A\ Economics Bulletin

Volume 34, Issue 3

Hedging demand and the certainty equivalent of wealth

Sami Attaout Pierre Six
Neoma Business School Neoma Business School

Abstract

This paper casts the opportunity set hedging demand in terms of the certainty equivalent of wealth for an investor who
considers both consumption and bequest motives and is constrained to invest his asset proportions of wealth in a
convex set. We show that the hedge portfolio exactly balances out the unfavorable impact of the opportunity set on
the certainty equivalent of wealth.
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1. Introduction

A profuse empirical literature highlights the predictability of asset returns which is intimately
related to the dynamics of the opportunity set.' A demand for hedging thus turns out to be an
important component of the investor's assets demand. Traditionally, this hedging demand is
analyzed and understood in light of the investor’s intermediate consumption (Breeden, 1979;
Merton, 1973, 1971) rather than of her terminal wealth. Nevertheless, a large academic
literature argues in favor of bequest motives (e.g. Constantinides et al. 2007). This article
provides a framework to analyze hedging demand when both consumption and bequest
motives are considered.

The opportunity set hedging demand is originally analyzed in terms of the
intermediate consumption of investors. Ingersoll (1987), Breeden (1979) and Merton (1973,
1971) show that the hedging demand smoothes out the movements of intermediate
consumption. Lioui and Poncet (2001) relate the hedging demand to the fixed income
literature in a Markovian framework where the investor has constant relative risk aversion
(CRRA) and focus only on bequest motives in a complete market. Detemple and Rindisbacher
(2010) extend the work of Lioui and Poncet (2001) to incomplete markets, general utility
functions and intermediate consumption using Malliavin calculus. Finally, Munk (2013)
relates the hedging demand to the correlation between the portfolio of the investor and state
variables in a framework that includes both consumption and terminal wealth.

We rely on the mathematical framework of Cvitanic and Karatzas (1992), that is, a
non-necessarily Markovian setting in which investors can restrain their proportions of wealth
in a predetermined convex set. As in Lioui and Poncet (2001), we focus on the empirical
relevant case where an investor has a constant relative risk aversion towards wealth (Meyer
and Meyer, 2005). However, our analysis of the hedging demand departs from that of Lioui
and Poncet (2001): we rely on the certainty equivalent of wealth. The certainty equivalent of
wealth can be defined in a non-necessarily Markovian framework when both intermediate
consumption and terminal wealth are considered.

We show that the hedging demand smoothes out the movements of the certainty
equivalent of wealth. Precisely, the hedging demand is the opposite of the (instantaneous)
regression of the certainty equivalent of wealth per unit of wealth on traded assets: the
hedging demand offsets unfavorable movements of the certainty equivalent per unit of wealth
by favorable movements of the wealth of the investor. Moreover, we prove that the hedging
demand is proportional to a portfolio that results from the highest correlation, in absolute
value, between the wealth of the investor and the certainty equivalent (per unit of wealth).?
Finally, we show that the weight invested in the hedging portfolio is the complement to unity
of investor’s relative risk tolerance. As a consequence, the dividing role of the Bernoulli
investor naturally arises in our framework (Breeden, 1979).

We run our illustration in the case of the equity hedging demand (Wachter, 2002;
Barberis, 2000). Specifically, we rely on the incomplete market framework of Kim and
Omberg (1996). We use our framework to numerically analyze the hump shape of the hedging
equity demand as a function of risk aversion (Munk 2008; Wachter, 2002). This hump is
loosely attributed to a misspecification of the elasticity of intertemporal substitution in these
models (Wachter, 2002).> This hump is an interesting feature of equity. Indeed, Munk and

! See Merton (1973, 1971) for a definition of the opportunity set. The reader can also refer to Munk and
Serensen (2007) for a modern treatment of asset demand linked to a time-varying opportunity set.

2 We thank an anonymous referee for this remark.

3 Precisely, Wachter (2002, Section IV.B) ties the hedging demand to the wealth-consumption ratio and
identifies a hump in the wealth-consumption as a function of risk aversion. She explains this hump by the link
between risk aversion and elasticity of intertemporal substitution in the time additive framework (Campbell and
Viceira, 1999)
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Ssrensen (2004) show, at least when terminal wealth is considered, that the hedging demand
is an increasing function of risk aversion when stochastic interest rates are considered.

The remainder of the paper is organized as follows. Section two presents our setting as
well as the optimal solutions. Section three focuses on the analysis of our results. Section four
concludes and provides possible extensions.

2. Certainty equivalent and portfolio management
We analyze the link between the certainty equivalent of the investor and her hedging demand
in the framework of Cvitanic and Karatzas (1992) where the investor is constrained to invest
her proportions of wealth in a closed convex set, K. For clarity, we reproduce hereafter the
setting of Cvitanic and Karatzas (1992).*
We consider a complete filtered probability space (Q,F,0,P) endowed with a

continuous non decreasing filtration ®E{E tefo,T ]} T is a positive constant that

represents the end of the economy and F, =F. z,,1e[0;T] is an n-dimensional Brownian
motion defined on (Q, F,©, P) that represent the risks that our investor faces. © ={F, :r €[0,T]}
can then be understood as the augmented filtration generated by the paths of this Brownian

[T

motion. For the remainder of the article, stands for the transpose symbol and E,
represents the expectation operator conditional on F, .

We envisage a market that is fictitiously completed with financial assets. The reader
can report to Karatzas et al. (1991) for an account on fictitious completion:
dby, =nF,dt (1a)

dP zlpt[,utdt+0[’dzt] (1b)

P, designates the risk-free asset with instantaneous risk-free return, 7, and P is the n-
dimensional vector of risky assets with instantaneous return, g and volatility matrix, i.e.
sensitivity matrix to the chocks of the Brownian motion, o,. I,, stands for the nxn diagonal

matrix with the vector P, on its diagonal. In our fictitious complete market, we can define the

!

market price of risk as follows: 6, =o' [4, —r1,]. 1, the n-dimensional vector of ones. For

!
later reference, we define the matrix of variance covariance of the market (1a,b): £, =0, o,.

As mentioned above, the vector of proportions, m, invested in the risky assets is
constrained to take its value in a closed convex set: meK.> For later reference, we consider the

support function of the set -K, &(v)= sup{—;r'v}, defined on its effective domain,
ek

K ={v/8(v)< oo}(Cvitanic and Karatzas, 1992). Finally, our investor has a constant relative

risk aversion, y, and stems satisfaction from consumption, ¢, and bequest motives, w:s

J,=supE, [51 ITe_“(”_’)u(cu )du + gze_“(T_’)u(WT )},u(x) =x"7 /(1-y) (2a)
ek, c t
aw, |w, = [rt +(o,7, )' 0, }dt +(o,7, )' dz,. (2b)

* The reader is invited to report to the article of Cvitanic and Karatzas (1992) for a full presentation of their
setting.

> The proportion invested in the risk-free asset is the complement to unity to the sum of the proportions invested
in the risky assets.

® We do not consider background noise in our framework. For an example of investments with background
noise, the reader can refer to Osaki (2005).
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&,€, 20,66, >0 are weighting factors for the utility stemming from consumption and
terminal wealth, respectively. The limiting case & =0 (&, =0) represents an investor with
utility from terminal wealth (consumption) only. a is the subjective time preference rate of the
investor.

We define the certainty equivalent of wealth per unit of wealth: ce, =u'(J,)/W, , and,
for later reference, simply refer to it as the certainty equivalent of wealth. An important
special case of our setting is the incomplete market framework, where
K= {7[ eR"/n, =0,k=m +1,..,n}: the investor invests freely in the first m assets but cannot
or does not want to invest in the remaining assets. We are now ready to state the main result
of this manuscript:

Theorem 1. Our investor’s portfolio can be decomposed into a mean-variance portfolio and
a certainty equivalent hedge portfolio with weights 1/y and 1-1/y, respectively:

{”ﬁ}zl 1-1, 7y j{l_l} I=1, 7 | (3a)
i 4 7 pve 4 7T cer
The mean-variance portfolio is such that:

Ty =2 [, =11, +v,]. (3b)
The certainty equivalent hedge portfolio is such that:

Mo =2, 0,0, (3¢)

where, v, € K is a process such that&(v,)+ 7, v, =0 and o, is the volatility vector of the
certainty equivalent per unit of wealth.
Proof. See appendix.

In the important case of the incomplete market, we show in the appendix that v is nil
for the part that corresponds to the traded assets while the vector of expected returns, the
matrix of variance covariance and the matrix of volatilities reduce to those of the traded
assets. This important special case justifies the name given to the mean-variance and certainty
equivalent hedge portfolios as well as the subsequent comments of theorem 1.’

First, r,,, involves the excess return of the risky assets divided by their matrix of

variance covariance. As a consequence, r,,,/y corresponds to the mean-variance wealth
proportion invested in the risky assets (Munk and Serensen, 2007; Breeden, 1979; Merton,
1973, 1971). Therefore, [I-1/y]z,, matches the proportion invested in the risky assets to

hedge against the changes in the opportunity set. Note that this proportion vanishes out in the
case of a Bernoulli type investor (7 =1). Furthermore, a more (less) risk averse investor, y </

(y > 1), than the Bernoulli investor will short (buy) the certainty equivalent hedge portfolio to
invest more (less) in the speculative mean-variance portfolio. As a consequence, an investor
with a risk aversion higher than unity, y > /, is actually a hedging investor.

Second, the interpretation of the hedge portfolio, Eq. (3c), is straightforward and
highlights the role of the certainty equivalent of wealth. Indeed, Eq. (3c) demonstrates that the
hedge portfolio is the opposite of a regression coefficient: the hedge portfolio mimics the
opposite of the movements of the certainty equivalent per unit of wealth. As a consequence,
an unfavorable change in the certainty equivalent per unit of wealth is compensated for by an
increase in the value of the wealth of the investor. In addition, we prove in the appendix that

the risky proportions 7z

cet

are proportional to the portfolio that maximizes, in absolute value,

7 Because of the obvious link displayed by theorem 1 between the risk-free asset and risky assets, we focus our
analysis on the risky proportions.
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the correlation between the value of its associated strategy and the wealth certainty
equivalent.

Third, our framework provides a novel interpretation of the usual increasing pattern, in
absolute value, of the hedge portfolio as a function of horizon. Indeed, the increasing behavior
of the utility function combined with the fact that any given strategy can be achieved by a
strategy with a longer horizon guaranties that the certainty equivalent is an increasing function
of the investment horizon. In our arbitrage-free framework, an investor is not better off with a
longer investment horizon. As a consequence, the increasing pattern of the certainty
equivalent must be compensated by an increase in its volatility. Theorem 1 proves that, as far
as the hedging term is concerned, the investment horizon only impacts the demand in assets
through the volatility of the certainty equivalent.

3. llustration
We consider the financial market of Wachter (2002) and Kim and Omberg (1996), where the
investor can choose between investing in an instantaneously risk-free asset with constant
interest rate and a risky asset that stands for an equity index. The equity index has a market
price of risk, which dynamically reverts to its long term mean and is negatively but
imperfectly correlated with the innovations of the equity index.® The time-# price of the equity
index and its market price of risk are denoted by S, and 4,, respectively:

‘;Sf =[r+od Jdt + o4z, (4a)

t
di, =«[A, —AJdt+o,dz,, (4b)

wheredz,, and dz,, are the instantaneous increments of correlated one dimensional Brownian

m

motions and stand for the innovations of our economy. Their correlation is denoted by, p,
p=Eldz,dz,] . oy is the constant volatility of the equity price and r denotes the constant
instantaneously risk-free interest rate. The market price of risk follows a mean-reverting
process of constant speed of adjustment x , long term mean 4,, and volatilityo, .

The imperfect correlation between the equity price and its market price of risk results

in market incompleteness. Liu (2007) shows that our framework leads to closed-form
solutions provided that preferences are restricted to bequest motives:’

Jo= sup E L, )], (5a)
dw, W, =[r+o A Jdt +ogr,dz,, (5b)

where 7, stands for the proportion of wealth invested in the equity index. Theorem 1

demonstrates that the analysis of the mean-variance component is straightforward in our
setting. As a consequence, we restrict our study to the hedging demand in equity. Because of
the time-homogenous Markovian nature of our framework, we restrict our analysis at time 0:

Mo =M. Direct computation proves that: 7z, =(po, /o )[A (T4, +4,(T )] where,
A,(T),4,(T) are two deterministic functions of the horizon available from the authors upon

request. The base-case parameters, in monthly unit, of the financial market, Eqgs. (4a,b), are
obtained from Wachter (2002) and Barberis (2000) and are given in Table 1.

¥ The equity market price of risk can be thought about as a dividend-price ratio (Wachter, 2002). Barberis (2000)
finds a correlation coefficient of -0.93 between the dividend-price ratio and the equity price.
? o only leads to a positive multiplicative constant in Eq (5a) and does not need to be defined for program (5a,b).
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Table 1. Base-case parameters in monthly unit and in %

r (9 ;\'lm K (% P

0.14 4.36 7.88 2.26 1.89 -90.00

Table (1) reports the base case parameters in % and monthly unit used for the numerical illustrations.

Since our aim is to study the opportunity hedging demand as a function of risk aversion, we
consider a hedging investor, i.e y > /. Indeed, in line with the empirical findings in Meyer and
Meyer (2005) and most allocation studies,'® investors are more risk averse than the Bernoulli
investor. Moreover, as shown by Theorem 1, a more aggressive investor than the Bernoulli
investor will short the hedge portfolio to buy more of the speculative portfolio: intuitively,
this feature seems unlikely. We present our analysis for an investment horizon T=20 years.

Figure 1. Opportunity set hedging risky proportion as a function of risk aversion y
Figure 1a) plots the hedging proportion [1 -1/ 7]/:0, and Figure 1b) the certainty equivalent hedge proportion 7, .
Both proportions are displayed as a function of relative risk aversion, y, varying from 1 to 10 for four values of the
equity market price of risk: A= - Ay, (plain line), A=0 (dash-dot line), A= Ay, (dotted line) and A=2 A, (dash line). Ay,
stands for the long term mean of the equity market price of risk. Investment horizon is set to 20 years. Parameters
are given in Table 1.

a) Hedging Proportion function of Risk Aversion b) Certainty Equivalent Proportion function of Risk Aversion
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Relative Risk Aversion, y Relative Risk Aversion, y
Figure 1a) plots the hedging demand proportion, [1—1/ 7]7[66 as a function of the

relative risk aversion. We clearly notice a hump for every value of the equity market price of
risk under consideration, i.e., for an equity market price of risk varying from the opposite of
its long term value to the double of its long term mean value. The hedging demand depends
on y through the weight, /-1/y, whose behavior as a function of y is straightforward, as well as

on the certainty equivalent hedge proportion, 7, displayed in Figure 1b. Figure 1b shows a

symmetric pattern of z_, with respect to 4. It is increasing and negative for negative values of

A while decreasing and positive for positive values of A - since our investor is unconstrained,
the change of sign of A can and does lead to symmetric positions. As a consequence,

whatever the values of 4, 7, 1is, in absolute value, a decreasing function of y. Indeed, an

unconstrained infinite risk-averse investor will not invest except for time preference motives
(Munk and Serensen, 2004). As a consequence, for negative values of A, the hump underlined
in Figure la is explained by the unconstrained nature of the investor, i.e., a negative hedging
position while for positive values of A, the hump is caused by opposite impacts of risk
aversion on the hedging demand. On the one hand, a higher risk aversion reduces the
volatility of the certainty equivalent of wealth. On the other hand, an investor with a higher
risk aversion increases her hedging demand and thus increasingly invests in the opportunity
set hedging portfolio through the weight 1-1/y.

' For an account of this allocation studies, the reader can refer to the references in Munk and Serensen (2007).
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4. Concluding remarks

This article focalizes on the interpretation of the opportunity set hedging demand in a
framework where the investor is constrained to invest in a closed convex set determined at the
beginning of the investment. Our setting encompasses the important incomplete market case
and our investor considers both consumption and bequest motives. We focus on the case of
constant relative risk aversion. We show that the hedge portfolio protects the investor against
unfavorable impacts of the opportunity set on the certainty equivalent of wealth and that the
weight invested in this portfolio is an increasing function of risk aversion. We illustrate our
decomposition in the case of the equity hedging demand.

5. Appendix
Cvitanic and Karatzas (1992) proves that optimal control of program (2a,b) can be couched as
a function of a state price density as in the complete market case — see Munk and Ssrensen

(2007) for an example of the derivation of optimal quantities for complete markets:
1 1

= L) w L
c, =¢le” ! H (A1)

roL %) 1L Logyy L e
E, I ge’” H, du+eje’” H,”
t

vu

: H,/ . (A2)
P T Loy L
E, J; ge’” H, du+teje’” H,”

The state price density is H,, = exp(— J.u r +8(v, )du —%rnﬁwnzdu - _[u 0, dzyj , the process
t T : t t : :
v, is given as in theorem 1 and 6,, is a modified market price of risk: 8, =6, +o, ' v,.

We replace optimal controls given by Eq. (Al, A2) in the the budget constraint,
a(sft) 1

H W :ESUTHWCWdu+HvTWvT}, to get optimal wealth as W, :Q—’e 4 HV?QVS, with

vt
T (u-t)
0, = E[[ J. ge’” H,/ ) dut+eje’” H,” } We apply Ito lemma to optimal wealth and
t

identify its volatility part with the volatility part of the value of the portfolio given by Eq.
(2b):

1 [
o,7, =;[6’t +a;1 Vt}+agw, (A3)

where o, is the volatility (vector) of Q,, .

We replace optimal controls in the value function defined by Eq. (2a) and arrange terms to
get: J, = u(VK )Q; . The certainty equivalent per unit of wealth is then simply a function of

0,: ce = Qj/ 01 We apply Ito lemma to the preceding equation to get: o, = —{l—l}ocq ,

4
where o, is the volatility of the certainty equivalent. We arrange terms in (A3) to obtain:
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1 1 .
7T, :;2;1 [/Ut _thn +Vt]_|:1_;j|2t16tace, > (A4)

Theorem 1 directly follows from Eq. (A4) by considering 7, =1-1, 7, .

Regarding the case of the incomplete market, Karatzas et al. (1991) show that o can be
partitioned as follows: o=[S R], where S is the volatility matrix of the traded assets and R is
the volatility matrix of the fictitious assets that complete the market, such that S’R and R’S
are nil matrixes. As a consequence, using block matrixes multiplication, the matrix of

2S Omrn—m
] , where X, =S'S and £, =R'R, as well
0 I

n—mxm

variance X is block diagonal: =[

0 DI

n—-mxm

0
as its inverse: X' :{ s mx"m:l . In addition, Karatzas et al. (1991) have shown that the

expected return of assets could also be partitioned between traded and fictitious assets:
!

! ! ! ! !
U = [,uS, Hp, } Finally, we denote by v, = [VS, Vi }, the parts of v corresponding to the
traded and the fictitious assets, respectively. Cuoco (1997) has shown that v, =0, . We apply
! ! !
theses partitioning results to Eq. (A4) denoting by 7, :[7[5, T } the parts of the demand

invested in the risky and the fictitious assets, respectively:
1 1
st = Tsmwe +|:1__:|7Z-Scet7 (AS)
4 4

with 75, =25 [ug -7, ]and 7y, =-3}/S,c,, . Similarly, computing the part of Eq. (A4)
linked to the fictitious assets combined with the fact that the demand in fictitious assets is nil
at equilibrium, 7z, =0, , proves that v,, is solution of the following implicit equation:

0 :lz;;,[ ,—;;1,1+VRI]—[1—1}2-1R'0 . (A6)
/4 /4

n—m RtIY O ce,

To show that the hedging portfolio demand in risky asset is proportional to the
portfolio that maximizes the correlation between the certainty equivalent and the wealth of the
investor, we adapt a proof from Munk (2013, p. 94)."" Let us call ¢, the correlation we want
to maximize. This correlation will be maximized, in absolute value, when its square is
maximized. Direct computation shows that:

[ 2 ' '
é/tz = (ﬂ-to-to-cet) /(ﬂ-tztﬂ.t Jcetgcet)' (A7a)
The first order condition of (A7a) with respect to & to leads to:
O-; O-cet”;zt ﬂ-t = ﬂ-; O-t' O-C(—:*tzt ﬂ-t * (A7b)

We multiply each side of (A7b) by ' to obtain:

'

-1
Zt O-tgcetﬂ-tzt

We multiply (A7¢) by 1, to compute the sum of terms of (A7c) and use the fact that by the

T, = ﬁga;acetﬂt . (A7¢)
definition of portfolio, 1, 7, =1:
T, = T.0.0 (A7d)

1t cet®

C -l
1n Zt O-to-cel”tzt

We divide (A7c) by the sum of its components and get:

""" This proof demonstrates that the correlation between the wealth of the investor and the state variable is
maximized for an investment in the hedging portfolio.
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T = 't tvcet . (AS)
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