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Abstract
The Great East Japan Earthquake of March 11, 2011, which led to a massive tsunami and the nuclear accident at

Fukushima, moved Japanese authorities to close most of the country's nuclear reactors for inspection (only 2 of 54

total currently are working), as well as to reassess its national energy policy. This article investigates the volatility of

stock prices before and after the disaster. The evolution of stock prices of electric utility companies differs greatly,

compared with those of firms in other industries.
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1. Introduction 

As Gordon et al. (2004) note, the economic consequences of natural disasters, especially 

earthquakes, have received insufficient attention from both economists and managers. The 

immediate effect of an earthquake is physical, including the destruction of buildings and 

infrastructure, and the magnitude of its casualties depends on the quality of the structures 

damaged by the shock. Economic consequences follow. Households, direct victims of an 

earthquake, and companies that suffer destruction of property are affected initially. Subsequent to 

these effects, we can begin considering the consequences at regional, national, or global levels, as 

well as the temporary or permanent responses exhibited by economic systems.  

Companies experience severe disruptions to their activity, due to the destruction of buildings, 

roads, rail networks, power lines, and so forth. In studying the effects of the January 17, 1995, 

Kobe earthquake, Chang (2000) demonstrates that the destruction of port facilities had a 

significant impact on container traffic for example.1  

The Great East Japan Earthquake on March 11, 2011, differed from other natural disasters, in that 

the earthquake started a huge tsunami, which then led to an unprecedented nuclear catastrophe in 

Fukushima. Unlike past events, a dual disaster was in effect, caused by both natural and 

human factors. The human factors included the initial choice to build nuclear plants without 

accounting sufficiently for the risk of tsunamis (though it is very difficult to establish the 

probabilities of such events; Stein and Stein, 2012, 2014). The natural factors clearly were in 

play. because Japan sits in a very active seismic zone.  

Nevertheless, in the long run Japanese authorities will continue to reassess their energy policies 

and spatial planning; firms may have to reconsider the locations of their factories in areas now 

regarded as risky. A destructive event on this scale severely affects firms: Not only are their 

production units destroyed or halted by supply problems, but they may be unable to export goods, 

even if they can produce them. If the firms suffer important activity losses and cannot earn 

profits, their financial situation becomes dire. Therefore, we expect a negative effect on stock 

returns, such that the stock prices of impacted firms likely drop dramatically, due to the high 

level of uncertainty surrounding the natural disaster event.  

More than two years after the disaster, this research seeks to study the evolution of the stock 

prices of firms directly affected by the earthquake. We check whether the shock had short-term 

effects or long-lasting consequences for stock prices. A long-term negative effect on stock prices 

could reduce firms’ capacity to finance future investments and instigate a negative wealth effect 

for Japanese households, even as the country continues to struggle with the cumulative effects of a 

global economic crisis and an aging population. Moreover, a long-term increase in uncertainty, 

due to the dynamic conditions in several key economic sectors, would keep risk perceptions high, 

such that investors likely expect (difficult-to-attain) higher returns.  

However, it is difficult to pursue a further analysis of the consequences of this disaster 

without strong knowledge of the responses by financial markets, as manifested in the 

evolution of stock prices of companies in both the electricity sector and other sectors that 

could be affected indirectly. We propose to study, in detail, the statistical properties of the 

stock returns of firms and Japan’s main economic sectors. The remainder of this article is 

organized as follows: In Section 2, we present a brief review of prior literature. Section 3 contains 

descriptive statistics about stock returns. We analyze the interdependence among stock returns in 

Section 4, then explicate volatilities in Section 5, focusing on one particular case. Section 6 offers 

our conclusions. 

                                                           
1 The ports of Pusan (South Korea) and Kaohsing (Taiwan) took advantage of this situation to increase their shares. 



 

2. Literature review 

Some researchers, such as Davis and Weinstein (2002), conclude that temporary shocks, even 

very severe ones (e.g., nuclear explosions during World War II), have had little impact on the 

long-term spatial structure of the Japanese economy. These authors also empirically test for the 

existence of multiple equilibriums to explain the geographical distribution of activities in Japan 

but reject this hypothesis in favor of a unique equilibrium, with some notable implications: “In the 

aftermath of a shock, there is a strong tendency for city populations, aggregate manufacturing and 

even the particular industries that existed prior to the shock to return to their former importance” 

(Davis and Weinstein 2008, p. 63). 

 

2.1 Japan and lessons of the past 

We summarize the main earthquakes that hit Japan during the twentieth century in Table 1. 

The consequences of these disasters, in human, economic, and social development terms, may 

help predict the possible effects of the March 11, 2011, disaster.  

 

Table 1: Large twentieth century earthquakes in Japan  

Date Place Deaths Magnitude Tsunami or Fire 

09/01/1923 Kantō 142 800 7.9 Yes 

03/07/1927 Tango 3 020 7.6 Yes 

03/02/1933 Sanriku 3 000 8.4 Yes 

09/10/1943 Tottori 1 190 7.4 No 

12/07/1944 Tōnankai 998 8.1 Yes 

01/12/1945 Mikawa 1 961 7.1 No 

12/20/1946 Nankaido 1 362 8.1 Yes 

06/28/1948 Fukui 3 769 7.3 Yes 

01/16/1995 Kōbe 5 502 6.9 Yes 
Sources: J. Hammer, “The Great Japan Earthquake of 1923,” Smithsonian Magazine, May 2011; “Major 
Japanese Earthquakes of the 20th Century” and “The Great Tohoku, Japan Earthquake & Tsunami: Facts, 
Engineering, News & Maps,” MCEER publications, University of Buffalo, 

http://mceer.buffalo.edu/infoservice/disasters/Honshu-Japan-Earthquake-Tsunami-2011.asp 

 

Unfortunately earthquakes are not uncommon in Japan, and sometimes they lead to a 

significant number of deaths. They also wreak destruction on the infrastructure, which 

penalizes economic activity. For most earthquakes, the data needed to estimate economic 

damages are unavailable, though some evaluations have been conducted. For example, the 

Bank of Japan estimated damages of 4.6 billion yen (29% of gross domestic product [GDP]) 

for the Kanto earthquake in 1923 and 9900 billion yen (2% of GDP) for Kobe in 1995 

(Shirakawa 2011).  

 

2.2 Japan in 2011 

The 2011 earthquake was obviously not the first to hit Japan. However, it had some particular 

characteristics, compared with previous events. It did not directly affect a large city, as did the 

January, 17, 1995, earthquake in Kobe, for which damages were estimated at about 10,000 billion 

yen and more than 5500 people died. Yet its 9.0 magnitude on Richter scale made it the largest 

earthquake in Japan ever, leading to the deaths of more than 15,000 people and the destruction of 

more than 900,000 buildings, whether partly or totally, which left about 22 million tons of waste 

http://mceer.buffalo.edu/infoservice/disasters/Honshu-Japan-Earthquake-Tsunami-2011.asp


 

to remove from the area. Its epicenter, located 24 km below sea level and 130 km offshore of 

Sendai (300 km northeast of Tokyo), also created a huge tsunami with 15-meter waves that 

seriously impaired the Fukushima nuclear plant run by TEPCO (Tokyo Electric Power 

Company). More than 300,000 people were forced to leave the seismic area, and 50,000 

temporary homes were built during the emergency. This earthquake obviously had a major impact 

on the Japanese energy sector, especially nuclear energy. The nuclear disaster reached level 7, the 

highest level on the International Nuclear Event Scale, similar to Chernobyl in 1986. About 2 

million irradiated people may ask TEPCO for compensation. The whole country will face long-

term financial consequences, because the reconstruction costs could reach 20,000 billion yen, and 

the government approved supplementary budgets four times during the year after the catastrophe. 

A year later, only 2 of the 54 Japanese nuclear reactors were producing electricity; prior to the 

earthquake, nuclear power covered 28% of electricity demand. This shift demanded increased 

imports of expensive coal, oil, and gas resources, as well as conservation efforts at the national 

level. As of 2013, the same 2 nuclear reactors remained the only ones generating electricity.  

On March 30, 2011, the Japanese government asked electric utility sector firms to take measures 

to protect themselves against another such tsunami. They have responded in various ways. For 

example, Hokuriku Electric built a 700-meter long, reinforced concrete anti-tsunami wall, 4 

meters higher than its previous one (which was already 11 meters high), around its Shika nuclear 

plant. In addition, the firm installed a discharge gate to protect against flooding, beyond the 

protection of a dam, and a reserve pump capable of drawing in sea water to cool the reactor. At 45 

nuclear plants, anti-tsunami dams are under construction, and the sealing capacity of the 

equipment is being upgraded.  

In its Shimane plant, Chugoku Electric decided to raise its dam from 11 to 15 meters above sea 

level. Chubu Electric will build an 18-meter high anti-tsunami dam for its Hamaoka plant (in the 

Shizuoka region), because it is more exposed to seismic risk. The construction of these dams 

should be completed by 2015. In contrast, for nuclear plants located in southern Japan, no new 

works are planned, because their protection walls are considered high enough. 

 

2.3. Event studies and market reactions 

An economic, environmental, or political shock generally creates an immediate, often temporary 

reaction in financial asset prices. Determining the best method to measure this reaction raises 

several questions: What exactly do we want to measure? Compared with which norm or 

benchmark? How can we choose and establish such a benchmark? Over which time span?  

The theoretical and methodological answers to these questions are varied and depend on both the 

topic and the context. For example, Ziobrowski et al. (2004) seek to measure abnormal returns in 

the stock market after government decisions, so they perform standard calculations of the 

cumulative abnormal returns of asset portfolios during a specific time period. The returns then can 

be compared against a benchmark, such as the capital asset pricing model or the three-factor 

model suggested by Fama and French (1993), in terms of their beta coefficients, a size parameter 

(small minus big capitalizations), and a market capitalization parameter (high minus low book-to-

market ratios). This method is useful for portfolios, but it may be less relevant for stock price 

changes. Considering the amplitude of return changes after the 2011 earthquake, we regard such a 

comparison with so-called normal returns somewhat irrelevant, so we focus instead on volatilities. 

To study strong variations of stock prices, we might investigate, for a specific period, all price 

increases and decreases greater than a specific value. For example, in Asian stock markets, Wong 

(1997) analyzes cumulative price increases and declines over the prior 50 days whose returns 

average more or less than 2 standard deviations. He detected no mean reversion effect or trend 



 

change after a large price variation but identified that emerging markets (Hong Kong, Singapore, 

Taiwan, Thailand, and the Philippines) exhibited a momentum effect after a large price drop, 

whereas Japan and South Korea did not. With this methodology, it is possible to understand 

market overreactions to important news (De Bondt and Thaler, 1985, 1987). Then the 

investigation must continue, to determine if overreactions are sufficient to challenge a weak form 

of market efficiency, in that the absence of liquidity may increase momentum or the mean 

reverting effects. Despite its relevance, we avoid this method, because our goal is to assess the 

impact of the 2011 earthquake on stock prices, not to measure the impacts of all large price 

changes on the Japanese market. Therefore, we did not want to mix the price changes after the 

earthquake with all price variations over the rest of the year.  

Similar to event studies, we need to specify the time span for our observations carefully. For a 

unique event, the window usually spans from several days before to several days after the event 

(e.g., mergers and acquisitions; Ma et al., 2009). For the 2011 earthquake though, its 

consequences could not be immediately and fully evaluated, because of the duration of successive 

damages in the Fukushima nuclear plant. To account more fully for the long-term consequences, 

including repair costs, a frozen economic area, the need for new energy sources, and the potential 

compensation that TEPCO likely will have to pay, we chose a long-term data observation, 

namely, from one year before to one year after the date of the catastrophe.  

 

3. Statistical analysis of stock returns 

3.1. Data and descriptive statistics 

The stock prices of the firms and the indexes we used came from the international Factset 

database, gathered from March 11, 2010, to March 11, 2012. Because it was the main sector 

affected by the earthquake, we began by considering electric utility firms listed on the Tokyo 

Stock Exchange. We then built a sample of representative firms to investigate the effects of 

the earthquake on several potentially impaired industries, such as electronic equipment, electronic 

appliances, automobiles, steel, wholesale retailing, and pharmaceuticals (see Appendix 1). All 

these firms are listed in the first section of the Tokyo Stock Exchange, indicating their large 

size, so they should be representative of market reactions.  

To address the financial impact of the earthquake, beyond the damaged area and TEPCO 

itself, we observe the evolution of the market capitalization of firms included in three of our 

selected industries (Table 2). The data are unquestionable for TEPCO: Between March 2010 

and March 2011, its market capitalization fell by slightly more than 10%, similar to many 

stocks in the bearish market. However, TEPCO’s capitalization decreased by nearly 90% 

from the day before the earthquake to one year later; the market confirmed fears about the 

firm’s future, its industry, and more generally its related sectors. We also find sharp drops in 
the market capitalization of other firms in this industry after the disaster (40–50%, depending 

on the firm), as well as of firms in the steel industry, which requires huge quantities of 

electricity. Yet wholesale retailing firms (Table 2) retained nearly the same capitalization 

during this period (e.g., Marubeni) or even enjoyed growth (e.g., Itochu). The economic shock 

accordingly was very deep, such that an assessment of the financial consequences could not 

be considered complete even a year later, whereas in the case of a stock market crash, a large 

price increase often follows several months after the major drop. 

 

 

 



 

Table 2: Market capitalization of firms (in billion yens)  

Electric utility 03/11/2010 03/10/2011 03/10/2012 

Tokyo Electric Power 3895 3451 372 

Chubu Electric Power 1778 1637 1184 

Kansai Electric Power 1893 1919 1257 

Tohoku Electric Power 969 948 496 

Kyushu Electric Power 949 891 593 

Steel    

Sumitomo Metal Industries 1242 923 779 

Kobe Steel Ltd. 534 621 399 

JFE Holdings Inc. 1840 1329 896 

Nippon Steel Corp. 2139 1793 1466 

Wholesale retailing    

Itochu Corp. 1233 1320 1450 

Marubeni Corp. 973 1047 1034 

Mitsui & Co. Ltd. 2820 2675 2551 

Sumitomo Corp. 1263 1495 1533 

Mitsubishi Corp. 3858 3633 3211 

Source: Factset database. 

 

To specify the price changes over the year, we investigate the electric utility sector in 

particular. Figure 1 shows the stock price evolutions of the five main Japanese electricity 

producers over a two-year period, all of which were involved in nuclear generation. 

Unsurprisingly, TEPCO experienced the largest price drop immediately after March 11, 2011, 

but all firms exhibited declining market capitalization throughout the subsequent quarter. 

Beyond this quarter, stock price changes were smaller and showed a fairly stationary trend 

over the medium term. 

 

 
Figure 1: Stock prices of the main electric utility companies 



 

Finally, we complement this analysis with descriptive statistics about daily stock returns. At 

the industry level, the daily returns Rt are defined by )ln(.100 1 ttt PPR , where P represents 

a stock price or market index. The descriptive statistics in Table 3 offer more details about the 

return characteristics of the seven sectors that we studied. 

 

Table 3: Daily returns of industry indexes, 11/03/2010–10/03/2012 

 

TOPIX_100 

 

TOPIX_500 

 

Electric 

utility 

Electronic 

appliances 

Electronic 

equipment 

Steel Wholesale 

retailing 

Pharma- 

ceuticals 

Automobile 

Average -0.01513 -0.00906 -0.00161 -0.00077 -0.00030 -0.00072 0.00012 -0.00005 0.00016 

Median 0.00000 -0.00015 0.00000 0.00000 0.00000 -0.00037 0.00000 0.00006 0.00000 

Maximum 5.64719 5.10687 0.17068 0.06772 0.04862 0.08208 0.08808 0.02638 0.06591 

Minimum -7.43794 -10.2385 -0.17657 -0.09369 -0.09494 -0.12875 -0.07134 -0.06394 -0.07580 

Std. Dev. 1.05651 1.25652 0.02756 0.01732 0.01577 0.01946 0.01692 0.00875 0.01532 

Skewness -0.8121 -1.1568 0.270 -0.430 -0.619 0.030 0.014 -1.033 -0.052 

Kurtosis 11.07 12.7 16.10 5.79 7.03 7.95 5.84 8.63 4.52 

          

J-B test 1477.0 2175.6 3742.5 186.5 387.0 533.6 176.1 783.7 50.7 

H0 rejected rejected rejected rejected rejected rejected rejected rejected rejected 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Obs. 522 522 522 522 522 522 522 522 522 
φ Rejected at a 10% significance level but not at a 5% significance level. 

 

Over the two-year period, the average daily returns were negative in most industries except 

automotive and wholesale retailing, as the two TOPIX indexes indicate, because the market 

was bearish. The largest daily variations appeared in the electric utility industry, with a 

maximum daily increase of 17.06% and minimum value of –17.65%. Only the steel industry 

also experienced a daily price change greater than 10%: It dropped by 12.87%. The standard 

deviation of electric utility returns thus was approximately twice that of the other industries, 

which indicated clearly higher volatility. 

In the return distribution, we found generally low skewness coefficients, with predominant 

negative returns (lack of symmetry in the distribution of returns). A slight predominance of 

negative returns also appeared in the pharmaceutical industry, though not in the electric utility 

sector. That is, despite the violence of the catastrophic shock, the number of negative daily 

returns did not dominate over the course of two years, which suggested that though the shock 

was significant, it did not dramatically change the structure of the returns. The kurtosis values 

were distinctly higher in the electric utility (16.10) than in other sectors (cf. next highest value 

8.63), indicating the presence of several extreme returns after the earthquake. In all sectors, 

the return distributions consistently exhibited fatter tails than the Gaussian case. 

With a standard Jarque-Bera (JB) test, we rejected the null hypothesis of normality of daily 

returns in all industries, particularly for the electric utility. Such a result is not surprising in 

itself, because non-Gaussian and heavy tail distributions are well-documented phenomena in 

international markets (Cont, 2001). Such distributions sometimes persist even after 

corrections of the returns for volatility clustering with a GARCH-type model (see Section 5).  



 

When we distinguish two sub-periods,2 to represent the eras before and after the earthquake, 

the normality tests again rejected the null hypothesis in all cases after the earthquake, whereas 

for the first sub-period, the null hypothesis could not be rejected for the automobile or 

electronic equipment industries.  

We also studied the stock price changes for firms affected by the earthquake, to uncover any 

patterns after March 11, particularly in terms of volatility. The descriptive statistics for the 

electric utility companies demonstrated the importance of the change, especially in terms of 

decreases in the average and median returns across all firms. With an even larger measure 

than that for sectors, we found that electric companies’ values exhibited more important 
outliers (unusually large maximum and minimum values after the catastrophe) more 

frequently (standard deviations three to four times higher than usual values—even eight times 

higher for TEPCO). Again, we thus detected long-lasting stock market characteristics, as 

confirmed by the kurtosis increases (cf. TEPCO, which already revealed a high value) and a 

skewness drop. Similar to many stock markets around the world, no firm exhibited a Gaussian 

distribution of returns, before or after the earthquake. Because the return series did not follow 

Gaussian distributions, we checked for autocorrelations to detect possible momentum effects. 

 

3.2. Autocorrelation in stock returns 

The first-order autocorrelation is defined as: 

     
1

1 1

t t

t t t t

R R

E R E R R E R


 


    


                                               (1) 

where t indicates one trading day in the stock market. It is usually analyzed with the Ljung-Box 

(1978) test.  

Table 4 shows that before and after the earthquake, the electric utility sector was the only one 

in which we must reject the null hypothesis of no autocorrelation at the 5% error level. This 

finding contrasts with most conventional situations, for which returns are not correlated and 

follow no trend. The only other industry that rejected the null hypothesis was wholesale 

retailing before the earthquake at the 10% error level. Therefore, even without the 

catastrophe, the electric utility industry index exhibited serial autocorrelation in its returns. 

A closer look at the firm returns of the electric utility sector indicated that the autocorrelation 

of returns surprisingly was higher before the catastrophe for four companies, whereas it 

increased after the disaster for one of them (Tohoku Electric Power). Tokyo Electric Power 

also exhibited long-lasting, significant return autocorrelations, such that the returns appeared 

to have strong momentum, which is “a quantitative signature of the well-known phenomenon 

of volatility clustering: large price variations are more likely to be followed by large price 

variations” (Cont, 2001, p. 230). 

 

 

 

 

 

                                                           
2 Out of space considerations, we do not present the detailed statistics for the sub-periods here; they are available 

on request.  



 

Table 4: Ljung-Box tests  

 Before Earthquake After Earthquake 

Index by Industry Q-statistic p Q-statistic p 

Electric utility  38.830 0.038** 41.988 0.018** 

Electronic appliances  25.330 0.444 25.306 0.445 

Electronic equipment 27.939 0.311 18.670 0.813 

Automobile 14.001 0.962 19.956 0.768 

Steel  30.291 0.214 23.667 0.539 

Wholesale retailing 36.358 0.066* 13.563 0.969 

Pharmaceutical industry 22.651 0.598 14.386 0.955 

TOPIX 100 index 29.643 0.238 18.620 0.815 

TOPIX 500 index 23.378 0.556 19.415 0.777 

Electric Utility Firms 

Chubu Electric Power 33.003 0.104* 29.046 0.218 

Kansai Electric Power 34.727 0.093* 26.420 0.385 

Kyushu Electric Power 39.861 0.030** 31.827 0.163 

Tohoku Electric Power 22.820 0.588 35.551 0.079* 

Tokyo Electric Power 50.116 0.002** 37.810 0.048** 

* Null hypothesis rejected at the 10% significance level. 

** Null hypothesis rejected at the 5% significance level. 
 

4. Interdependence between stock returns indices 

Interdependence can be analyzed through an investigation of causal relationships. To analyze 

the causal dependence between stock returns, we performed pairwise Granger-causality tests, 

before and after the earthquake. Consider two daily stock returns Ri and Rj that are stationary 

processes. Granger causality implies that in an observation, the cause occurs prior to its 

effects. Formally, Ri Granger-causes Rj if taking its past value into account provides a better 

prediction of the future value of Rj than would have been possible solely with the history of 

Rj. In practice, we consider a stationary,3 bivariate, autoregressive system and suppose that 

each variable depends on its past values and the past values of the other variables in the 

system. In the first equation, we test the null hypothesis that Rj does not Granger-cause Ri (i.e., 

all coefficients of past values of Rj in the Ri equation are null). Next, we test the null 

hypothesis that Ri does not Granger-cause Rj. 

We present two diagrams, for 2010–2011 and for the post-earthquake period. The direction of 

the arrows indicates causality between stock returns. That is, Ri  Rj indicates that Ri 

Granger-causes Rj, so we can reject the null hypothesis. 

Before the earthquake, Figure 2 reveals that the stock returns of the electric utilities industry 

were endogenous, depending on the returns in four other sectors. The performance of the 

electricity sector thus was closely linked to the performance of other sectors that were 

upstream of it and that needed electricity for their activity. Only the pharmaceutical industry 

and steel sector did not directly influence the electric industry. However, the stock returns for 

the steel industry indirectly influenced the returns of electric utilities through two other 

sectors: electronic equipment and automobiles. In contrast, two stock return indices appeared 

                                                           
3 A detailed analysis of the stationarity is provided in Appendix 2. It confirms that all stock returns were 

stationary.  



 

strictly exogenous, namely, electronic appliances and the pharmaceutical industry. After the 

earthquake (Figure 3), the interactions between return indices changed substantially. The 

stock returns of the electric utilities industry no longer depended on other sectors, except for 

automobiles. We also observed Granger causality with feedback in seven cases, confirming 

the increased interdependence between returns after the earthquake. 

 

Figure 2: Causality relationships between stock return indices, before earthquake 

 

Figure 3: Causality relationships between stock return indices, after earthquake  

Electric_utilities_index 

 

Automobile_index Electronic 

appliances_index 

Electronic 

equipments_index Pharmaceuticals_index 

Steel_index Wholesale 

distributors_index 

Electric_utilities_index 

 

Automobile_index Electronic 

appliances_index 

Electronic 

equipments_index 

Pharmaceuticals_index 

Steel_index 
Wholesale 

distributors_index 



 

These results confirm that the crisis mainly affected the electricity sector, and then the decline 

in equities spread to the entire market.  

 

5. Volatility and dynamic in the correlations of stock returns 

In a first step, we present univariate GARCH models to analyze the variance of the stock returns 

of different sectors and of different firms belonging to the electric sector. In a second step, we 

focus on the dynamic conditional correlation between TEPCO and other stock returns. 

 

5.1. GARCH models 

We tested an adjustment of return series with a generalized autoregressive conditional 

heteroskedasticity (GARCH) model (Bollerslev, 1986; Engle, 1982). Such models express the 

present volatility of assets as depending linearly on an α coefficient that represents 
dependence on the residuals of an underlying stationary process of return and a β coefficient 
that represents dependence on past volatility. To account for shocks during the period, we 

estimated three GARCH (1,1) specifications: a standard GARCH, the Engle (1982) 

EGARCH, and an asymmetric GARCH, also known as GJR-GARCH (Glosten, Jaganathan, 

and Runkle, 1993). The results in Appendix 3 reveal that in most estimations, the coefficients 

were highly significant, so the GARCH models performed well. In a comparison of log-

likelihood values, we obtained higher values from the EGARCH for sectoral indices, except 

for electricity utilities, and from the GJR-GARCH for firms in the electric sector, except for 

Tohoku. From the EGARCH model, we gathered negative values for the parameter of 

asymmetry (ξ), confirming a negative relationship between volatility and return. In addition, 

we obtained positive and significant values for ξ from the GJR-GARCH models, suggesting 

an asymmetric impact in which negative shocks had a greater impact on conditional variance 

than positive shocks. 

 

5.2. Dynamic volatilities 

The results in the previous section revealed the characteristics of our GARCH models; we 

now turn to the evolution of daily volatility around the event. First, Figure 4 presents the 

patterns of the TOPIX 100 index (the results are similar for the TOPIX 500 and NIKKEI 225 

indexes, so we do not display them here). The volatility jump was very large (more than three 

times its usual value) and occurred during a short time span; volatility returned to its pre-

earthquake values after barely a month. The index’s diversification explains this smoothing 
effect, in that some firms’ activity does not depend heavily on electricity production.  
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Figure 4: Plots of conditional standard deviations, EGARCH, and GJR-GARCH 

Second, some sectors, such as automobiles and wholesale distributors, were not directly 

affected by the earthquake, so their volatility took more time (a little more than a month) to 

return to its usual level. Because an industry obviously is less diversified than a market index, 



 

the average volatility of any specific sector was higher (by about 1.5 times) than the index 

volatility. This trend appeared for both the automobile and wholesale retailing industries.  

Third, some firms were directly stricken by the disaster, either through an immediate 

impairment of their production capacities (e.g., TEPCO) or because their future activity would 

require new security and cost considerations (e.g., other electric utility firms). The immediate 

increase of return volatility was clearer for these firms than it would be in other stock prices; 

the volatility values were five to six times higher than usual. One year after the disaster, the 

volatilities of TEPCO—and to a lesser extent, the volatilities of other firms of electric 

sector—had not recovered to their pre-earthquake values. Because TEPCO was the primary 

firm affected by this shock, we conducted a more detailed analysis of its return, to account for 

the possibility of regime switching.  

 

5.3 The case of TEPCO 

If the stock returns of TEPCO revealed regime switching after the earthquake, it would 

indicate volatility of both the stock and the correlations of other stocks on the Japanese 

market. We start by seeking regime switching in volatilities, with an assumption of Markov 

switching in GARCH (MS-GARCH) parameters. In a regime-switching model, some 

parameters may switch across different regimes or states of the world, according to a Markov 

process (Rey et al. 2014). Accordingly, we rely on the model proposed by Dueker (1997) and 

Klaassen (2002).  

 The MS-GARCH for the return tR  can be written as: 










)1()(

)(
~

,1

)2(

,1

)1(

1

tt

tt

tt
pyprobabilitwithf

pyprobabilitwithf
R




                                  (2) 

where f(.) represents conditional distributions that can be Normal (N), Student’s t, or a 

generalized error distribution (GED); and )(i

t  is the vector of parameters in the i-th regime, 
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t h   , for which   is the conditional mean, h  is the conditional variance, and 

  is the shape parameter of the conditional distribution. 

In Table 5,4 we demonstrate a clear distinction between the low and high volatility regimes 

for the two states. Figure 5 confirms these results; we observe regime switching after the 

earthquake, from a low volatility regime to a high volatility regime that persists for at least 

one year after the catastrophe.  

 

 

 

 

 

 

 

                                                           
4 We realized these estimates using the MATLAB code developed by Marcucci (2005). 



 

Table 5: Maximum likelihood estimates of MS-GARCH models with different conditional 

distributions 

 MS-GARCH-N MS-GARCH-t2 MS-GARCH-t MS-GARCH-GED 

1  -0.9699** 

(-2.124) 

0.0245 

(0.473) 

-0.4415* 

(-1.681) 

2.32E-12 

(0.088) 

2  0.0159 

(0.375) 

-0.4421** 

(-5.117) 

0.0256 

(0.633) 

-3.41E-14 

(-0.039) 
1

0  9.5537** 

(9.863) 

0.5997* 

(1.653) 

0.6103 

(0.107) 

1.2253** 

(35.32) 
2

0  0.3464** 

(9.844) 

3.7620** 

(15.76) 

0.8829* 

(1.681) 

0.7534** 

(6.298) 
1

1  0.0829** 

(3.958) 

0.1261 

(0.498) 

0.3910** 

(3.044) 

0.1820** 

(4.277) 
2

1  0.00001 

(1.11E-06) 

0.3782** 

(3.938) 

0.1761 

(1.188) 

0.2025** 

(6.088) 
1  0.7888** 

(25.54) 

0.2845** 

(6.204) 

0.6081** 

(4.940) 

0.8172** 

(19.22) 
2  0.3263** 

(9.135) 

0.6209** 

(6.777) 

0.3077 

(0.886) 

0.2372** 

(2.087) 

P11 0.9647** 

(106.45) 

0.9980** 

(399.71) 

0.9980** 

(344.82) 

0.9980** 

(325.39) 

P22 0.9743** 

(128.03) 

0.9980** 

(392.86) 

0.9980** 

(433.57) 

0.9980** 

(337.52) 

1  
 

2.9390** 

(6.602) 

2.4780** 

(15.65) 

0.5944** 

(13.82) 

2  
 

2.4520** 

(15.22) 

  

Log(L) -1202.9969 -1132.4467 -1132.8110 -1127.8220 

Notes: The t-statistics in parentheses were calculated with asymptotic standard errors. N = Normal, t and t2 = 

Student errors, and GED = generalized error distribution. Log(L) is the log-likelihood value. 
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Figure 5: Smoothed probabilities of the low volatility regime for a two-state model 

Next, we addressed the potential conditional correlation of TEPCO stock with Kyushu 

Electric Power and with Tohoku Electric Power, using the regime-switching dynamic 



 

correlation model of Pelletier (2006)5. Consider a K-variate process, ttt UHY
2/1 , where tU  is 

an i.i.d (0,IK) process; the time-varying covariance matrix tH  can be written as tttt SSH  , 

such that t  contains the correlations; and tS  is a diagonal matrix of the standard deviations. 

We consider two states marked by low and high conditional correlations. According to Figure 

6, the state probability between TEPCO and Kyushu Electric Power was relatively stable for 

the period, at around 50%, except on the date of the earthquake. This model can be reduced to 

a single-state model. Similar observations arose for the correlations between TEPCO and 

other firms in the electric sector,6 with the exception of Tohoku Electric Power.  
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Figure 6: Smoothed probabilities of the two-regime regime-switching dynamic correlation 

model for TEPCO and Kyushu Electric Power 

For Tohoku, we instead observed a regime switch after the earthquake (Figure 7), indicating a 

disconnection in the stock returns. This surprising result may be explained by reconsidering 

the firms’ strategies for protecting against risks. That is, most firms, and particularly TEPCO, 

believed that their existing protections against tsunamis were sufficient. In contrast, Tohoku 

Electric Power adopted a distinct strategy:  

When the first unit was built in the 1970s, the site elevation of the station was set as 

14.8 meters above sea level. A literature review and interview surveys revealed that 

the maximum tsunami height at the Onagawa site was estimated to be about 3 meters, 

but the 14.8 meter site elevation was considered appropriate (Ishiwatari and Sagara, 

2012, p. 12).  

Therefore, the markets appropriately differentiated between Tohoku Electric Power, with its 

much higher elevation, and other firms in the sector. 

                                                           
5 See also the discussion of these models by Billio and Caporin (2005).  
6 The graphs for the other firms are available on request. 
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Figure 7: Smoothed probabilities of the two-regime regime-switching dynamic correlation 

model for TEPCO and Tohoku Electric Power 

 

6. Conclusion 

The massive earthquake that hit Japan in 2011 was unprecedented in scale, mainly because it 

was accompanied by a tsunami and a nuclear disaster. A collapse in the stock prices of the 

companies directly affected by this phenomenon may hinder sustainable economic activity, 

because the traditional financing channels for investments were blocked. Through its effects 

on the Japanese financial market, we study the economic impacts of the earthquake. 

In particular, we studied the stock return behaviors of major industries and major companies 

in each industry, with a particular focus on the electricity sector. We chose to study the 

behavior of stock prices and compare them for the year prior to the disaster and then the year 

following the disaster. These analyses provide three notable results: 

1. During 2010–2011, the power sector was under the influence of other sectors, whereas 

after 2011, it became dominant and even Granger-caused other sectors. 

2. Higher volatility marked the Japanese stock market index a few weeks after the 

earthquake, especially among firms in the electric sector. 

3. According to an empirical analysis of TEPCO’s stock returns, regime switching 
occurred, such that TEPCO moved from a low volatility state before the earthquake to 

a high volatility state after. Although we did not observe regime switching in the 

conditional correlation between TEPCO and the TOPIX 100 index, we clearly 

established regime switching between TEPCO and Tohoku Electric Power, likely due 

to the tsunami mitigation plan adopted and implemented by Tohoku. 

 

A related point involves the general impossibility of predicting natural disasters. The 

historical locations of massive earthquakes reveal the inaccuracy of predictions by authorities. 

For three decades, major earthquakes have occurred in areas that had been denoted “less 

risky” (Stein et al. 2011). As Stein et al. (2012, p. 24) note: “The hazard maps predict than a 



 

0.1% probability of shaking with intensity ‘6-lower’ (on the Japan Meteorological Agency 
intensity scale) in the next 30 years. In other words, such shaking was expected on average 

only once in the next 30/0.001 or 30,000 years. However, within two years, such shaking 

occurred.” Accordingly, it seems essential to obtain “a better quantification of the 

uncertainties in estimating the occurrence and effects of such extreme events and the resulting 

losses, from both a societal and an economic perspective” (Stein and Stein, 2014, p. 24). 
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Appendix 1: Firms in the industry indexes 

 

Electronic appliances: Fujifilm Holdings, Nikon Corp., Sharp Corp., Sony Corp. 

Automobiles: Denso, Honda, Nissan, Suzuki, Toyota  

Electronic equipment: Canon Inc., Hitachi Ltd., Keyence Corp., Kyocera Corp., Mitsubishi 

Electric Corp., NEC Corp., Panasonic Corp., Ricoh CO Ltd., Toshiba Corp. 
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Wholesale retailing: Itochu Corp., Marubeni Corp., Mitsubishi Corp., Mitsui & Co Ltd., 

Sumitomo Corp. 

Pharmaceutical: Astellas, Daiichi Sankyo, Eisai Co., Takeda  

Electric utility: Chubu, Kansai, Kyushu, TEPCO, Tohoku  

Steel: JFE Holdings, Kobe Steel Ltd., Nippon Steel Corp., Sumitomo Metal Industries 

 

 

Appendix 2: Granger causality tests 

We retained a stationary bivariate variance autoregressive (VAR) model, with l lags, written as: 

itkjt

m

k

kkit

m

k

kti
uRRR  







11

 , and                                    (A1) 

jtkjt

m

k

kkit

m

k

kjt uRRR  






11

 , 

where l = 1, … , m, and ui and uj are independently and identically distributed. For each equation 

in the VAR, we retain the Wald-statistics for the joint significance of each of the other lagged 

endogenous variables in that equation. The null hypothesis is that Rj does not Granger-cause Ri in 

the first equation ( 01  m  ) and that Ri does not Granger-cause Rj in the second equation 

( 01  m  ). 

To verify the stationarity of the stock returns we proceed to unit root tests. But, to the extent that 

significant events occurred during this period, it is possible that breaks appeared in these returns. 

So in a first step, we test the presence of breaks. Following Bai and Perron (1998, 2003), we 

consider a multiple linear regression with m breaks: 

trttt uzxR   .. ''
,             t = Tr-1+1,…,Tr    (A2) 

for r = 1, …, m+1. The breaks (T1,…, Tm) are treated as unknown. tx (p x 1) and tz (q x 1) are 

vectors covariates. In addition, since T = 522 we use a trimming 05.0 . We consider p = 0 and 

we present the estimation of the model in two cases; first, with only a constant as regressor (i.e. 

1tz  ); second for an AR(1) structure of the model (i.e.  1,1  tt Rz ). We use the supF type test 

of no structural break m = 0 versus m = r breaks and the SupFT (l +1|l) test of l versus l + l 

breaks. So, the estimation of the number of breaks is realized using the sequential (noted seq.) 

method suggested by Bai and Perron, supplemented by the use of the Bayesian Information 

Criterion (BIC) and a modified Schwarz criterion (LWZ). The results are presented in Table A2.1. 

If one considers the two estimates of the model A2, it is only for the stock return of the Electric 

Utilities index, and in the case of the autoregressive model, that the three tests and criteria used 

conclude to the presence of one break. In all other cases the BIC and LWZ criteria and the 

sequential test don’t give convergent results. 

So in a second step, considering the uncertainty on the presence of breaks, we choose to use two 

unit root tests, a test with break developed by Lumsdaine and Papell (LP, 1997) and a test without 

break proposed by Elliott, Rothenberg and Stock (ERS, 1996). 

First, we test the presence of unit roots in a model with a break, using LP test that adopts a 

modified version of the augmented Dickey-Fuller test with two endogenous breaks. The model of 

stock returns (R) then can be written as:  
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where DU1 and DU2 are dummy variables that capture structural changes in the intercept, and DT1 

and DT2 are two other dummy variables that capture shifts in the trend variable, at times TB1 and 

TB2, respectively. The optimal lag length (k) is determined on the basis of a general-to-specific 

approach (t-test, kmax = 8). We consider the unit-root hypothesis that 0 . For all indices, the 

null hypothesis is rejected at the 1% level, confirming the stationarity of R.  

Second, ERS propose an efficient test, modifying the Dickey-Fuller test statistic using generalized 

least squares (GLS). Results presented in Table A2.3 confirm that in all cases the unit root 

hypothesis is rejected.  

 

Regard these findings we test for causality in a bivariate VAR with the model A1.The optimal lag 

is determined using both the Akaike and standard information criteria. In all cases, they conclude 

at 0 or 1 lag, depending on the criterion. We chose to estimate all bivariate VAR models with 1 

lag; the detailed results (i.e., F-statistics) are available on request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table A 2.1: Bai and Perron estimate results for the number of breaks 

Specifications 

           q=1; p=0             1tz      05.0                   m=4  

Index by 

industry 
Automobile Wholesale 

distrib. 

Steel Pharma- 

ceuticals 

Electronic 

appliances 

Electric 

utilities 

Electronic 

equipments 

SupFT (1) 7.35 4.62 4.20 9.66b 4.57 3.34 7.03 

SupFT (2) 4.93 4.69 4.41 8.22 4.72 1.31 5.04 

SupFT (3) 5.01 4.07 1.51 5.85 4.22 2.73 5.50 

SupFT (4) 3.13 5.70 2.26 4.81 4.23 2.01 2.71 

SupFT (2|1) 2.09 5.31 4.72 6.82 1.75 4.31 7.59 

SupFT (3|2) 4.66 2.89 2.77 2.55 3.18 5.01 6.63 

SupFT (4|3) 2.12 10.02 5.54 3.11 2.36 4.97 3.43 

UDmax 7.35 5.70 4.41 9.66 b 4.72 3.34 7.03 

WDmax 7.35 7.61 4.83 9.66 b 5.17 3.34 7.03 

Number  of breaks    
Seq. 0 0 0 0 0 0 0 

LWZ 0 0 0 0 0 0 0 

BIC 0 0 0 0 0 3 0 

Specifications 

            q=2; p=0  1,1  tt Rz       05.0  m=4  

Index by 

industry 

Automobile Wholesale 

distrib. 

Steel Pharma- 

ceuticals 

Electronic 

appliances 

Electric 

utilities 

Electronic 

equipments 

SupFT (1) 2.92 2.90 3.66 4.05 3.43 18.60 a 3.57 

SupFT (2) 10.79 6.09 9.98 10.93 8.02 12.90 a 4.58 

SupFT (3) 9.22 5.68 8.64 8.66 7.26 13.09 a 4.95 

SupFT (4) 7.88 1.25 7.55 7.80 6.43 11.02 a 4.71 

SupFT (2|1) 18.46 a 9.20 16.09 a 17.54a 12.45 6.78 5.53 

SupFT (3|2) 5.68 4.66 5.61 3.87 5.47 12.33 5.51 

SupFT (4|3) 3.60 4.41 3.95 4.83 3.72 4.31 3.82 

UDmax 10.79 6.09 9.98 10.93 8.02 18.60 a 4.95 

WDmax 11.98 7.20 11.08 12.14 9.21 18.60 a 6.28 

Number  of breaks       
Seq. 0 0 0 0 0 1 0 

LWZ 0 0 0 0 0 1 0 

BIC 2 0 2 2 2 3 0 

Note: See the unpublished appendix of Bai and Perron (2003) for the critical values of different tests. 

http://people.bu.edu/perron/papers/tab-cv.pdf. 
a. b  Statistic significant at the 5% and 10 % levels, respectively. 
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Table A 2.2: Lumsdaine and Papell unit root tests of the stock returns 

Sectors Electric 

Utilities  

Electronic 

Appliances 

Electronic 

Equipments  

Pharma- 

ceuticals  

Automobile  Steel  

 

Wholesale 

Distrib.  

TB1 

TB2 

03/11/11 

07/21/11 

07/08/11 

10/28/11 

07/01/10 

07/26/11 

02/21/11 

10/19/11 

02/17/11 

07/08/11 

02/17/11 

08/01/11 

07/02/10 

10/05/11 

  -0.075 

(-0.229) 

-0.132 

(-0.714) 

0.642 

(1.778) 

-0.124 

(-1.112) 

-0.254 

(-1.294) 

-0.298 

(-1.154) 

0.305 

(0.741) 

  
0.0004 

(0.181) 

0.0003 

(0.365) 

-0.019 

(-2.553) 

0.001 

(1.306) 

0.003 

(1.873) 

0.002 

(1.106) 

-0.014 

(-1.668) 

  -2.918 

(-4.404) 

-1.167 

(-2.662) 

1.063 

(2.713) 

-0.299 

(-1.719) 

-1.077 

(-2.942) 

-0.862 

(-1.939) 

1.258 

(2.992) 

  0.049 

(4.718) 

0.023 

(2.740) 

0.018 

(2.410) 

0.0003 

(0.192) 

0.009 

(1.714) 

0.007 

(1.182) 

0.011 

(1.347) 

  
-2.546 

(-3.718) 

-1.352 

(-2.594) 

-0.454 

(-1.459) 

-0.409 

(-1.858) 

-1.235 

(-3.260) 

-1.221 

(-2.559) 

0.816 

(2.188) 

  -0.043 

(-3.899) 

-0.009 

(-0.915) 

0.007 

(2.389) 

0.006 

(1.993) 

-0.003 

(-0.593) 

0.001 

(0.202) 

0.002 

(0.427) 

  -0.856 a 

(-19.71) 

-0.979 a 

(-22.26) 

-0.974 a 

(-22.11) 

-1.017 a 

(-23.12) 

-1.075 a 

(-17.48) 

-1.125 a 

(-11.37) 

-1.083 a 

(-12.78) 

k 0 0 0 0 1 4 3 

Model with breaks in intercept only 

Sectors Electric 

Utilities  

Electronic 

Appliances 

Electronic 

Equipments  

Pharma- 

ceuticals  

Automobile  Steel  

 

Wholesale 

Distrib.  

TB1 

TB2 

02/22/11 

06/10/11 

07/02/10 

09/26/11 

08/25/10 

10/06/11 

07/20/10 

11/22/11 

02/17/11 

07/08/11 

08/01/11 

11/21/11 

07/05/10 

10/06/11 

  0.106 

(0.360) 

-0.2466 

(-1.255) 

0.0235 

(0.149) 

-0.0738 

(-0.793) 

-0.4877 

(-2.795) 

-0.1738 

(-0.838) 

-0.1805 

(-0.933) 

  
-0.0010 

(-0.504) 

-0.0022 

(-2.203) 

-0.0023 

(-2.200) 

-0.0007 

(-1.614) 

0.0044 

(3.793) 

0.0005 

(0.504) 

-0.0027 

(-2.798) 

  -1.0922 

(-2.319) 

0.6922 

(2.339) 

0.5229 

(1.911) 

0.2455 

(1.712) 

-0.9188 

(-3.382) 

-0.6221 

(-1.9237) 

0.8300 

(2.850) 

         

  
1.5267 

(3.462) 

0.7283 

(2.514) 

0.6659 

(2.432) 

0.3808 

(2.592) 

-0.5256 

(-2.116) 

0.9889 

(3.059) 

0.9474 

(3.335) 

         

  -0.8373 a 

-19.28) 

-0.9733 a 

(-22.11) 

-0.9617 a 

(-21.88) 

0.3808 

(2.592) 

-1.0545 a 

(-17.20) 

-1.1110 a 

(-11.32) 

-1.0737 a 

(-12.71) 

k 0 0 0 0 1 4 3 

Notes: The critical values are respectively for the two models:  -7.19 (1%). -6.75 (5%). and -6.48 (10%); -6.74 

(1%). -6.16 (5%) and -5.89 (10%). t-statistics in parentheses.  a Significant at the 1% level. 
 

 
 

 

 

 

 

 

 

 

 



 

Table A 2.3:  Elliott-Rothenberg-Stock DF-GLS unit root tests of the stock returns 

Sectors Electric 

Utilities  

Electronic 

Appliances 

Electronic 

Equip.  

Pharma- 

ceuticals  

Automobile  Steel  

 

Wholesale 

Distrib.  

Lag (a) 0 6 6 6 0 3 5 

t-stat. -18.40*** -3.32*** -3.81*** -2.33** -18.68*** -7.78*** -4.34*** 

Notes: (a) Optimal lag determined by SIC criterion. Critical values are respectively -2.56 (1%), -1.94(5%) and -

1.61(10%).  

***, ** Significant at the 1% level and the 5% level.  

 

 

 

Appendix 3: GARCH models 

To compute volatility, we used daily returns Rt. If )ln(.100 1 ttt PPR , then ttR   , for 

which µ is the average of tR , conditional on past information ψt-1. Before estimating the GARCH 

model, we tested for the presence of ARCH effects in the residuals of the stock return model, 

ttR   . With the hypothesis of no ARCH effects, the test statistic is )(~. 22
pRTLM  , 

where T is the sample size, and R² is computed on the basis of an AR(p) process for 
2

t .  

Volatility V was computed with the standard deviation of daily returns in a GARCH model, 

defined by hV  , where h is the conditional variance derived from a GARCH(p, q) model, such 

as: 
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it hh                                                   (3) 

where δ > 0,  ≥ 0, and β ≥ 0, because these conditions are sufficient to ensure a positive ht. 

Furthermore, t  is the residual of an underlying process for a set of information ψ, such as 
1/ tt ~ N(0,

th ), so it is weak white noise (implying a constant, finite variance). Unconditional 

expected variance exists when the process is covariance stationary, that is,  i  +  i  < 1.  

The EGARCH method (Engle, 1982) can be advantageous for modeling exchange rate uncertainty 

for two reasons. First, it allows for asymmetry in the responsiveness of exchange uncertainty to 

the sign of shocks (innovation). Second, unlike the GARCH specification, the EGARCH model, 

as specified in logarithms, does not impose negativity constraints on parameters. We retain the 

following specification:  
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The GJR-GARCH model includes leverage terms for modeling asymmetric volatility clustering. 

Large negative changes are more likely to be clustered than positive changes: 
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where otherwiseandifI tkt 001 
  , 0 , 0 , 0  and 0 . In this 

model, a good news it  >0, and bad news it <0 have differential effects on the conditional 

variance. 



 

 
 

Table A3.2: GARCH models for electric utility sector firms 

Variable GARCH  EGARCH GJR-GARCH 
 Coef. p  Coef. p  Coef. p  

TEPCO       

δ  0.061 0.00 -0.056 0.00 0.001 0.87 

α  0.075 0.00 0.265 0.00 0.209 0.00 

β  0.932 0.00 0.968 0.00 0.746 0.00 

ξ   -0.110 0.00 1.203 0.00 

Log(L) -1402.9 -1371.0 -1354.7 

Kansai Electric        

δ  0.027 0.01 -0.226 0.00 0.029 0.00 

α  0.207 0.00 0.362 0.00 0.047 0.04 

β  0.828 0.00 0.964 0.00 0.863 0.00 

ξ   -0.131 0.00 0.205 0.00 

Log(L) -932.4 -924.2 -921.6 

Chubu Electric        

δ  0.025 0.00 -0.133 0.00 0.025 0.00 

α  0.131 0.00 0.208 0.00 0.005 0.65 

β  0.884 0.00 0.982 0.00 0.906 0.00 

ξ   -0.144 0.00 0.179 0.00 

Log(L) -932.2 -924.5 -915.0 

Tohoku Electric        

δ 0.361 0.00 0.051 0.00 0.321 0.00 

α  0.086 0.00 -0.048 0.00 0.038 0.01 

β 0.853 0.00 0.987 0.00 0.868 0.01 

ξ   -0.062 0.00 0.074 0.00 

Log(L) -1126.6 -1098.6 -1123.2 

Kyushu Electric        

δ 0.068 0.00 -0.199 0.00 0.056 0.00 

α 0.187 0.00 0.326 0.00 0.042 0.03 

β 0.808 0.00 0.938 0.00 0.839 0.00 

ξ   -0.161 0.00 0.205 0.00 

Log(L) -890.9 -878.2 -879.1 

Notes: Log(L) is the log-likelihood value. We consider only the case of normal errors. 

Table A3.1: ARCH effects tests 

Stock Return Sectoral Indices 
 Lags 2.RTLM   p-value Lags 2.RTLM   p-value 

Electric utility 1 40.798 0.000 6 60.568 0.000 

Electronic appliances 1 1047.304 0.000 6 107.522 0.000 

Electronic equipment 1 92.279 0.000 6 95.368 0.000 

Automobiles 1 42.586 0.000 6 77.632 0.000 

Wholesale retailing 1 39.979 0.000 6 61.763 0.000 

Pharmaceuticals 1 6.674 0.010 6 8.797 0.117 

TOPIX 100 1 195.053 0.000 6 219.812 0.000 

TOPIX 500 1 111.554 0.000 6 128.152 0.000 

Electric Sector Firms 

TEPCO 1 45.685 0.000 6 56.298 0.000 

Kansai Electric  1 20.216 0.000 6 36.060 0.000 

Chubu Electric  1 3.908 0.048 6 34.932 0.000 

Tohoku Electric  1 176.267 0.000 6 189.778 0.000 

Kyushu Electric  1 29.264 0.000 6 38.977 0.000 



 

 

Table A3.3: GARCH models for the sectoral index  

 

Variable GARCH EGARCH GJR-GARCH 
 Coef. p  Coef. p Coef. p 

Electric utility       

δ  0.079 0.00 -0.113 0.00 0.046 0.00 

α  0.099 0.00 0.291 0.00 0.038 0.01 

β  0.908 0.00 0.955 0.00 0.814 0.00 

ξ   -0.187 0.00 0.581 0.00 

Log(L) -1116.6 -1090.3 -1080.8 

Electronic appliances       

δ  0.161 0.02 -0.068 0.03 0.135 0.02 

α  0.098 0.00 0.148 0.00 0.035 0.17 

β  0.851 0.00 0.950 0.00 0.867 0.01 

ξ   -0.104 0.00 0.101 0.00 

Log(L) -1002.3 -996.1 -999.1 

Electronic equipment       

δ  0.279 0.01 -0.041 0.12 0.157 0.01 

α  0.113 0.00 0.128 0.01 0.019 0.36 

β  0.773 0.00 0.926 0.00 0.879 0.00 

ξ   -0.129 0.00 0.139 0.00 

Log(L) -953.1 -945.4 -947.8 

Automobiles       

δ 0.135 0.12 0.018 0.64 0.161 0.04 

α  0.066 0.00 0.065 0.07 0.002 0.92 

β 0.877 0.00 0.915 0.00 0.880 0.01 

ξ   -0.112 0.00 0.098 0.00 

Log(L) -948.4 -940.7 -943.2 

Steel       

δ 0.401 0.00 -0.090 0.01 0.231 0.01 

α 0.174 0.00 0.235 0.00 0.048 0.06 

β 0.729 0.00 0.928 0.00 0.825 0.00 

ξ   -0.092 0.00 0.141 0.00 

Log(L) -1054.4 -1051.9 -1052.1 

Wholesale retailing       

δ 0.212 0.01 0.012 0.63 0.131 0.00 

α 0.098 0.00 0.076 0.02 0.029 0.07 

β 0.826 0.00 0.924 0.00 0.905 0.00 

ξ   -0.172 0.00 0.156 0.00 

Log(L) -986.7 -973.4 -975.8 

Pharmaceuticals       

δ 0.205 0.00 -0.192 0.00 0.159 0.00 

α 0.192 0.00 0.164 0.01 0.003 0.93 

β 0.545 0.00 0.807 0.00 0.671 0.00 

ξ   -0.165 0.00 0.222 0.00 

Log(L) -652.4 -647.7 -648.1 

TOPIX 100        

δ 0.164 0.05 -0.074 0.04 0.129 0.00 

α 0.144 0.00 0.082 0.08 0.049 0.17 

β 0.697 0.00 0.880 0.00 0.805 0.00 

ξ   -0.193 0.00 0.215 0.00 

Log(L) -727.7 -717.3 -719.6 



 

TOPIX 500        

δ 0.376 0.01 -0.044 0.25 0.347 0.01 

α 0.151 0.00 0.116 0.01 0.074 0.04 

β 0.585 0.00 0.834 0.00 0.667 0.00 

ξ   -0.219 0.00 0.299 0.00 

Log(L) -817.7 -807.3 -807.4 

Note: Log(L) is the log-likelihood value. We consider only the case of normal errors. 

 

 

 

 

 


