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1. Introduction 

A profuse empirical literature highlights the predictability of asset returns which is intimately 

related to the dynamics of the opportunity set.
1
 A demand for hedging thus turns out to be an 

important component of the investor's assets demand. Traditionally, this hedging demand is 

analyzed and understood in light of the investor’s intermediate consumption (Breeden, 1979; 

Merton, 1973, 1971) rather than of her terminal wealth. Nevertheless, a large academic 

literature argues in favor of bequest motives (e.g. Constantinides et al. 2007). This article 

provides a framework to analyze hedging demand when both consumption and bequest 

motives are considered. 

 The opportunity set hedging demand is originally analyzed in terms of the 

intermediate consumption of investors. Ingersoll (1987), Breeden (1979) and Merton (1973, 

1971) show that the hedging demand smoothes out the movements of intermediate 

consumption. Lioui and Poncet (2001) relate the hedging demand to the fixed income 

literature in a Markovian framework where the investor has constant relative risk aversion 

(CRRA) and focus only on bequest motives in a complete market. Detemple and Rindisbacher 

(2010) extend the work of Lioui and Poncet (2001) to incomplete markets, general utility 

functions and intermediate consumption using Malliavin calculus. Finally, Munk (2013) 

relates the hedging demand to the correlation between the portfolio of the investor and state 

variables in a framework that includes both consumption and terminal wealth. 

We rely on the mathematical framework of Cvitanic and Karatzas (1992), that is, a 

non-necessarily Markovian setting in which investors can restrain their proportions of wealth 

in a predetermined convex set. As in Lioui and Poncet (2001), we focus on the empirical 

relevant case where an investor has a constant relative risk aversion towards wealth (Meyer 

and Meyer, 2005). However, our analysis of the hedging demand departs from that of Lioui 

and Poncet (2001): we rely on the certainty equivalent of wealth. The certainty equivalent of 

wealth can be defined in a non-necessarily Markovian framework when both intermediate 

consumption and terminal wealth are considered. 

We show that the hedging demand smoothes out the movements of the certainty 

equivalent of wealth. Precisely, the hedging demand is the opposite of the (instantaneous) 

regression of the certainty equivalent of wealth per unit of wealth on traded assets: the 

hedging demand offsets unfavorable movements of the certainty equivalent per unit of wealth 

by favorable movements of the wealth of the investor. Moreover, we prove that the hedging 

demand is proportional to a portfolio that results from the highest correlation, in absolute 

value, between the wealth of the investor and the certainty equivalent (per unit of wealth).
2
 

Finally, we show that the weight invested in the hedging portfolio is the complement to unity 

of investor’s relative risk tolerance. As a consequence, the dividing role of the Bernoulli 

investor naturally arises in our framework (Breeden, 1979). 

We run our illustration in the case of the equity hedging demand (Wachter, 2002; 

Barberis, 2000). Specifically, we rely on the incomplete market framework of Kim and 

Omberg (1996). We use our framework to numerically analyze the hump shape of the hedging 

equity demand as a function of risk aversion (Munk 2008; Wachter, 2002). This hump is 

loosely attributed to a misspecification of the elasticity of intertemporal substitution in these 

models (Wachter, 2002).
3
 This hump is an interesting feature of equity. Indeed, Munk and 

                                                 
1
 See Merton (1973, 1971) for a definition of the opportunity set. The reader can also refer to Munk and 

Sørensen (2007) for a modern treatment of asset demand linked to a time-varying opportunity set. 
2
 We thank an anonymous referee for this remark. 

3
 Precisely, Wachter (2002, Section IV.B) ties the hedging demand to the wealth-consumption ratio and 

identifies a hump in the wealth-consumption as a function of risk aversion. She explains this hump by the link 

between risk aversion and elasticity of intertemporal substitution in the time additive framework (Campbell and 

Viceira, 1999)  
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Sᴓrensen (2004) show, at least when terminal wealth is considered, that the hedging demand 

is an increasing function of risk aversion when stochastic interest rates are considered. 

 The remainder of the paper is organized as follows. Section two presents our setting as 

well as the optimal solutions. Section three focuses on the analysis of our results. Section four 

concludes and provides possible extensions. 

 

2. Certainty equivalent and portfolio management 

We analyze the link between the certainty equivalent of the investor and her hedging demand 

in the framework of Cvitanic and Karatzas (1992) where the investor is constrained to invest 

her proportions of wealth in a closed convex set, K. For clarity, we reproduce hereafter the 

setting of Cvitanic and Karatzas (1992).
4
  

 We consider a complete filtered probability space ( )PF ,,, ΘΩ  endowed with a 

continuous non decreasing filtration [ ]{ }TtFt ,0: ∈≡Θ . T is a positive constant that 

represents the end of the economy and FFT ≡ . [ ]Ttzt ;0, ∈  is an n-dimensional Brownian 

motion defined on ( )PF ,,, ΘΩ  that represent the risks that our investor faces. [ ]{ }TtFt ,0: ∈≡Θ  

can then be understood as the augmented filtration generated by the paths of this Brownian 

motion. For the remainder of the article, “ ’ ” stands for the transpose symbol and  tE  

represents the expectation operator conditional on tF . 

 We envisage a market that is fictitiously completed with financial assets. The reader 

can report to Karatzas et al. (1991) for an account on fictitious completion: 

 

dtPrdP ttt 00 = , (1a) 

 



 ′+= tttPtt dzdtIdP σµ . (1b) 

tP0  designates the risk-free asset with instantaneous risk-free return, tr , and tP  is the n-

dimensional vector of risky assets with instantaneous  return, tµ  and volatility matrix, i.e. 

sensitivity matrix to the chocks of the Brownian motion, tσ . PtI  stands for the nxn diagonal 

matrix with the vector tP  on its diagonal. In our fictitious complete market, we can define the 

market price of risk as follows: [ ]ntttt r 11 −
′

= − µσθ . 1n the n-dimensional vector of ones. For 

later reference, we define the matrix of variance covariance of the market (1a,b): ttt σσ ′=Σ . 

 As mentioned above, the vector of proportions, π, invested in the risky assets is 

constrained to take its value in a closed convex set: πϵK.
5
 For later reference, we consider the 

support function of the set -K, ( ) { }νπνδ
π

'
sup −=
∈K

, defined on its effective domain, 

( ){ }∞<= νδν /
~

K (Cvitanic and Karatzas, 1992). Finally, our investor has a constant relative 

risk aversion, γ, and stems satisfaction from consumption, c, and bequest motives, W:
6
 

 
( ) ( ) ( ) ( ) ( ) ( )γεε γαα

π
−=



 += −−−−−

∈
∫ 1,sup 1

21
,

xxuWueducueEJ T

tT
T

t
u

tu

t
cK

t  (2a) 

 ( ) ( ) ttttttttt dzdtrWdW
′+



 ′+= πσθπσ . (2b) 

                                                 
4
 The reader is invited to report to the article of Cvitanic and Karatzas (1992) for a full presentation of their 

setting.  
5
 The proportion invested in the risk-free asset is the complement to unity to the sum of the proportions invested 

in the risky assets. 
6
 We do not consider background noise in our framework. For an example of investments with background 

noise, the reader can refer to Osaki (2005). 
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0,0, 2121 >≥ εεεε  are weighting factors for the utility stemming from consumption and 

terminal wealth, respectively. The limiting case 01 =ε  ( 02 =ε ) represents an investor with 

utility from terminal wealth (consumption) only. α is the subjective time preference rate of the 

investor.  

We define the certainty equivalent of wealth per unit of wealth: ( ) ttt WJuce 1−= , and, 

for later reference, simply refer to it as the certainty equivalent of wealth. An important 

special case of our setting is the incomplete market framework, where 

{ }nmkRK k

n ,..,1,0/ +==∈= ππ : the investor invests freely in the first m assets but cannot 

or does not want to invest in the remaining assets. We are now ready to state the main result 

of this manuscript: 

Theorem 1. Our investor’s portfolio can be decomposed into a mean-variance portfolio and 

a certainty equivalent hedge portfolio with weights 1/γ and 1-1/γ, respectively: 











 ′−








−+











 ′−=








cet

cetn

MVt

MVtn

t

ft

π
π

γπ
π

γπ
π 111

1
111

.   (3a) 

The mean-variance portfolio is such that: 

[ ]tntttMVt r νµπ +−Σ= − 11 .  (3b) 

The certainty equivalent hedge portfolio is such that: 

tcettCet σσπ '1−Σ−= , (3c) 

where,
~

Kt ∈ν is a process such that ( ) 0=′+ ttt νπνδ  and 
tceσ is the volatility vector of the 

certainty equivalent per unit of wealth. 

Proof. See appendix. 

 In the important case of the incomplete market, we show in the appendix that ν is nil 

for the part that corresponds to the traded assets while the vector of expected returns, the 

matrix of variance covariance and the matrix of volatilities reduce to those of the traded 

assets. This important special case justifies the name given to the mean-variance and certainty 

equivalent hedge portfolios as well as the subsequent comments of theorem 1.
 7

 

First, MVtπ  involves the excess return of the risky assets divided by their matrix of 

variance covariance. As a consequence, γπ MVt  corresponds to the mean-variance wealth 

proportion invested in the risky assets (Munk and Sørensen, 2007; Breeden, 1979; Merton, 

1973, 1971).  Therefore, [ ] cetπγ11−  matches the proportion invested in the risky assets to 

hedge against the changes in the opportunity set. Note that this proportion vanishes out in the 

case of a Bernoulli type investor ( 1=γ ).  Furthermore, a more (less) risk averse investor, γ <1 

(γ > 1), than the Bernoulli investor will short (buy) the certainty equivalent hedge portfolio to 

invest more (less) in the speculative mean-variance portfolio. As a consequence, an investor 

with a risk aversion higher than unity, γ > 1,  is actually a hedging investor. 

Second, the interpretation of the hedge portfolio, Eq. (3c), is straightforward and 

highlights the role of the certainty equivalent of wealth. Indeed, Eq. (3c) demonstrates that the 

hedge portfolio is the opposite of a regression coefficient: the hedge portfolio mimics the 

opposite of the movements of the certainty equivalent per unit of wealth. As a consequence, 

an unfavorable change in the certainty equivalent per unit of wealth is compensated for by an 

increase in the value of the wealth of the investor. In addition, we prove in the appendix that 

the risky proportions cetπ  are proportional to the portfolio that maximizes, in absolute value, 

                                                 
7
 Because of the obvious link displayed by theorem 1 between the risk-free asset and risky assets, we focus our 

analysis on the risky proportions.   
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the correlation between the value of its associated strategy and the wealth certainty 

equivalent. 

Third, our framework provides a novel interpretation of the usual increasing pattern, in 

absolute value, of the hedge portfolio as a function of horizon. Indeed, the increasing behavior 

of the utility function combined with the fact that any given strategy can be achieved by a 

strategy with a longer horizon guaranties that the certainty equivalent is an increasing function 

of the investment horizon. In our arbitrage-free framework, an investor is not better off with a 

longer investment horizon. As a consequence, the increasing pattern of the certainty 

equivalent must be compensated by an increase in its volatility. Theorem 1 proves that, as far 

as the hedging term is concerned, the investment horizon only impacts the demand in assets 

through the volatility of the certainty equivalent. 

 

3. Illustration 

We consider the financial market of Wachter (2002) and Kim and Omberg (1996), where the 

investor can choose between investing in an instantaneously risk-free asset with constant 

interest rate and a risky asset that stands for an equity index. The equity index has a market 

price of risk, which dynamically reverts to its long term mean and is negatively but 

imperfectly correlated with the innovations of the equity index.
8
 The time-t price of the equity 

index and its market price of risk are denoted by St and λt, respectively:  

[ ] StStS

t

t dzdtr
S

dS
σλσ ++= ,  (4a) 

[ ] ttlmt dzdtd λλσλλκλ +−= ,  (4b) 

where Stdz  and tdzλ  are the instantaneous increments of correlated one dimensional Brownian 

motions and stand for the innovations of our economy. Their correlation is denoted by, ρ, 

[ ]Sttt dzdzE λρ =  . Sσ  is the constant volatility of the equity price and r denotes the constant 

instantaneously risk-free interest rate. The market price of risk follows a mean-reverting 

process of constant speed of adjustmentκ , long term mean lmλ  and volatility λσ . 

 The imperfect correlation between the equity price and its market price of risk results 

in market incompleteness. Liu (2007) shows that our framework leads to closed-form 

solutions provided that preferences are restricted to bequest motives:
9
 

 

( )[ ]Tt
Tst

t WuEJ
s ≤≤

=
,

sup
π

,  (5a) 

[ ] SttSttStt dzdtrWdW πσλπσ ++= ,  (5b) 

 

where tπ  stands for the proportion of wealth invested in the equity index. Theorem 1 

demonstrates that the analysis of the mean-variance component is straightforward in our 

setting. As a consequence, we restrict our study to the hedging demand in equity. Because of 

the time-homogenous Markovian nature of our framework, we restrict our analysis at time 0: 

0CeCe ππ ≡ . Direct computation proves that: ( ) ( ) ( )[ ]TATA tSCe 0+= λσρσπ λλ where, 

( ) ( )TATA 0,λ  are two deterministic functions of the horizon available from the authors upon 

request. The base-case parameters, in monthly unit, of the financial market, Eqs. (4a,b), are 

obtained from Wachter (2002) and Barberis (2000) and are given in Table 1. 

 

                                                 
8
 The equity market price of risk can be thought about as a dividend-price ratio (Wachter, 2002). Barberis (2000) 

finds a correlation coefficient of -0.93 between the dividend-price ratio and the equity price.  
9
 α only leads to a positive multiplicative constant in Eq (5a) and does not need to be defined for program (5a,b). 
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Table 1. Base-case parameters in monthly unit and in % 

r σ λlm κ σλ ρ 

0.14 4.36 7.88 2.26 1.89 -90.00 

 

Since our aim is to study the opportunity hedging demand as a function of risk aversion, we 

consider a hedging investor, i.e γ ≥ 1. Indeed, in line with the empirical findings in Meyer and 

Meyer (2005) and most allocation studies,
10

 investors are more risk averse than the Bernoulli 

investor. Moreover, as shown by Theorem 1, a more aggressive investor than the Bernoulli 

investor will short the hedge portfolio to buy more of the speculative portfolio: intuitively, 

this feature seems unlikely. We present our analysis for an investment horizon T=20 years. 

 

Figure 1. Opportunity set hedging risky proportion as a function of risk aversion γ 
Figure 1a) plots the hedging proportion [ ]

Ceπγ11−  and Figure 1b) the certainty equivalent hedge proportion 
Ceπ  . 

Both proportions are displayed as a function of relative risk aversion, γ, varying from 1 to 10 for four values of the 

equity market price of risk: λ= - λlm (plain line), λ=0 (dash-dot line), λ= λlm (dotted line) and λ=2 λlm (dash line). λlm 

stands for the long term mean of the equity market price of risk. Investment horizon is set to 20 years. Parameters 

are given in Table 1. 
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Figure 1a) plots the hedging demand proportion, [ ] ceπγ11− as a function of the 

relative risk aversion. We clearly notice a hump for every value of the equity market price of 

risk under consideration, i.e., for an equity market price of risk varying from the opposite of 

its long term value to the double of its long term mean value. The hedging demand depends 

on γ through the weight, 1-1/γ, whose behavior as a function of γ is straightforward, as well as 

on the certainty equivalent hedge proportion, ceπ  displayed in Figure 1b. Figure 1b shows a 

symmetric pattern of ceπ  with respect to λ. It is increasing and negative for negative values of 

λ while decreasing and positive for positive values of λ - since our investor is unconstrained, 

the change of sign of λ can and does lead to symmetric positions.  As a consequence, 

whatever the values of λ, ceπ is, in absolute value, a decreasing function of γ. Indeed, an 

unconstrained infinite risk-averse investor will not invest except for time preference motives 

(Munk and Sørensen, 2004).  As a consequence, for negative values of λ, the hump underlined 

in Figure 1a is explained by the unconstrained nature of the investor, i.e., a negative hedging 

position while for positive values of λ, the hump is caused by opposite impacts of risk 

aversion on the hedging demand. On the one hand, a higher risk aversion reduces the 

volatility of the certainty equivalent of wealth. On the other hand, an investor with a higher 

risk aversion increases her hedging demand and thus increasingly invests in the opportunity 

set hedging portfolio through the weight 1-1/γ.  

                                                 
10

 For an account of this allocation studies, the reader can refer to the references in Munk and Sørensen (2007). 

Table (1) reports the base case parameters in % and monthly unit used for the numerical illustrations. 
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4. Concluding remarks 

This article focalizes on the interpretation of the opportunity set hedging demand in a 

framework where the investor is constrained to invest in a closed convex set determined at the 

beginning of the investment. Our setting encompasses the important incomplete market case 

and our investor considers both consumption and bequest motives. We focus on the case of 

constant relative risk aversion. We show that the hedge portfolio protects the investor against 

unfavorable impacts of the opportunity set on the certainty equivalent of wealth and that the 

weight invested in this portfolio is an increasing function of risk aversion. We illustrate our 

decomposition in the case of the equity hedging demand. 
 

5. Appendix 

Cvitanic and Karatzas (1992) proves that optimal control of program (2a,b) can be couched as 

a function of a state price density as in the complete market case – see Munk and Sᴓrensen 

(2007) for an example of the derivation of optimal quantities for complete markets: 

 
( )

( ) ( )

γ
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T H
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eW . (A2) 

The state price density is ( ) 






 ′−−+−= ∫∫∫
u

t
xx

s

t
x

u

t
xxu dzdudurH ννν θθνδ 2

2

1
exp  , the process 

uν  is given as in theorem 1 and uνθ  is a modified market price of risk: tttt νσθθν
′

+= −1 .  

We replace optimal controls given by Eq. (A1, A2) in the the budget constraint, 





 += ∫ TT

T

s
uusss WHducHEWH ννννν ,  to get optimal wealth as 
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ss

ts
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
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−−−−−−

∫ γ
ν

γ
α

γγ
ν

γ
α

γ
ν εε
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1 T

tTT

t
u
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tt HeduHeEQ . We apply Ito lemma to optimal wealth and 

identify its volatility part with the volatility part of the value of the portfolio given by Eq. 

(2b): 

 

 
tQttttt ν

σνσθ
γ

πσ +



 ′

+= −11
, (A3) 

where 
tQν

σ  is the volatility (vector) of tQν .  

 

We replace optimal controls in the value function defined by Eq. (2a) and arrange terms to 

get: ( ) γ
νttt QWuJ = . The certainty equivalent per unit of wealth is then simply a function of 

tQν : 
[ ]γγ

ν
−= 1

tt Qce . We apply Ito lemma to the preceding equation to get: 
tt ceQ σ

γ
σ

ν 







−−=

1
1 , 

where 
tceσ  is the volatility of the certainty equivalent. We arrange terms in (A3) to obtain: 
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 [ ]
tcetttntttt r σσ

γ
νµ

γ
π '11 1

11
1 −− Σ








−−+−Σ= , (A4) 

Theorem 1 directly follows from Eq. (A4) by considering tnft ππ ′−= 11 . 

 Regarding the case of the incomplete market, Karatzas et al. (1991) show that σ can be 

partitioned as follows: σ=[S R], where S is the volatility matrix of the traded assets and R is 

the volatility matrix of the fictitious assets that complete the market, such that S’R and R’S 

are nil matrixes. As a consequence, using block matrixes multiplication, the matrix of 

variance Σ  is block diagonal: 







Σ

Σ
=Σ

−

−

Rmxmn

mnxmS

0

0
, where SSS

′=Σ  and RRR
′=Σ , as well 

as its inverse: 












Σ

Σ
=Σ −

−

−
−

−
1

1

1

0

0

Rmxmn

mnxmS
. In addition, Karatzas et al. (1991) have shown that the 

expected return of assets could also be partitioned between traded and fictitious assets: 





 ′′=′ RtStt µµµ . Finally, we denote by 



 ′′=′ RtStt ννν , the parts of ν corresponding to the 

traded and the fictitious assets, respectively. Cuoco (1997) has shown that mSt 0=ν . We apply 

theses partitioning results to Eq. (A4) denoting by 



 ′′=′ RtStt πππ  the parts of the demand 

invested in the risky and the fictitious assets, respectively: 

 ScetSMVtSt π
γ

π
γ

π 







−+=

1
1

1
, (A5) 

with [ ]mtStStSMVt r 11 −Σ= − µπ and 
tcetStScet S σπ '1−Σ−= . Similarly, computing the part of Eq. (A4) 

linked to the fictitious assets combined with the fact that the demand in fictitious assets is nil 

at equilibrium, mnRt −= 0π , proves that Rtν  is solution of the following implicit equation: 

 [ ]
tcetRtRtnttRtmn Rr σ

γ
νµ

γ
'11 1

11
1

0 −−
− Σ








−−+−Σ= . (A6) 

 To show that the hedging portfolio demand in risky asset is proportional to the 

portfolio that maximizes the correlation between the certainty equivalent and the wealth of the 

investor, we adapt a proof from Munk (2013, p. 94).
11

 Let us call ζ , the correlation we want 

to maximize. This correlation will be maximized, in absolute value, when its square is 

maximized. Direct computation shows that: 

 ( ) ( )cetcettttcetttt σσππσσπζ ''2''2 Σ= . (A7a) 

The first order condition of (A7a) with respect to π to leads to: 

 ttcettttttcett πσσπππσσ Σ=Σ ''''
. (A7b) 

We multiply each side of (A7b) by 1−Σ t  to obtain: 

 tcettttttcettt πσσπππσσ ''''1 =ΣΣ−
. (A7c) 

We multiply (A7c) by '1n  to compute the sum of terms of (A7c) and use the fact that by the 

definition of portfolio, 11' =tnπ : 

 cettttttcetttn σσπππσσ ''''1'1 =ΣΣ−
. (A7d) 

We divide (A7c) by the sum of its components and get: 

                                                 
11

 This proof demonstrates that the correlation between the wealth of the investor and the state variable is 

maximized for an investment in the hedging portfolio. 
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