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1 Introduction

Information disclosure in auctions is an important topic for research. In the early classic

work of Milgrom and Weber (1982), they show that, in interdependent value auctions

with a¢ liated signals, revealing information to bidders on average increases the expected

auction revenues, and the best disclosure policy is full information disclosure. In their

model, bidders�preferences are homogenous, and information a¤ects bidders�valuations

in the same manner.

The recent literature on information disclosure pays more attention to optimal in-

formation structures, and the central question is how much information a seller should

reveal to consumers (Lewis and Sappington, 1994; Johnson and Myatt, 2006; Board, 2009;

Ganuza and Penalva, 2010). And various concepts of information order are introduced,

such as rotation order in Johnson and Myatt (2006) and precision order in Ganuza and

Penalva (2010). Though di¤erent in de�nitions, they commonly emphasize the same intu-

ition that more precise information will induce more dispersed posterior valuations. For

example, revealing a speci�c product attribute may increase some consumers�willingness

to pay, yet may reduce that of others. Therefore consumers�posterior valuations become

more dispersed, and information disclosure can rotate the demand curve clockwise. In

this case, the seller face the trade-o¤ between a niche market strategy, by revealing pre-

cise information and charging higher prices, while only a portion of the consumers are

served, and a mass market strategy, by revealing little information and charging lower

prices, while most consumers are served. They show that, when information is costless,

the seller should reveal either full or no information to consumers.

In those papers, although preference di¤erentiation is pivotal for the result, it is not

explicitly modelled. In fact, there are no explicit signals at all in those models. On

the contrary, they just assume a monotonic relationship between signal precision and the

degree of dispersion of posterior valuations, while remain silence on the underlying mech-

anism. The only exception is Ganuza (2004), where he models preference di¤erentiation

on a Hotelling circle, and investigates optimal disclosure with costly information. In his

model, signal is in the form of Gaussian noise and bidders�utilities are quadratic. Yet

with this setting, he is not able to provide clear characterization of posterior valuations,

and therefore the underlying mechanism of demand rotation.

In this paper, we investigate a similar model as Ganuza (2004), yet with two major

di¤erences. First, bidder�s utilities are in the form of absolute value. Second and more

importantly, information structure is characterized by partitions of state space. Under

this setting, we are able to derive close-form solutions and clearly reveal the mechanism

on how information disclosure can rotate demand curves. Particularly, we show that,

corresponding to increasingly precise information, the distributions of bidders�posterior

valuations are ordered in terms of First Order Stochastic Dominance (FOSD). To our

knowledge, it is the �rst close-form result in the literature.
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We also show the similar result of extreme disclosure policy in our model of endogenous

valuations, yet with some further quali�cations. Let n denote the number of bidders. We

show that, when n > 3, it�s optimal to reveal full information to the bidders; when n < 3,

it�s better for the seller to withhold all information; and when n = 3, the seller is indi¤erent

between revealing full information or not. This result is similar to that of Board (2009),

which is achieved in a reduced-form model. Here, in a model of endogenous valuations,

we could not only provide new insights, but also show that the result is sensitive to the

functional forms of utility functions.

The remaining parts of this paper are organized as follow: Section 2 is model setup;

Section 3 we provide the main result of this paper on signal precision and the shape of

the distribution of bidder�s posterior valuations; Section 4 is about optimal disclosure

policy; and Section 5 is a short conclusion.

2 The Model

A seller sells a product to n ex ante homogenous bidders, indexed by i = 1; 2; � � � ; n, in a
standard auction. The product is characterized by its vertical value, V , and horizontal

attribute, S. The value of V is commonly known, but S is a random variable, whose

realization, s, is observed only by the seller.

Bidder i�s ideal product attribute is �i, which is also his type, and his valuation of the

product depends on the matching between �i and the product attribute, as below

vi(s; �i) = V � � js� �ij (1)

where � is a coe¢ cient measuring the degree of disutility of mismatching. The seller�s

valuation of the product is zero, and she is a revenue maximizer.

Both the product attributes S and types of the bidders, �i�s, are independent draws

from a uniform distribution on a unit circle. Prior to the auction, the seller may re-

veal product information to the bidders, and the disclosure policy is characterized by a

partition of the product attribute space.

A partition of degree J , denoted as PJ , is de�ned as a sequence of cutting points,

fp1; p2; � � � ; pJg, that divides the unit circle into J sub-sections. And �j = jpj � pj�1j is
the length of the sub-section [pj�1; pj]. An equal partition of degree J , denoted as PEJ , is

a partition where all the sub-sections are of the same length.

De�nition 1 A disclosure policy for a partition PJ is a mapping from the attribute space
to the signal space MJ , that is, D (PJ) : S �!MJ . Speci�cally,

D (PJ) = mj i¤ s 2 [pj; pj+1) (2)

When receiving a signal mj, a bidder i will update his belief and forms the posterior
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estimate of product valuation, which is

vi (mj) = ESjmj
vi(s; �i) =

Z
s2[pj ;pj+1)

vi(s; �i)dG (s jmj ) (3)

where G (�) is the corresponding cdf function. The timing of this game is as below

Figure 1: Timeline of the Game

It is worth attention that a disclosure policy of D (PJ) implies J possible signals,

each inducing a distribution of bidders�posterior valuations. Therefore, an information

partition PJ generates a set of J possible posteriors. For a signal mj, we let ER(mj)

denote the corresponding interim expected auction revenue, and the seller�s problem is

to determine the optimal partition that maximizes the ex ante expected revenue.

max
PJ

ER =
JX
j=1

Pr (mj)ER(mj)

The choice of information partition PJ is twofold: one is the partition degree of J , and

the other is locations of the cutting points, (p1; p2; � � � ; pJ). With our symmetric setting
of uniform distribution on a Hotelling circle, we focus on disclosure policies in the form

of equal partitions, and therefore what is relevant here is just the degree of partition.

3 Disclosure and Distribution of Posterior Valuations

The focus of this section is to investigate how information disclosure a¤ects the distrib-

ution of bidders�posterior valuations. First, we will de�ne the precision of signals in an

intuitive way. A signal mj is de�ned to be more precise than another one mj0, if and

only if �j < �j0. In our case of equal partitions, it is straightforward to de�ne that an

disclosure policy D
�
PEJ
�
reveals more precise information than another one, D

�
PEJ 0
�
, if

and only if J > J 0. Apparently, when J > J 0, any signal under D
�
PEJ
�
is more precise

than those from D
�
PEJ 0
�
by de�nition.

In an equal information partition of PEJ , we let the original point be 0 without loss

of generality, and the cutting point is then p1 = 1
2J
and pJ = � 1

2J
. Therefore, for the

message of m1, corresponding to the sub-section of
�
� 1
2J
; 1
2J

�
, and bidder i�s posterior
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valuation of the product is

vi (m1) =

Z 1
2J

� 1
2J

(V � � js� �ij) dG (sjm1)

=

8><>:
V + ��i if �i 2

�
�1
2
;� 1

2J

�
V � �

4J
� �J�2i if �i 2

�
� 1
2J
; 1
2J

�
V � ��i if �i 2

�
1
2J
; 1
2

� (4)

As �i 2
�
�1
2
; 1
2

�
, the minimum and maximum of vi, denoted as v and �v (J) respectively,

are v = V � �
2
and �v (J) = V � �

4J
. We notice that v does not depend on J . The value

of vi at the in�ection points of �i = � 1
2J
is v̂ (J) = V � �

2J
. If v � v̂ (J), then the cdf

function of vi is F (v) = Pr (vi (�i) � v) = 1� 2V
�
+ 2v

�
. If v > v̂ (J), then from (4)

F (v) = Pr
�
vi (�i) � v

�
= 1� Pr

�
vi (�i) > v

�
= 1� 2

r
V � v
�J

� 1

4J2

In summary, the cumulative distribution of vi is

F (v; J) =

(
1� 2V

�
+ 2v

�
if v 2 [v; v̂ (J)]

1� 2
q

V�v
�J
� 1

4J2
if v 2 (v̂ (J) ; �v (J)]

(5)

It is worth attention that F (v; J) doesn�t depend on the speci�c signal. In fact, under

our symmetric setting, any signal mj in PEJ will induce the same distribution of posterior

valuations. Then F (v; J) is also the distribution of bidder�s posterior valuations induced

by the disclosure policy of D
�
PEJ
�
as a whole.

Figure 2 shows how F (v; J) changes with J . It is interesting to observe that, when the

seller reveals more precise information (J increases), the induced distribution of bidders�

posterior valuations becomes more dispersed. Speci�cally, they can be ordered in terms

of �rst order stochastic dominance (FOSD). We provide the formal result as below:

Figure 2: Distributions of Posterior Valuations
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Proposition 2 For J > J 0 � 1,

F (v; J) � F (v; J 0) for v 2 [v; V ] (6)

In (5) we provide a close-form solution to the distribution of bidders�posterior valu-

ations. And Proposition 2 shows that, corresponding to increasingly more precise infor-

mation disclosure, the distributions of bidders�posterior valuations are ordered in terms

of FOSD. FOSD is a stronger concept that also implies the rotation order in Johnson

and Myatt (2006), as well as the precision orders in Ganuza and Panalva (2010).

4 Optimal Information Disclosure

Upon receiving a public signal, the bidders are in a standard independent private value

auction, where the one with the highest bid wins the auction, and the expected revenue

is equal to the expected value of the second highest valuation. Therefore, the impacts

of disclosure on expected auction revenues depend on how it a¤ects the second highest

valuation. The expected value of the highest valuation is obviously increasing in the

precision of the signals, but this is not necessarily true for the second highest one, which

depends on the number of bidders in the auction.

For a given signal of mj, vi�s are n independent draws from the same distribution of

F (v; J). Let v(1)n , v
(2)
n , � � � , v(n)n be a rearrangement of these such that

v(1)n � v(2)n � � � � � v(n)n

Then v(k)n , k = 1; 2; � � � ; n, are the order statistics of vi�s when the number of bidders is n.
Speci�cally, v(k)n is the kth highest of the vi�s, and we let H(k)

n (v; J) denote its cumulative

distribution function.

For the highest valuation, v(1)n , apparently

H(1)
n (v; J) = F n(v; J) =

8<:
�
1� 2V

�
+ 2v

�

�n
if v 2 [v; v̂]�

1� 2
q

V�v
�J
� 1

4J2

�n
if v 2 (v̂; �v]

(7)

from which we can derive the expected value of v(1)n , denoted as Ev(1)n . The result is shown
in (10) in the Appendix. From the result on order statistics (Krishna, 2002, Appendix

C) that

Ev(2)n = nEv(1)n�1 � (n� 1)Ev(1)n

we get the expression of Ev(2)n as below

Ev(2)n =
�
V � �

4J

�
� 3�J

2 (n+ 1) (n+ 2)
+
� (3J + n� 1)
2 (n+ 1) (n+ 2)

�
1� 1

J

�n+1
(8)
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Furthermore, when the seller reveals no information (J = 0), a bidder�s expected

valuation of the product is, taking his ideal attribute as the origin

v0 = V � 2�
Z 1

2

0

js� 0j ds = V � �
4

which is the same for all the bidders. In this case, as in a second-price auction, the

expected auction revenue is just v0.

In summary, the expected auction revenue under an equal partition is

ER (J; n) =

(
V � �

4
if J = 0

V � �
4J
� 3�J

2(n+1)(n+2)
+ �(3J+n�1)

2(n+1)(n+2)

�
1� 1

J

�n+1
if J � 1

(9)

We then get the following result of the seller�s optimal disclosure policy.

Proposition 3 The optimal disclosure policy is extreme, that the seller will either reveal
full or no information, depending on the number of the bidders. Speci�cally,

1) If n = 2, the seller reveals no information (J = 0);

2) If n = 3, she is indi¤erent between revealing full information or no information;

3) If n � 4, she reveals full information (J =1).

Figure 3 below shows the value of ER as a function of J , corresponding to di¤erent
number of bidders. The dashed line represents the expected revenue under no disclosure

(J = 0). When J � 1 and the seller reveals informative information, it is clear that

the expected revenues increase in J . Therefore, the more precise the signals, the higher

expected revenue of the auction. When n = 3, the expected revenue under full disclosure

is equal to that under no information disclosure, and therefore the seller is indi¤erent

between revealing full or no information. However, this result of the critical number of

n = 3 is sensitive to the speci�c form of the matching function1

Figure 3: Expected Auction Revenues under Disclosure

1In this paper, bidder�s payo¤ function is in the form of absolute value, as in (1). If it is quadratic,
Jewitt and Li (2012) show that, when n = 3, the seller strictly prefers to reveal full information.
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5 Conclusion

In this paper, we study information disclosure in auctions where bidders� preferences

are horizontally di¤erentiated. The information structure is characterized by partitions

of state space, and the matching function in bidder�s payo¤ functions is in the form of

absolute value. With this setting, we provides a close-form result on how information

disclosure can change the distributions of bidders� posterior valuations. Speci�cally,

correspondingly to more precise information, those distributions are ordered in terms of

First Order Stochastic Dominance in our model.

Secondly, we also show that the optimal disclosure policy is extreme in the sense that

the seller will either reveal full or no information to the bidders, which depends on the

number of bidders in the auction. The extreme disclosure policy result is similar to

those in the literature. However, unlike those reduce-form models, we develop a model

of endogenous valuations here and provide further quali�cation on that result.

A Appendix: Omitted Proofs and Calculations

Proof of Proposition 2: If for any J 0 � 1, we show that F (v; J 0 + 1) � F (v; J 0) for

v 2 [v; V ], then (6) is true for any J > J 0. Let J = J 0 + 1, and it is obvious that

v̂ (J) > v̂ (J 0) and �v (J) > �v (J 0), as both v̂ (�) and �v (�) are strictly increasing in J .
Furthermore, as �v (J 0)� v̂ (J) = �

4JJ 0 (J
0 � 1) � 0, we then have

v̂ (J 0) < v̂ (J) � �v (J 0) < �v (J)

The interval of [v; �v (J)] is therefore divided into four subintervals, and we will show on

each subinterval the above result is true. We de�ne a new function � (v) = 1
2
[F (v; J 0)� F (v; J)].

(i) For v 2 [v; v̂ (J 0)), F (v; J) = F (v; J 0) from (5). (ii) For v 2 [v̂ (J 0) ; v̂ (J)), we have

� (v) =
V � v
�

�
r
V � v
�J 0

� 1

4J 02

In addition, �0 (v) = � 1
�
+ 1

2�J 0

�
V�v
�J 0 �

1
4J 02

�� 1
2 and �00 (v) = 1

4(�J 0)2

�
V�v
�J 0 �

1
4J 02

�� 3
2 > 0,

where �0 (v̂ (J 0)) = 0. So for v 2 (v̂ (J 0) ; v̂ (J)), �0 (v) > 0 and � (v) is strictly increas-

ing. Given that � (v̂ (J 0)) = 0, we have� (v) > 0 for v 2 (v̂ (J 0) ; v̂ (J)). (iii) For

v 2 [v̂ (J) ; �v (J 0)),

� (v) =

r
V � v
�J

� 1

4J2
�
s
V � v
�J 0

� 1

4 (J 0)2

Let ' (J) =
q

V�v
�J
� 1

4J2
, and '0 (J) = 1

2J2

�
V�v
�J
� 1

4J2

�� 1
2
�
V�v
�
� 1

8J

�
> 0 for v 2

[v̂ (J) ; �v (J 0)). Given that � (v̂ (J)) > 0, then � (v) > 0 for v 2 [v̂ (J) ; �v (J 0)). (iv) For

v 2 [�v (J 0) ; �v (J)], F (v; J 0) = 1 � F (v; J).
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Calculation of Ev(1)n and Ev(2)n : Given the distribution function of (7),

Ev(1)n =

Z v̂

v

vdH(1)
n (v; J) +

Z �v

v̂

vdH(1)
n (v; J)

= vH(1)
n (v; J)

���v
v
�
Z v̂

v

H(1)
n (v; J) dv �

Z �v

v̂

H(1)
n (v; J) dv

where
i)
R v̂
v
H
(1)
n (v; J) dv =

R v̂
v

�
1� 2V

�
+ 2v

�

�n
dv = �

2
1
n+1

�
1� 1

J

�n+1
ii)
R �v
v̂
H
(1)
n (v; J) dv =

R �v
v̂

�
1� 2

q
V�v
�J
� 1

4J2

�n
dv

= �J
2

�
1

(n+1)(n+2)
� (1�

1
J )

n+1

n+1
+
(1� 1

J )
n+2

n+2

�
then we get the expression of Ev(1)n as below

Ev(1)n = �v � �J

2 (n+ 1) (n+ 2)
+
� (J � 1)
2 (n+ 1)

�
1� 1

J

�n+1
� �J

2 (n+ 2)

�
1� 1

J

�n+2
(10)

We have the result that Ev(2)n = nEv(1)n�1 � (n� 1)Ev
(1)
n (Krishna, 2002, Appendix C),

from which we get the expression of Ev(2)n as in (8).

Proof of Proposition 3: For J � 1 and n � 2,

dER (J)
�dJ

=
1

4J2
+

3

2 (n+ 1) (n+ 2)

��
1� 1

J

�n�
1 +

n

J
+
n2 � 1
3J2

�
� 1
�
> 0

Therefore, if the seller decides to reveal information, she will fully reveal it (J = 1).
Then the expected revenue under full revelation is

lim
J�!1

ER (J; n)

= lim
J�!1

(
V � �

4J
� 3�J

2 (n+ 1) (n+ 2)
+
� (3J + n� 1)
2 (n+ 1) (n+ 2)

�
1� 1

J

�n+1)

= V + lim
J�!1

(
� 3�

2 (n+ 1) (n+ 2)

"
n+1X
i=1

�
1� 1

J

�n+1�i#
+

� (n� 1)
2 (n+ 1) (n+ 2)

�
1� 1

J

�n+1)
= V � 2n+ 4

2 (n+ 1) (n+ 2)
�

Therefore, when n = 2, limJ�!1 ER (J; 2) = V � �
3
< v0, and the seller prefers no

information disclosure; when n = 3, limJ�!1 ER (J; 2) = V � �
4
= v0, and the seller is

indi¤erent between revealing full or no information; when n � 4, limJ�!1 ER (J; 2) > v0,
and it�s optimal for the seller to reveal full information.
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