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1 Introduction

In order to compute the non-symmetric Nash bargaining solution there
is a property that is well-known to, and widely-used by, economists.1

When utilities of agents are perfectly transferable, the surplus from bar-
gaining obtained by each individual at the non-symmetric Nash bargaining
solution coincides with a linear sharing of the total surplus. In other words,
the weight assigned to an individual in the generalized Nash product is
the proportion of the total surplus that she receives at the corresponding
non-symmetric Nash bargaining solution. This linear equivalence allows us
to choose between maximizing the generalized Nash product or finding
the unique solution that linearly shares the joint surplus. Using the linear
sharing rule correctly can be easier, and faster, in computational work.

The purpose of this paper is to show how to compute the non-symmetric
Nash bargaining solution by means of a linear sharing of the total surplus
from bargaining, instead of maximizing the generalized Nash bargaining
product, when utilities are not perfectly transferable, and when bargaining
takes place over multiple issues.2 To do so one has to to transform the units
of the individual surpluses in proper fashion. It is useful to stress that such
unit transformation is not necessary when maximizing the generalized
Nash product. In addition, the appropriate unit transformation should
be used when comparing quantitatively the surplus of economies with
different utility parametrization. We conclude that differentiability of the
Pareto frontier or utility possibility frontier has to be checked in order to
correctly use our formula.

1See Pissarides (1985), Blanchard and Diamond (1990), Cahuc and Lehmann (2000),
Frediksson and Holmlund (2001), Pissarides (2003), Cahuc and Zylberberg (2004), ch.7
and 9, Boone et al (2007) and Lehmann and van der Linden (2007). See among others
Rogerson et al. (2005) for bargaining in matching models, and Rupert et. al. (2001) for
bargaining in monetary economics. See also Manning (1987) for an example of a two-step
bargaining.

2In all references cited above except the book by Cahuc and Zylberberg (2004) bar-
gaining takes place over one issue. For example, in a context of labor markets, the firm
and the worker bargain bilaterally about their wage. Here, we allow bargaining to take
place over multiple issues, as the firm and the worker could bargain over wages, hours
of work, and other benefits as extra health insurance, use of firm appliances (car, cell
phones, hardware, software, individual office space), etc.
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2 Setting and Results

Bargaining takes place in terms of a vector of variables x ∈ ℜm, where
m ≥ 1 is the number of issues that are relevant in the bargaining process.
The two individuals, named A and B, who are engaged in bargaining,
have utilities a(x) and b(x), respectively, for each possible choice of x. Both
a(x) and b(x) are twice differentiable (therefore continuous) real-valued
functions inℜm. Let ai(x) and bi(x) denote the first-order partial derivatives
of a(x) and b(x), respectively, with respect to the issue i at agreement x. We
also assume that if bargaining does not succeed, agents A and B obtain
disagreement payoffs denoted by dA and dB, both real valued.

The following additional assumptions are needed to have a well-defined
bargaining problem. First, there is at least one x in ℜm such that both
a(x) > dA and b(x) > dB. This assumption guarantees essentiality of our
bargaining problem. Second, the functions a(x) and b(x) are quasi-concave
in ℜm, with at least one of them being strictly quasi-concave (but not nec-
essarily both of them). And third, for any x ∈ ℜm satisfying that a(x) > dA

and b(x) > dB we have the following conditions on partial derivatives:
• Both ai(x) and bi(x), for any i, are bounded, not equal to 0, and either

positive or negative for all x.

• For any i = 1, ...,m: ai(x) is positive for all x if and only if bi(x) is
negative for all x.

In words, these conditions on partial derivatives indicate that (i) there is
no satiation point for each agent with respect to each of the issues, and (ii)
there is conflict when trying to reach an agreement for each of the issues.
These are the cases where analyzing the result of bargaining is of interest.
Note that if both derivatives ai(x) and bi(x) are positive for all x, agents
should be clever enough to agree on the highest value possible for such
an issue i, and, equivalently, if both derivatives ai(x) and bi(x) are negative,
agents should be clever enough to agree on the smallest value possible for
such an issue i. We can now define the Pareto set associated to these utility
functions a(x) and b(x) as

F =
{

(

u, f (u)
)

∈ ℜ2
}

, (1)

where u ∈ a(ℜm) and f (u) is the value function associated to the optimiza-
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tion problem3

max
x∈ℜm

b(x)

subject to a(x) ≥ u.
(2)

Both functions a and b are quasi-concave, and at least one of them is
strictly quasi-concave, guaranteeing the solution to be unique. Since there
is conflict for any issue i at any x, the constraint in the maximization
problem (2) is binding, for any value of u, at the optimal solution.4

We can now write the two-person bargaining problem as a pair (S, d),
where the set of feasible utilities S is defined as:

S ≡
{

(u, v) ∈ ℜ2 such that ∃x ∈ ℜm with u ≤ a(x) and v ≤ b(x))
}

, (3)

and d = (dA, dB), the disagreement payoff, is an interior point in S. The
set of feasible utilities S can alternatively be defined by making use of the
value function f defined above as

S ≡
{

(u, v) ∈ ℜ2 such that v ≤ f (u)
}

, (4)

Hence, the set S satisfies free-disposal by definition. Let us check that S
satisfies the usual assumptions in the bargaining theory literature, namely
that it is closed, upper-bounded, and convex. By the Theorem of the Max-
imum f (u), the value function associated to the constraint maximization
problem in (2), is continuous, and therefore the set S of feasible utilities is
closed.5 Since the constraint in the maximization problem (2) is binding

3Alternatively, we could define the maximization problem

max
x∈ℜm

a(x)

subject to b(x) ≥ v,

where v ∈ b(ℜm) and the utility pairs would be written as (g(v), v), where g(v) is the
maximum value function of the problem written in terms of v.

4Suppose, by contradiction, that there is a value of u ∈ a(ℜm) such that x∗(u), the
solution of the problem in (2), satisfies that a(x∗(u)) > u. Then we can find another element
x̃ in a small neighborhood of x∗(u) differing from the latter only on the coordinates for
which the corresponding partial derivative of the a function are decreasing and such that,
by continuity of a, a(x∗(u)) > a(x̃) ≥ u. Given that partial derivatives of a and b are always
of opposite sign and different from zero, b(x∗(u)) < b(x̃). Therefore, x∗(u) cannot be a
solution to the problem in (2), a contradiction.

5See Mas Colell et al (1995), Theorem M.K.6, p. 963.
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(thanks to partial derivatives being of opposite signs), the function f (u) is
decreasing, which guarantees that S is upper-bounded.6 Finally, convexity
of S is granted if the function f (u) is concave in u ∈ a(ℜm), given that f (u)
is decreasing and S satisfies free disposal by definition.7

For generic two-person bargaining problems (S, d), the non-symmetric
Nash bargaining solution (Nash 1950, 1953, and Kalai 1977) with weights
α ∈ [0, 1] and 1 − α solves

max
(u,v)∈S

(u − dA)α (v − dB)1−α
, (5)

where α ∈ (0, 1). Note that α ∈ [0, 1] is usually interpreted as the parameter
measuring player 1’s bargaining power, and when α = 1

2
we obtain the

Nash bargaining solution originally defined and axiomatically character-
ized by Nash (Nash 1950, 1953).8

Proposition 1 Consider the two-person bargaining problem defined just above
and assume that the function f is differentiable in a(ℜm). An agreement x∗ =
(x∗

i
)i∈1,...,m ∈ ℜ

m is the agreement at the non-symmetric Nash bargaining solution
(a(x∗), b(x∗)) with a(x∗) > dA and b(x∗) > dB if and only if it satisfies

a(x∗) − dA = α

[

a(x∗) − dA −
ai(x

∗)

bi(x∗)
(b(x∗) − dB)

]

, (6)

6By contradiction suppose that there exist u and ũ both in a(ℜm) such that u > ũ and
f (u) ≥ f (ũ). Let x(u) and x(ũ) denote the solutions of the maximization problem in (2) for
the constraint a(x) ≥ u and for the constraint a(x) ≥ ũ, respectively. Recall that, given that
partial derivatives are of opposite signs, both constraints are binding at each maximization
problem. This indicates that a(x(u)) = u > ũ, so that x(u) satisfies the constraint for the
maximization problem defined by ũ. By definition of the f function, f (u) ≥ f (ũ) indicates
that b(x(u)) ≥ b(x(ũ)), a contradiction given that x(ũ) is the unique solution to (2) for the
binding constraint a(x) ≥ ũ.

7Let us take two elements (u, v) and (ũ, ṽ) both in S. Take any convex combination of
the two, t(u, v) + (1 − t)(ũ, ṽ), for any t ∈ [0, 1]. By definition of S, v ≤ f (u) and ṽ ≤ f (ũ),
which means that tv+ (1− t)ṽ ≤ t f (u)+ (1− t) f (ũ). Since f is concave, t f (u)+ (1− t) f (ũ) ≤
f (tu + (1 − t)ũ), for any t ∈ [0, 1], and therefore tv + (1 − t)ṽ ≤ f (tu + (1 − t)ũ), indicating,
by definition of S, that t(u, v) + (1 − t)(ũ, ṽ) also belongs to S for any t ∈ [0, 1]. Hence, S is
a convex set.

8The product (u − dA)α (v − dB)1−α is usually called the generalized Nash product.
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and

b(x∗) − dB = (1 − α)

[

b(x∗) − dB −
bi(x

∗)

ai(x∗)
(a(x∗) − dA)

]

, (7)

for any issue i.

At the margin and in terms of exchange (or in terms of opportunity

costs), one util of B is equivalent to
∣

∣

∣

∣

ai(x)

bi(x)

∣

∣

∣

∣

utils of A when issue i at agreement

x is taken as a reference. A obtains an α share of the total surplus when the
latter is all of it measured in utils of A. The joint surplus measured in utils
of A may differ if we fix another issue, say j, as a reference, as long as

ai(x)

bi(x)
,

a j(x)

b j(x)
. (8)

From (2), however, any x that generates a pair of utilities (a(x), b(x)) belong-
ing to the frontier F satisfies

ai(x)

bi(x)
=

a j(x)

b j(x)
.

Since the nonsymmetric Nash bargaining solution (u∗, f (u∗)) lies in the
frontier F of the feasible set S, it must be that the joint surplus measured in
utils of A is the same independently of the issue that we take as a reference
at the nonsymmetric Nash bargaining solution. The same can be said about
the joint surplus measured in utils of B. The proof of Proposition 1 is based
on this fact and on the FOC for the maximization of the generalized Nash
product, and it can be found in the mathematical web appendix.

From Proposition 1 we can also conclude that the agreement x∗ ∈ X
at the nonsymmetric Nash bargaining solution is the unique agreement
satisfying that, for every i = 1, ...,m

a(x∗) − dA

|ai(x∗)|
= α

(

a(x∗) − dA

|ai(x∗)|
+

b(x∗) − dB

|bi(x∗)|

)

(9)

It is worth noting that, when computing the linear equivalence with respect
to either of the issues, we also have to correct the surplus of the B agent,
even when his/her utility is linear.
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3 Final Comments and Conclusions

We have shown that maximizing the generalized Nash Bargaining
product takes the form of a linear split of the joint surplus even when
agents utilities are not perfectly transferable, after correcting individual
surpluses at the margin. We have identified the required conditions for
the bargaining problem to be well defined and for the linear sharing equiv-
alence to hold. In terms of curvature of the utility functions, the concavity
of the utility functions (but not necessarily strict concavity) is sufficient
when bargaining takes place over multiple issues, as it implies convexity
of the feasible set S, which in turn implies concavity of the generalized
Nash product as a function of u (See Lemmas 1 and 2 of Mathermatical
Appendix.) Relaxing the assumption of convexity of S is nevertheless
possible.9

Special care has to be taken regarding the assumption of opposite signs
of marginal utilities. The existence of corner solutions to the maximization
problem in (2), in addition, affects the differentiability of the frontier f (u),
which is required for equations (6), (7), and (9) to hold. For example, let
us consider the firm-union bargaining over wage and employment as in
McDonald and Solow (1981), also detailed in Cahuc and Zylbeberg (2004),
chapter 7, part 3.2. The firm has a profit function equal to R(L) − wL,
where w denotes wage per worker and L denotes number of employed
workers. The union’s utility function is given by L[U(w) − U(w̄], where w̄
denotes benefits if worker is unemployed, and U is each union member’s
utility function. Bargaining takes place in terms of w ≥ 0 and L ≤ N. As the
union’s utility function is increasing in both arguments w and L we need the
firm’s profit function to be decreasing in both arguments too so that there
is conflict. We obtain that agreements can only take place if the wage is
higher than the marginal revenue of labor, w > R′(L). Computing equation
(9) with respect to L we obtain that at the non-symmetric Nash bargaining

solution (w∗
,L∗) w∗ = α

R(L)

L
+ (1 − α)R′(L), implying that the optimal wage

9The set S of feasible utilities is usually assumed to be convex since Nash 1950. The
usual justifications for the use of the non-symmetric Nash bargaining solution, Kalai
(1977) –using a replica argument– and Rubinstein (1982) –from a strategic point of view–,
assume a convex set S. Nevertheless, some papers have dealt with the symmetric Nash
bargaining solution for non convex sets S. See, among others, Roth (1977), Kaneko (1980),
Maschler et al (1988), Herrero (1989), Conley and Wilkie (1991 and 1996), Zhou (1997) and
Serrano and Shimomura (1998).
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is equal to the weighted average of the marginal and average revenue of
labor. When the function R(L) is concave its marginal value is lower than
its average value and hence w∗

> R′(L∗). Unfortunately, when R(L) is a

linear function the equation above collapses into w∗ =
R(L∗)

L∗
= R′(L∗). Such a

(w∗
,L∗) minimizes the generalized Nash product, because the value of the

generalized Nash product would be equal to zero.10 The problem is still
essential as long as the average product is higher than the unemployment
benefits.11 In order to use the non symmetric Nash bargaining solution to
solve the firm union bargaining for this case we need to proceed in two
stages. If the average revenue product, being a constant, is greater than
the optimal wage w we know that both utility functions are increasing in
the value of L. Hence, the maximization of the generalized Nash product
happens at L∗ = N. Now we can use equation (9) to compute the optimal
wage w∗,

U(w∗) −U(w̄)

U′(w∗)
= α

[

U(w∗) −U(w̄)

U′(w∗)
+

R(N)

N
− w∗

]

,

which has a solution w∗ in
(

w̄, R(N)

N

)

. If U were a linear function in w, w∗

would be equal to αR(N)

N
+ (1 − α)w̄ < R(N)

N
= R′(N). Note that the problem

does not come from linearity per se, but from the fact that, under linear
technology, optimal labor hours is a corner solution to the maximization
problem in (2).12 As mentioned before, the differentiability of the f function
defining the utility possibility frontier is the key, because in the presence
of corner solution we lose smoothness, but not continuity, in the solution
function.13 This problem might arise when bargaining takes place over
multiple issues, but not when bargaining takes place over one issue, where
the maximization problem to obtain the Pareto set is trivial as long as

10L cannot take an infinite value, but at most the value of N which is finite.
11We can find a w and an L such that both utility functions are strictly positive. For

example, L = N and w = 1
2 (

R(N)
N + w̄).

12On the contrary, if it is the union’s utility function that is linear, and not the firm’s

one, the Nash bargaining solution also yields a s wage w∗ = α
R(L∗)

L∗ + (1 − α)R′(L∗), but L∗

has to satisfy R′(L∗) = w̄, which in turn means that w∗ = α
R(L∗)

L∗ + (1 − α)w̄.
13When R(L) is linear but U(w) is not we obtain the following value function f :

f (u) =

{

N
(

R(N)
N −U−1

(

U(w̄) + u
N

))

, if U
(

R(N)
N

)

−U(w̄) > u
N ,

0 otherwise.
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marginal utilities are of opposite sign.
Finally, we would like to stress that exploring the possibility of inter-

personal comparisons of utility is beyond our intention. Binmore (2009a
et 2009b) has studied interpersonal comparisons of utility from a more
philosophical point of view. Our intention here is less ambitious, namely,
identifying how utility units are implicitly compared at the nonsymmetric
Nash bargaining solution if we were to interpret such a solution as an α,
(1−α) division of a common pool. We do not want to, or even claim that we
should, explicitly convert utility units from one individual into the other
one.
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