MLE is not consistent under 
heteroscedasticity even if the “small  ” assumption is satisfied. Although Foster, Tain, 
and Wei (2001) )1  and Nawata (2013) proposed semiparametric estimators, these 
estimators are also not consistent under heteroscedasticity. Powell (1996) proposed a 
semiparametric estimator based on the moment restriction. Powell’s estimator is 
consistent under heteroscedasticity, however, it has the following problems: (i) to 
identify the transformation parameter, it is necessary to introduce one or more 
instrumental variables, tw , which satisfy 0)(  tt uwE , where tu  is the error term, and 
the result of the estimation depends on the selection of instrumental variables; (ii) a 
rather arbitrary rescaling of the dependent variable is necessary, and the result also 
depends on a rescaling method; and (iii) its finite-sample properties are not good and 
the estimator often performs poorly, as demonstrated in Monte Carlo experiments. 

Here I propose a new robust estimator of the Box-Cox transformation model. The 
estimator is based on only the first- and third-moment restrictions of the error terms, and 
does not require the assumption of a specific distribution. The estimator is consistent 
even under heteroscedasticity. In the present study, its asymptotic distribution was 
obtained, and the results of Monte Carlo experiments are presented. 

 
2. Model 

We consider the BC model, 
,' ttt uxz       0

ty       (1) 
    /)1( ty ,   if ,0    

{tz  
)log( ty ,  if ,0    ,,...,2,1 Tt   

where tx  and   are the k-th dimensional vectors of the explanatory variables and the 
coefficients, respectively, and   is the transformation parameter. }{ tx  and }{ tu  do 
not have to be i.i.d. random variables, and heteroscedasticity can be assumed. The 
following assumptions are made:  
 
Assumption 1. )},{( tt ux  are independent but not necessarily identically distributed. The 
distribution of tu  may depend on tx . 
Assumption 2. tu  follows distributions in which the supports are bounded from below; 
that is, 0)( uf t  if au   for some 0a , where )(uft  is the probability (density) 
function. For any t, the following moment conditions are satisfied: (i) ,0)|( tt xuE  
(ii) ,0)|( 3 tt xuE  and (iii) 2

6
1 )|(   tt xuE  for some  210  . 



Assumption 3. }{ tx  are independent, and its fourth moments are finite. The 
distributions of }{ tx  and the parameter space of   are restricted so that axx )'( 0inf   
and cxx )'(inf ,   for some 0c  in the neighborhood of 0  where 0  is the true 
parameter value of  . 
 

Here, we use the first- and third-moment restrictions and consider the roots of the 
equations 

0)()(  
t

tT gG ,  ),,()( ttt yxgg  3)'( tt xz   and ,0)'(  tt
t

t xzx  (2) 

where ),('   . Although Nawata (2013) considered more complicated moment 
restrictions for )(TG  obtained by the modification of the likelihood function of the BC 
model, a simple third-order moment restriction is used in this paper. Note that the last 
equation in (2) gives the least-squares estimator when the value of 

 
is given. Let 

),(' 000    be the true parameter value of  . Since 0)]([ 0 GE , we obtain the 
following proposition:  
 
Proposition 1 
Among the roots of (2), there exists a consistent root. 
 
The proof is given in Appendix A. Let )'ˆ,ˆ('ˆ    be the consistent root. The asymptotic 
distribution of ̂  is obtained by the following proposition. 
 
Proposition 2 
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distribution of ̂  is given by 
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where * is some value between ̂  and 0 . Here, 
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Therefore, .0)]([ 0 tE   Since the variables )}({ 0t are independent and the 
Lindeberg condition is satisfied under Assumptions 2 and 3, we obtain  
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from Theorem 3.3.6 in Amemiya (1985, p. 92).  
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from Theorem 4.1.4 in Amemiya (1985, pp. 112-113). From Theorem 4.1.3 in Amemiya 
(1985, p. 111), the asymptotic distribution of ̂  is given by Equation (3).  
Since tt yy log/)1(lim 00

0
0

 
 , we can get the asymptotic distribution given by the same 

formula even when 00  . Let )ˆ,ˆ(ˆ ''
BCBCBC    be the BC MLE. Using ̂  and BC̂ , 

we can test both the i.i.d. and “small  ” assumptions; that is, we can test whether we 
can successfully use the BC MLE by the Hausman test. However, since the rank of the 
asymptotic variance-covariance matrix of ])'ˆˆ(),ˆˆ([   BCBC TT  becomes one, we 
cannot use any element of   in the Hausman test (Nawata and McAleeer, 2014). 
 

3. Monte Carlo Study 
In this section, Monte Carlo results are presented for the BC MLE, the newly 

proposed estimator, and Powell’s estimator. The behavior of the estimators under both 
homoscedasticity and heteroscedasticity is studied. The basic model is:  

ttt uxz  21  ,  ,/)1( 0
0   tt yz  ,0ty  .,...,2,1 Tt    (9) 

The BC MLE and the proposed estimator are calculated using the same scanning 
method used by Nawata (2013) over ]0.2,01.0[ . For the proposed estimator, there 
are two possible problems. They are:  

(2) has multiple solutions, and (2) does not have a solution. 
However, all trials had just one solution, and the above problems did not occur in the 
Monte Carlo study. 

Since Powell (1996) suggested a function of tx  as the instrument variable tw , 
,)0.5(30 2 ti xw  is used. Although other types of functions 2  of tx  have been 



used for tw , the conclusion of this study does not change; that is, Powell’s estimator 
performs quite poorly. Since heteroscedasticity is also considered, the generalized 
method of moment (GMM) type estimator is not used. Powell’s estimator is obtained 
by: i) rescaling }{ ty  by dividing by their geometric mean; ii) minimizing, 

,)}ˆˆ({ 2
10

*
tt

t
i xzwS           (10) 

where *
tz  is the value of the BC transformation using the rescaled value, and 0̂  

and 1̂ are least-squares estimators based on }{ *
tz ; and iii) recalculating the values of 0̂  

and 1̂  to adjust the effects of rescaling. Powell’s estimator is also calculated by the 
scanning method over ]0.2,01.0[ . There are two possible problems with Powell’s 
estimator. They are:  
i) S  is not minimized in )0.2,01.0( , and S  is minimized on the boundary (i.e., 

01.0  or )0.2 . 
ii) S  becomes 0 for multiple values of .  
Unlike with the proposed estimator, these problems were observed in many trials.  
Since we were not able to obtain accurate values of the estimator in these trials, the 
results of Powell’s estimator were calculated for trials without these problems.  
 
3.1 Under homoscedasticity 

In this section, the behavior of the estimators under homoscedasticity is analyzed. 
The values of 0.2, 0.5 and 0.8 are considered for 0 . The sample size was 200 in all 
cases. }{ tx  represents i.i.d. random variables

 
distributed uniformly on (0, 10). The case 

in which tu0  is
 
distributed uniformly on (-5, 5) is considered. (Although other types 

of distributions were also considered, the results were similar to those for this 
distribution.) The true parameter values are: 

 0.51 10
*
1    and .1.020

*
2  

    
 (11)  The number of trials was 1,000 for all cases. The results are presented in Table I. The 

BC MLE underestimated   and had a fairly large bias for all cases. Although the 
standard deviations of the proposed estimator were about 1.7 times larger than those of 
the BC MLE, the biases of the proposed estimator were much smaller. In terms of the 
MSE, the proposed estimator was better than the BC MLE. Powell’s estimator 
performed poorly in many trials; especially when 0 =0.2, we were not able to obtain 
accurate values with the estimator because of the problems mentioned earlier. Moreover, 
the standard deviations were much larger than those of the proposed estimator even for 
trials without problems.  
 
3.2 Under heteroscedasticity 
 In this section, the effect of heteroscedasticity is analyzed. The values of tx  are 
chosen as in the previous section. The true parameter values are: 

 5.21 10
*
1    and .25.020

*
2  

    
(12) 

The error terms are given by  
ttt xu   )1.01(0 ,       (13)  



where }{ t  represents the i.i.d. random variables distributed uniformly on (-2.5, 2.5). 
As before, the values of 0.2, 0.5 and 0.8 are considered for 0 . The sample size was 
200 in all cases. The results are presented in Table II.  

The BC MLE underestimated   and the biases of the BC MLE were larger than 
those under homoscedasticity for all cases. These findings coincided with those of a 
previous study (Showalter, 1994), in which large biases of the BC MLE under 
heteroscedasticity were reported. The standard deviations of the proposed estimator 
were about 2.5 times larger than those of the BC MLE. However, the biases of the 
proposed estimator were much smaller than those of the BC MLE. As a result, in terms 
of the MSE, the proposed estimator was better than the BC MLE. Again, Powell’s 
estimator performed poorly. In many trials, we were not able to obtain accurate values 
with the estimator. The standard deviations were much larger than those of the newly 
proposed estimator even for trials without problems, again especially when 0 =0.2. 
 

4. Conclusion 
Although the BC model is widely used in various fields, BC MLE is not consistent 

under heteroscedasticity even if the “small  ” assumption is satisfied. In this paper, a 
new robust estimator of the BC model was proposed. The estimator was based on the 
first- and third-moment restrictions of the error terms. The estimator was consistent 
even under heteroscedasticity, and its asymptotic distribution was also obtained. 
Moreover, the estimator was easily calculated using the least-squares and scanning 
methods. The results of the Monte Carlo experiments showed the superiority of the 
proposed estimator over the BC MLE and Powell’s estimator. However, the 
performance of each of these estimators may depend on the model, and the findings 
may differ in other models. Further investigation is thus necessary to determine the 
conditions under which the proposed estimator shows superiority. Wooldridge (1992) 
proposed an alternative model considering )|( tt xyE . Although his model does not 
belong to the same category as the BC model, it can be used as an alternative to the BC 
model in an empirical study. A comparison of these models is another important subject 
for future research.  
 

Appendix A:  Proof of Proposition 1 
The proof of the consistency of the estimator is given using a modification of Nawata 

(2013). When   is given,   is uniquely estimated by the least-squares method. Let 

)(ˆ 
 
be the estimator, and 
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The following assumptions were made: that i) Txx tt /' converges to a nonsingular 
matrix in probability; that ii) ,/,/,/ 32
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converge to (vectors or a matrix of) continuous functions 



in probability in the neighborhood of 0 ; and that iii) these functions are differentiable 

and their first derivatives are continuous in the neighborhood of 0 . Under these 
assumptions, )(Th  and )(' Th converge to )(h  and )(' h  in the neighborhood of 

.0  When 0  , the model becomes an ordinary regression model, and )(ˆ
0
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consistent. Therefore, 
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Since 0)( 3 tuE , we get 
0)( 0 h ,        (16) 

by Theorem 3.3.1 of Amemiya (1985, p. 90). Since 
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)(' h  is continuous in the neighborhood of 0  and )(' 0h  does not become zero 
except in very special cases. (Since )(h  and )(' h  are continuous functions of   at 

0 , we can treat the 00   case the same as the 00   case.) Therefore, we can 
assume that 0)(' 0 h , and that there exists 0  such that )}('{)}('{ 0 hsignhsign   

and 0|)('|
2
1|)('| 0   hh  if ],[ 00   . By the mean value theorem, for 
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 where *  and **  are values in ],[ 00   . Therefore, 
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Since (21) holds for any ),0(   , 0)( Th  has a consistent root of 0 . Since )ˆ(ˆ 
 is obtained by the least-squares method, it is a consistent estimator when 0

ˆ  P . 
Hence, there exists a consistent root among the roots of (2). 



 
Notes: 
1) Their method requires a weight function to calculate the estimator. However, the 

values of the estimator depend heavily on a weight function. (The details of their 
estimator are available upon request through the author.)    

2) I have also considered the cases where ,2
ii xw   ,)5( 2 ii xw  2)5(25  ii xw  and 

2)5(35  ii xw . However, the performance of Powell’s estimator was still quite 
poor, even worse than the results presented in this paper. 
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Table I. Summaries of the estimators under homoscedasticity, sample size= 200 

    Mean STD Q1 Median Q3 MSE 

BC MLE 

0 = 0.2   0.1467 0.0161 0.1353 0.1461 0.1577 0.0557 
*
1  

3.1731 0.5655 2.7799 3.0954 3.4898 1.9124 
*
2  

0.0517 0.0388 0.0245 0.0502 0.0728 0.0620 

0 = 0.5   0.3707 0.0397 0.3439 0.371 0.3968 0.1353 
*
1  

3.222 0.5651 2.8256 3.165 3.5623 1.8656 
*
2  

0.0527 0.0381 0.0258 0.05 0.0767 0.0607 

0 = 0.8   0.5885 0.0658 0.5427 0.5865 0.6295 0.2215 
*
1  

3.1876 0.6022 2.7621 3.0934 3.5234 1.9098 
*
2  

0.0523 0.0379 0.0267 0.0493 0.0765 0.0609 

Proposed Estimator  

0 = 0.2   0.2013 0.0269 0.1828 0.2007 0.2179 0.0269 
*
1  

5.2786 1.6795 4.1651 5.0064 6.0025 1.7025 
*
2  

0.1113 0.0876 0.0535 0.0997 0.1576 0.0883 

0 = 0.5   0.5052 0.0682 0.4585 0.503 0.5474 0.0684 
*
1  

5.3176 1.6269 4.202 5.0359 6.1069 1.6576 
*
2  

0.1117 0.0945 0.0475 0.0968 0.1593 0.0952 

0 = 0.8   0.7984 0.1064 0.7269 0.7938 0.8614 0.1064 
*
1  

5.1929 1.614 4.1189 4.8425 5.9076 1.6255 
*
2  

0.1054 0.0837 0.0493 0.0958 0.1516 0.0839 

Powell's Estimator 

0 = 0.2   0.4272 0.4600 0.1367 0.2293 0.5319 0.5131 

(N1=197, N2=0,  *
1  

6.733E6 5.082E7 2.8199 6.6926 133.16 5.126.E7 

N3=36) *
2  

1.024E6 7.801E6 0.02508 0.11368 3.5747 7.868E6 

0 = 0.5   0.5975 0.4285 0.3019 0.5015 0.7754 0.5845 

(N1=231, N2=29, *
1  

58.140 211.72 2.4770 5.0465 14.241 218.28 

N3=36) *
2  

3.5264 18.674 0.0167 0.0751 0.3557 18.985 

0 = 0.8   0.8007 0.4880 0.4227 0.7396 1.1076 0.7740 

(N1=235, N2=79, *
1  

10.802 16.457 2.2468 4.3619 10.057 17.451 

N3=9) *
2  

0.2863 0.7182 0.0106 0.0517 0.1903 0.7420 

True values: *
1 =5.0 and *

2 =0.1.  
Following notations are used: STD, standard deviation; Ql, first quartile; Q3, third quartile; and MSE, 
mean squared error. For Powell’s estimator, following notations are also used: N1, number of trials where 
S is minimized at 01.0 ; N2, number of trials where S  is minimized at 0.2 ; and N3, number of 
trials where 0S  becomes 0 at multiple values of  . 



Table II. Summaries of the estimators under heteroscedasticity, sample size= 200 
    Mean STD Q1 Median Q3 MSE 

BC MLE 

0 = 0.2   0.1286 0.0108 0.1210 0.1282 0.1353 0.0722 
*
1  

1.7427 0.1753 1.6247 1.7426 1.8500 0.7773 
*
2  

0.0972 0.0293 0.0749 0.0951 0.1163 0.1556 

0 = 0.5   0.3206 0.0271 0.3034 0.3207 0.3377 0.1815 
*
1  

1.7370 0.1832 1.6066 1.7300 1.8417 0.7846 
*
2  

0.0975 0.0287 0.0778 0.0958 0.1162 0.1551 

0 = 0.8   0.5104 0.0434 0.4791 0.5087 0.5400 0.2928 
*
1  

1.7307 0.1741 1.6111 1.7168 1.8356 0.7888 
*
2  

0.0958 0.0299 0.0741 0.0937 0.1136 0.1571 

Proposed Estimator     

0 =0.2   0.2033 0.0274 0.1837 0.1998 0.2204 0.0276 
*
1  

2.5567 0.4472 2.2492 2.508 2.8112 0.4508 
*
2  

0.2875 0.1579 0.1812 0.2501 0.3509 0.1623 

0 = 0.5   0.5077 0.0685 0.4592 0.4997 0.5507 0.0690 
*
1  

2.5531 0.4461 2.2448 2.5057 2.8108 0.4493 
*
2  

0.2865 0.1575 0.1803 0.2488 0.3490 0.1616 

0 = 0.8   0.8045 0.1121 0.726 0.7978 0.8668 0.1122 
*
1  

2.5201 0.4386 2.206 2.4564 2.7691 0.4391 
*
2  

0.2807 0.1612 0.1743 0.2476 0.3355 0.1641 

Powell's Estimator 

0 = 0.2   0.3858 0.3366 0.1604 0.2965 0.5422 0.3844 

(N1=105, N2=0, *
1  

-1.379E5 2.137E6 1.5461 2.3560 6.2745 2.141E6 

N3=52) *
2  

8.886E4 1.368.E6 0.1504 0.8232 10.731 1.370E6 

0 = 0.5   0.7091 0.5303 0.3274 0.5579 1.0642 0.7351 

(N1=124, N2=19, *
1  

5.3028 11.467 1.6474 2.5438 6.3440 11.805 

N3=50) *
2  

8.4842 22.553 0.0971 0.3411 3.3047 24.009 

0 = 0.8   0.7847 0.5219 0.3569 0.6528 1.1570 0.7838 

(N1=173, N2=112, *
1  

3.2077 2.7245 1.3947 2.0478 3.9121 2.8150 

N3=23) *
2  

0.7682 1.3651 0.0497 0.1476 0.7274 1.4602 

True values: *
1 =2.5 and *

2 =0.25.  
Following notations are used: STD, standard deviation; Ql, first quartile; Q3, third quartile; and MSE, 
mean squared error. For Powell’s estimator, following notations are also used: N1, number of trials where 
S is minimized at 01.0 ; N2, number of trials where S  is minimized at 0.2 ; and N3, number of 
trials where 0S  becomes 0 at multiple values of  . 


