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1. Introduction 
 

Parametric income distribution models (PIDMs) are used for various objectives such as 
estimation of income distribution and inequality/poverty indices from grouped data when 
survey micro data are unavailable, and construction of regression models for economic analysis, 
e.g. the Mincer-type equation. Typically, the lognormal (LN) distribution is used as the error 
term for the regression analysis; however, the goodness-of-fit of the LN is generally not perfect. 
To attain better fits, various models have been proposed. The generalized beta distribution of 
the first and second kinds (GB1 and GB2, McDonald, 1984) is popular as four-parameter 
PIDMs. The double-Pareto lognormal (dPLN) distribution (Reed 2003) has been shown to be 
fitted to income distributions better in several countries than the GB1 and GB2. It is notable 
that the dPLN has a parameter corresponding to the location parameter μ for the LN. Thus, the 
dPLN can possibly displace the LN from the regression models.  

To seek further improvement, these four-parameter PIDMs were generalized to five-
parameter PIDMs, the GB (McDonald and Xu 1995) and the generalized dPLN (denoted by 
‘GdPLN’ hereafter, Reed and Wu, 2008), respectively. However, the GB fails to clearly 
improve the goodness-of-fit (cf. Kleiber and Kotz 2003, p.232), and the GdPLN is impractical 
because the probability density function (PDF) and cumulative distribution function (CDF) 
need to be obtained by difficult and slow numerical computation for inverting its characteristic 
function (Reed and Wu 2008). Furthermore, the GdPLN does not necessarily produce better 
fits, as shown in Section 3. So far, no PIDM with five or more parameters achieve a satisfactory 
level of goodness-of-fit. This paper generalizes the dPLN in a different way to break the 
deadlock. 
 

2. New model 
 
The dPLN is defined as the probability distribution for a random variable when the logarithm 
of the variable follows the normal-Laplace distribution (convolution of the Laplace and normal 
distributions). Its PDF is expressed as follows: 

ௗ݂௉௅ே(ݔ) = ߙߙ + ߚ ௅݂(ߤ|ݔ, ,ߪ (ߚ + ߙߚ + ߚ ோ݂(ߤ|ݔ, ,ߪ (ߙ
= ߙߚߙ + ߚ ఉିଵ݁ିఉఓାଵଶఉమఙమΦ௖ݔ ቆlog ݔ − ߤ + ߪଶߪߚ ቇ
+ ߙߚߙ + ߚ ఈିଵ݁ఈఓାଵଶఈమఙమΦିݔ ቆlog ݔ − ߤ − ߪଶߪߙ ቇ, 

(1)

where ߪ, ,ߙ ߚ > 0; Φ denotes the CDF of the standard normal distribution; Φ௖ ≔ 1 − Φ. 
Parameters μ and ߪ correspond to the location and scale parameters for the LN. The dPLN 
can be regarded as a mixture of two distributions that have PDFs ௅݂ and ோ݂ by a ratio ߙ:  .ߚ
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A function ௅݂(ߤ|ݔ, ,ߪ  is the PDF of the product of two independent variables: a lognormal (ߚ
random variable with parameters ߤ and ߪ and an inverse Pareto variable which has the PDF ݔߚఉିଵ , 0 < ݔ ≤ 1 . Another function ோ݂(ߤ|ݔ, ,ߪ (ߙ  is the PDF of the product of two 
independent variables: a lognormal random variable with parameters ߤ and ߪ and a Pareto 
variable which has the PDF ିݔߙఈିଵ, 1 ≤  .ݔ

By allowing ߤ and ߪ for ௅݂ and ோ݂ to take different values and the mixing ratio to be 
independent from the parameters, the dPLN is generalized to a seven-parameter model that has 
the following PDF: ݂(ݔ) = ݎ ௅݂(ߤ|ݔ௅, ,௅ߪ (ߚ + (1 − (ݎ ோ݂(ߤ|ݔோ, ,ோߪ (2) ,(ߙ
where ߪ௅, ,ோߪ ,ߙ ߚ > 0; 0 < ݎ < 1. This new model shall be called the dual-parameterized 
dPLN, denoted as ‘dP2LN’. ߤ = ௅ߤݎ + (1 − ோߤ(ݎ  can be regarded as a parameter 
corresponding to the location parameter for the LN. (∆ߤ = ோߤ − ௅ߤ  should be regarded as 
another parameter if replacing ߤ௅ and ߤோ using ߤ). The dP2LN as well as the dPLN follows 
power laws in both tails, i.e. for constants ܿଵ and ܿଶ,  ݂(ݔ)~ܿଵିݔఈିଵ  (ݔ → ఉିଵݔଶܿ~(ݔ)݂ ;(∞ ݔ) → 0). (3)
Thus, the left tail behavior is determined by ௅݂, while the right tail behavior is determined by ோ݂. The h–th (< ௛ߤ :order moments are expressed as follows (ߙ = (௛ܺ)ܧ = ݎ ߚߚ + ℎ ݁ఓಽ௛ାଵଶ௛మఙಽమ + (1 − (ݎ ߙߙ − ℎ ݁ఓೃ௛ାଵଶ௛మఙೃమ. (4)

The mean (first order moment) converges as follows, when ߚ ,ߙ → ଵߤ :∞ → ఓಽାଵଶఙಽమ݁ݎ + (1 − ఓೃାଵଶఙೃమ. (5)݁(ݎ

The value equals to a mix of the means of two lognormal distributions with parameters ߤ௅, ߪ௅ 
and ߤோ ோߪ ,  by a ratio ݎ: 1 − ݎ . The normalized incomplete moments are expressed as 
follows: ܨ(௛)(ݔ) = ׬ ௫଴ݐ݀(ݐ)௛݂ݐ ௛ߤ  

= ௛ߤݎ ߚߚ + ℎ ቈݔఉା௛݁ିఉఓಽାଵଶఉమఙಽమΦ௖ ቆlog ݔ − ௅ߤ + ௅ߪ௅ଶߪߚ ቇ
+ ݁ఓಽ௛ାଵଶ௛మఙಽమΦ ቆlog ݔ − ௅ߤ − ℎߪ௅ଶߪ௅ ቇ቉ + 1 − ௛ߤݎ ߙߙ − ℎ ቈ−ିݔఈା௛݁ఈఓೃାଵଶఈమఙೃమΦ ቆlog ݔ − ோߤ − ோߪோଶߪߙ ቇ
+ ݁ఓೃ௛ାଵଶ௛మఙೃమΦ ቆlog ݔ − ோߤ − ℎߪோଶߪோ ቇ቉. 

(6)

The CDF of the dP2LN corresponds to ܨ(଴)(ݔ). The Lorenz curve is implicitly expressed as (ߠ)ܮ = (ଵ)ܨ ቀܨ(଴)ିଵ(ߠ)ቁ. An analytic expression of the Gini index listed in Appendix is derived 

1602



Economics Bulletin, 2014, Vol. 34 No. 3 pp. 1600-1610

in the same way as that of a mixture of dPLNs (Okamoto 2012a, 2013a). The existence of the 
formula is one of the advantages of the dP2LN over the existing five-parameter PIDMs. 

Many special cases with five or more parameters are conceivable. In the case that ߤ௅ ݎ ோ andߤ= = ߙ ߙ) + ⁄(ߚ , the restricted model shall be denoted as ‘dP2LNσ’. In the case that ݎ = ߙ ߙ) + ⁄(ߚ , the restricted model shall be denoted as ‘dP2LNμσ’. Additional special cases 
are defined in the next section. The other special cases we examined are omitted because their 
fits were inferior to or approximately the same as these models. The PDFs of the dP2LN and 
its special cases, unlike that of the dPLN, do not generally satisfy the unimodality condition. 
However, regarding the income data studied in the next section, the PDF is single-peaked along 
with a superior fit by selecting an appropriate special case. 
 

3. Empirical comparison 
 
The new PIDM was compared with the existing PIDMs by fitting them to gross income data 
from the seven waves between 1992 and 2010 of the US Survey of Consumer Finances (SCF), 
conducted by the US Federal Reserve Board, and to disposable income data from the seven 
waves between 2000 and 2012 of the Italian Survey of Household Income and Wealth (SHIW), 
conducted by the Bank of Italy. The results for unadjusted household income are presented 
here. Similar results were obtained for equivalized income, as adjusted for household size. The 
Gini index ranged from 0.50 to 0.57 for the seven waves of the SCF and stayed approximately 
0.35 for the seven waves of the SHIW. 

The existing PIDMs compared include three-parameter models such as the Singh-
Maddala (SM, Singh and Maddala 1975), Dagum (Da, Dagum 1977) and κ-generalized 
distribution (κG, Clementi et al. 2007) and four-parameter models such as the extended κG 
distribution of the first and second kinds (EκG1 and EκG2, Okamoto 2013b) in addition to the 
GB1, GB2 and dPLN. The EκG2 is a new kind of generalized beta distribution which tends to 
outperform the GB2 in terms of both likelihood and accuracy of inequality estimates. The 
PIDMs were fitted to the income data using the maximum likelihood (ML) criterion and a 
Nelder-Mead simplex algorithm. Because the parameters may possibly converge to a local 
maximal point in the cases of the dP2LN and its special cases, plural sets of initial values were 
used for the ML estimation (MLE). As for the full model of the dP2LN, the procedure was 
performed 35 times in total without constraints on the parameters or under constraint ߪ௅ < ௅ߪ ,ோߪ > ௅ߤ ,ோߪ < ௅ߤ ோ orߤ >  ோ, using initial values created based on the ML parameters of theߤ
special cases.  

The goodness-of-fit of PIDMs with different numbers of parameters were compared using 
the AICs. Because a better fit in terms of frequency-based measures, such as the likelihood, 
does not necessarily imply a better fit in terms of the accuracy of inequality estimates, the 
estimation error of the Lorenz curve, as defined below, and the absolute error of the Gini index 
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(absolute deviation from the sample estimate) were also adopted as evaluation measures 
representing the accuracy of inequality estimates.1  

L-RSSE ≔ ට∑ ቀܮ෠௜ − ቁଶ௡௜ୀଵ(௜ߠ)ܮ ෠௜ܮ ; = ∑ ௝௝ஸ௜ݔ௝ݓ ∑ ⁄௝௡௝ୀଵݔ௝ݓ ௜ߠ ; = ∑ ௝௝ஸ௜ݓ ∑ ⁄௝௡௝ୀଵݓ , (7)

where ߠ௜  and ܮ෠௜  are the cumulative population and income share of households up to 

household i; ൫ߠ௜, ෠௜൯௜ܮ  represents the empirical Lorenz curve. In the above formula, it is 

assumed that each household is assigned an aggregation weight ݓ௝ and is sorted in ascending 
order, according to its income ݔ௝. Simulation studies show that a model fitted by the MLE 
tends to worsen the L-RSSE, as opposed to the effect on the likelihood when a sample is 
randomly generated from its special case model. Thus, it can be said that no penalty to the L-
RSSE is required for PIDMs with a larger number of parameters.  

Table 1 shows the goodness-of-fit of the PIDMs to the income data from the seven waves 
in an aggregated form.2 The GB failed to achieve better fits than the GB2, similar to the 
GdPLN in the case of the SCF. In the case of the SHIW, the GdPLN substantially lowered the 
AIC; however, the L-RSSE and accuracy of the Gini index rather deteriorated. As for the 
goodness-of-fit of the existing PIDMs, it also should be noted that several three-parameter 
PIDMs tended to yield more accurate inequality estimates than four-parameter PIDMs for the 
SCF. Unfortunately, such phenomenon is not unusual.3 

The results of the dP2LN in Table 1 are those of the model with constraint ߪ௅ <  ோ forߪ
the SCF because its expectation was infinite in wave 1992 if no constraints were applied. The 
dP2LNμσ and dP2LN improved the AIC relative to the existing PIDMs for both SCF and SHIW, 
whereas both PIDMs did not improve the accuracy of inequality estimates except the dP2LN 
for the SHIW. Furthermore, the dP2LN did not satisfy the unimodality condition in one or two 
waves of either survey; the same was true for the dP2LNμσ in the case of the SHIW. Table 2 
reveals that the ML parameters of the dP2LN, as fitted to the SCF data, were unstable across 
the seven waves. Furthermore, the PDF for wave 1995 was bimodal. To address this instability, 
the imposition of constraints ߤ௅ > ߚ ோ andߤ = 1.01 prior to the MLE was considered (the 
constraint model is denoted as ‘dP2LN'’). This constraint made the ML parameters relatively 
stable and made the PDF unimodal along with a substantial improvement of both AIC and 
accuracy of inequality estimates, relative to the existing PIDMs including the three-parameter 
PIDMs. When looking at the results for each wave, the dP2LN' was better fitted than the 
existing PIDMs for all seven waves in terms of the AIC, for four waves in terms of the L-RSSE 
and for three waves in terms of the accuracy of the Gini index. The inverse distribution of the 
                                                  
1 The absolute errors of the Theil index and mean log deviation were also examined. The results (omitted here) 
are similar to those for the L-RSSE and absolute error of the Gini index. 
2 The results for each wave and all special cases of the dP2LN we examined are listed in the supplementary 
tables. 
3 For example, the SM tends to yield better inequality estimates than the GB2 and dPLN for Japanese income 
data (Okamoto 2012b).  
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κG (IκG) produced the smallest values for three and two waves in terms of the L-RSSE and 
absolute error of the Gini index, respectively; however, the accuracy of the estimates was 
unstable relative to the dP2LN'.  
 
 

Table 1.  Goodness-of-fit of PIDMs 
 

Model 
No. of 

para. 

 USA (SCF, 1992-2010) Italy (SHIW, 2000-2012) 

 AIC#,* L-RSSE* Abs. error of *
the Gini index AIC#,* L-RSSE* Abs. error of *

the Gini index

SM 3  6.9 1.695 0.0249 19.0 0.185 0.0022 
Da 3  4.1 1.350 0.0198 33.6 0.515 0.0080 
κG 3  14.7 1.248 0.0198 68.5 0.377 0.0054 
IκG ## 3  45.7 1.079 0.0170 121.0 1.376 0.0222 
GB1 4  152.3 3.153 0.0395 273.1 0.510 0.0021 
GB2 4  0.9 1.717 0.0256 15.1 0.174 0.0024 
EκG1 4  33.3 1.519 0.0277 16.4 0.162 0.0019 
EκG2 4  -5.6 1.767 0.0274 25.3 0.295 0.0044 
IEκG1 ## 4  -6.1 1.614 0.0247 25.5 0.188 0.0027 
IEκG2 ## 4  9.2 10.148 0.1929 13.4 2.332 0.0441 
dPLN 4  0.0 1.490 0.0215 0.0 0.159 0.0022 
GB 5  2.9 1.717 0.0256 16.4 0.166 0.0022 
GdPLN 5  1.2 1.590 0.0245 -50.2 0.228 0.0033 
dP2LNσ 5  -20.3 1.098 0.0179 0.4 0.158 0.0022 
dP2LNμσ 6  -47.8 4.241 0.0582 -60.4 3.314 0.0581 
dP2LN ** 7  -49.1 1.691 0.0233 -88.7 0.107 0.0014 
dP2LN' 6  -42.6 0.500 0.0060 -86.2 0.127 0.0016 
dP2LN'' 6  -43.1 0.534 0.0063 -84.6 0.114 0.0014 
# Differences from the corresponding values of the dPLN. 
## IκG: the inverse distribution of the κG. IEκG1 and IEκG2: the inverse distribution of the EκG1 and EκG2 
(Okamoto 2013b). 
* Averages over the seven waves are taken for the AIC. The root-of-mean-square errors over the seven waves are 
taken for the L-RSSE and absolute error of the Gini index. 
** Constraint ߪ௅ <  ோ is imposed for the SCF because of the infinite expectation in wave 1992 if no constraintsߪ
are applied. 
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Table 2.  ML parameters of the dP2LN and dP2LN', USA 4 
 

Year 
  dP2LN (with constraint σL < σR) dP2LN' 

 μL μR σL σR α β r μL μR σL σR α r 

1992  11.5  
(0.03) 

10.0  
(0.08) 

0.33  
(0.052) 

0.87  
(0.035) 

2.1 

(0.18)
1.1 

(0.05)
0.36 

(0.043)
11.5 

(0.03)
10.1 

(0.05)
0.31  

(0.042) 
0.87  

(0.024) 
2.2  

(0.16) 
0.34 

(0.032)

1995  10.4  
(0.53) 

10.6  
(0.25) 

0.12  
(0.140) 

0.32  
(0.283) 

1.9 

(0.09)
1.3 

(0.11)
0.38 

(0.070)
11.4 

(0.03)
10.2 

(0.05)
0.35  

(0.026) 
0.88  

(0.033) 
2.1  

(0.13) 
0.46 

(0.031)

1998  11.6  
(0.04) 

10.0  
(0.06) 

0.31  
(0.051) 

0.80  
(0.026) 

1.6 

(0.09)
1.1 

(0.05)
0.41 

(0.044)
11.6 

(0.03)
10.1 

(0.05)
0.29  

(0.034) 
0.80  

(0.022) 
1.7  

(0.08) 
0.38 

(0.026)

2001  11.7  
(0.04) 

10.0  
(0.09) 

0.36  
(0.046) 

0.79  
(0.040) 

1.4 

(0.10)
1.2 

(0.06)
0.40 

(0.056)
11.7 

(0.03)
10.1 

(0.04)
0.29  

(0.030) 
0.80  

(0.018) 
1.5  

(0.06) 
0.33 

(0.031)

2004  11.5  
(0.05) 

10.0  
(0.08) 

0.52  
(0.031) 

0.84  
(0.039) 

1.5 

(0.09)
1.4 

(0.08)
0.51 

(0.043)
11.7 

(0.04)
10.2 

(0.04)
0.36  

(0.030) 
0.83  

(0.018) 
1.8  

(0.07) 
0.30 

(0.028)

2007  11.6  
(0.05) 

9.9  
(0.08) 

0.44  
(0.053) 

0.76  
(0.037) 

1.3 

(0.07)
1.5 

(0.37)
0.40 

(0.053)
11.7 

(0.01)
10.2 

(0.03)
0.00  

(0.094) 
0.81  

(0.015) 
1.7  

(0.07) 
0.16 

(0.032)

2010  11.6  
(0.04) 

10.0  
(0.05) 

0.41  
(0.036) 

0.73  
(0.023) 

1.4 

(0.06)
1.4 

(0.07)
0.29 

(0.038)
11.7 

(0.05)
10.1 

(0.02)
0.27  

(0.025) 
0.75  

(0.012) 
1.7  

(0.05) 
0.16 

(0.017)
The ML parameter values listed are those of the respective models fitted to the fourth of the five datasets in each 
wave, which were officially generated by the multiple imputation procedure for income and wealth variables. 

Figures in parenthesis are the standard errors due to sampling and imputation (see footnote 4). The large error 
estimates in the dP2LN’s parameters for the wave 1995 are produced by the imputation error calculation. 
 

Table 3.  ML parameters of the dP2LN and dP2LN'', Italy 4 
 

Year 
   dP2LN  dP2LN'' 

  μL μR σL σR α β r μL μR σL σR α r 
2000  11.40 10.40 0.120 0.600 3.7 1.10 0.180 11.40 10.40 0.090 0.600 3.90 0.150

2002  10.70 9.80 0.150 0.600 4.1 1.10 0.150 10.80 9.80 0.120 0.600 4.30 0.130

2004  10.90 9.70 0.240 0.500 2.7 1.40 0.230 11.00 9.80 0.080 0.540 3.30 0.110

2006  10.90 10.20 1.300 0.590 292.4* 0.90 0.030 10.90 9.90 0.140 0.540 3.50 0.110

2008  10.9  
(0.08) 

9.9  
(0.04) 

0.21  
(0.060) 

0.57  
(0.017) 

3.6 
(0.38)

1.3 

(0.13)
0.12 

(0.039)
10.9 

(0.01)
9.9 

(0.03)
0.00  

(0.000) 
0.59  

(0.015) 
4.2 

(0.62)
0.06 

(0.014)

2010  10.9  
(0.06) 

9.9  
(0.03) 

0.19  
(0.066) 

0.57  
(0.017) 

3.7 
(0.34)

1.1 

(0.09)
0.18 

(0.035)
10.9 

(0.05)
10.0 

(0.03)
0.15  

(0.043) 
0.57  

(0.015) 
3.8 

(0.35)
0.15 

(0.016)

2012   11.0  
(0.07) 

9.9  
(0.04) 

0.14  
(0.042) 

0.58  
(0.019) 

3.9 
(0.56)

0.8 

(0.12)
0.11 

(0.038)
11.0 

(0.06)
9.8 

(0.03)
0.20  

(0.061) 
0.56  

(0.019) 
3.4 

(0.33)
0.16 

(0.027)
* The value 292.4 is not a typo. 
Figures in parenthesis are the standard errors due to sampling (see footnote 4). 
                                                  
4 The standard errors (SEs) in the ML parameters were added in the tables, following a suggestion from one of 
the anonymous reviewers. The (observed) Fisher information matrix (FIM) is often used for the variance 
estimation; however, the FIM does not produce correct estimates when the survey data are obtained from non-
simple random sampling procedures. To make the variance estimation consistent with the survey design, some 
statistical agencies provide micro data together with replicate weights generated from resampling procedures 
such as bootstrapping and jackknifing (from wave 2008 in the case of the SHIW). The respective figures in the 
tables were calculated using the replicate weights although the calculation was time-consuming. The imputation 
errors were also taken into account in the case of the SCF. The square root of the design effect factor (√ܦଶ), i.e. 
the ratio of the SE derived from the replicate weights relative to the corresponding value derived from the FIMs, 
ranges from 0.0001 to 3.21 (about 0.85 on average) in the case of the SCF (if excluding the imputation errors), 
and ranges from 0.01 to 2.10 (about 1.4 on average) in the case of the SHIW. √ܦଶs are, in many cases, below 
unity in the former due to the very effective stratified sampling; however, √ܦଶ tends to substantially vary 
among the parameters. In contrast, √ܦଶs are, in most cases, above unity in the latter case (and cases of ordinary 
sample surveys). Roughly speaking, the confidence level needs to be set to 99.4% (to attain 95% confidence 
level in practice) if inferences are made from the FIMs. 
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A similar effect emerged for the SHIW by imposing constraints ߚ = 1.01 and ߪ௅ <  ோߪ

(the constraint model is denoted as ‘dP2LN''’), as shown in Table 3, although the accuracy of 
inequality estimates grew slightly worse. This constraint made the AIC, L-RSSE and accuracy 
of the Gini index superior to those of the existing PIDMs for all seven, four and two waves, 
respectively. Some existing PIDMs attained the smallest in one or two waves; however, these 
models failed to stably produce accurate inequality estimates.  

These results suggest that selections from the special cases should be made by referring 
to smaller L-RSSEs and the parameters’ stability across several waves (in addition to 
unimodality, if required) rather than based solely on the AIC/likelihood. Figures 1 and 2 
illustrate the PDFs of the PIDMs fitted to the US and Italian data.5 Much better fits of the 
dP2LN' and dP2LN'' relative to the existing PIDMs, particularly around the peaks, can be 
visually observed. Both figures clearly show that any existing PIDM, in reality, is not able to 
reproduce the original PDFs accurately. 
 

4. Discussion and concluding remarks 
 
A unique feature of the emerging procedure for fitting and selecting special cases of the dP2LN, 
as described in the previous section, is that parameter constraints are selected as prior 
information by referring to the L-RSSEs and parameters’ stability (as well as unimodality, if 
required). Appropriate choices of the constraint empirically make the parameters stable and the 
goodness-of-fit of the new PIDM superior to the existing PIDMs not only in terms of the 
likelihood but also in terms of the accurate inequality estimation. 

The superiority of our new model over the existing PIDMs for many other countries and 
the generality of the procedure for choosing appropriate parameter constraints appear to be 
well-anticipated. 6  Further investigation is required for confirming the anticipation and 
establishing a variety of parameter constraints. Exploring an efficient MLE procedure is also 
an issue. Although possible bimodality of the PDF is not necessarily a disadvantage of the new model, 
ways to avoid multimodal PDF need to be studied when unimodality is a prerequisite. As stated above, 
future tasks remain. Nevertheless, this new model looks promising, as we have empirically 
shown here that it outperforms the existing models. 
 

                                                  
5 One of the anonymous reviewers suggests it may be better to use kernel density estimations instead of 
histograms; however, the kernel method is known to have a difficulty to accurately recover densities bounded 
and coarse at lower ends (at least when applying the standard method). Furthermore, the original densities are 
not necessarily completely smooth because the sample data contain several point masses. The author considers it 
is preferable that the actual densities in the samples are presented by the histograms. It is not so easy to 
appropriately apply the kernel method, despite of its popularity. The results of the kernel density estimations are 
presented in the supplementary charts. 
6 As for Japan, the anticipation was confirmed by applying the dP2LN to (grouped) income data for 1984 - 
2009. The selected constraint ߪ௅ =  .ோ is different from those for USA and Italyߪ
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Figure 1. PDFs of fitted PIDMs, USA, 2001 

 

 
Figure 2. PDFs of fitted PIDMs, Italy, 2006 
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Appendix. The Gini index of the dP2LN 
ܩ  = 2 ௥మூಽಽା(ଵି௥)మூೃೃା௥(ଵି௥)ூೃಽା௥(ଵି௥)ூಽೃఓభ − 1, 

where ܫ௅௅ = ଵఉ(ఉାଵ) ݁ఓಽାభమఙಽమΦ ቀ ଵ√ଶ ௅ቁߪ + ଵఉ ݁ఓಽାቀఉమାఉାభమቁఙಽమ ቂ ଶଶఉାଵ − ଵఉାଵቃ Φ ቀ− ଶఉାଵ√ଶ  ;௅ቁߪ

ோோܫ = ଵఈ(ఈିଵ) ݁ఓೃାభమఙೃమΦ ቀ ଵ√ଶ ோቁߪ + ଵఈ ݁ఓೃାቀఈమିఈାభమቁఙೃమ ቂ ଵఈିଵ − ଶଶఈିଵቃ Φ ቀ− ଶఈିଵ√ଶ  ;ோቁߪ
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ோ௅ܫ = ଵఈ ଵఉାଵ exp ቀଵଶ ௅ଶߪ + ௅ቁߤ Φ ቀିఓೃାఓಽାఙಽమ√ଶఙೃಽ ቁ  

+ ଵఈ ଵఈିఉିଵ exp ቀߙଶߪோ௅ଶ − ଶఈିଵଶ ௅ଶߪ + ோߤߙ − ߙ) − ௅ቁߤ(1 Φ ቀିఓೃାఓಽିଶఈఙೃಽమ ାఙಽమ√ଶఙೃಽ ቁ  

− ଵ(ఉାଵ)(ఈିఉିଵ) exp ቀߚଶߪோ௅ଶ + ଶఉାଵଶ ோଶߪ + ߚ) + ோߤ(1 − ௅ቁߤߚ Φ ቀିఓೃାఓಽିଶఉఙೃಽమ ିఙೃమ√ଶఙೃಽ ቁ  if ߙ ≠ ߚ + ோ௅ܫ  ,1 = ଵ(ఉାଵ)మ exp ቀଵଶ ௅ଶߪ + ௅ቁߤ Φ ቀିఓೃାఓಽାఙಽమ√ଶఙೃಽ ቁ  

− ଵఉାଵ ோ௅ߪ2√ exp ቀଵଶ ோଶߪ + ோቁߤ ߶ ቀିఓೃାఓಽିఙೃమ√ଶఙೃಽ ቁ  

+ ଵఉାଵ ቂ(2ߪߚோ௅ଶ + ோଶߪ + ோߤ − (௅ߤ − ଵఉାଵቃ  

∙ exp ቀߚଶߪோ௅ଶ + ଶఉାଵଶ ோଶߪ + ߚ) + ோߤ(1 − ௅ቁߤߚ Φ ቀିఓೃାఓಽିଶఉఙೃಽమ ିఙೃమ√ଶఙೃಽ ቁ if ߙ = ߚ + 1; 

ோ௅ܫ = ଵఉ ଵఈିଵ exp ቀଵଶ ோଶߪ + ோቁߤ Φ ቀିఓಽାఓೃାఙೃమ√ଶఙಽೃ ቁ  

+ ଵఉ ଵఈିఉିଵ exp ቀߚଶߪ௅ோଶ + ଶఉାଵଶ ோଶߪ − ௅ߤߚ + ߚ) + ோቁߤ(1 Φ ቀ− ିఓಽାఓೃାଶఉఙಽೃమ ାఙೃమ√ଶఙಽೃ ቁ  

− ଵ(ఈିଵ)(ఈିఉିଵ) exp ቀߙଶߪ௅ோଶ − ଶఈିଵଶ ௅ଶߪ − ߙ) − ௅ߤ(1 + ோቁߤߙ Φ ቀ− ିఓಽାఓೃାଶఈఙಽೃమ ିఙಽమ√ଶఙಽೃ ቁ  if ߙ ≠ ߚ + ோ௅ܫ ,1 = ଵ(ఈିଵ)మ exp ቀଵଶ ோଶߪ + ோቁߤ Φ ቀିఓಽାఓೃାఙೃమ√ଶఙಽೃ ቁ  

+ ଵఈିଵ ௅ோߪ2√ exp ቀଵଶ ௅ଶߪ + ௅ቁߤ ߶ ቀ− ିఓಽାఓೃିఙಽమ√ଶఙಽೃ ቁ  

− ଵఈିଵ ቂ(2ߪߙ௅ோଶ − ௅ଶߪ − ௅ߤ + (ோߤ − ଵఈିଵቃ  

∙ exp ቀߙଶߪ௅ோଶ − ଶఈିଵଶ ௅ଶߪ − ߙ) − ௅ߤ(1 + ோቁߤߙ Φ ቀ− ିఓಽାఓೃାଶఈఙಽೃమ ିఙಽమ√ଶఙಽೃ ቁ if ߙ = ߚ + 1. 

Note that ߶ denotes the PDF of the standard normal distribution. 
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